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Nematic-smectic- A—smectic- C polycritical point: Experimental evidence and a Landau theory
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Differential-scanning-calorimetry measurements and optical-microscopy observations are reported on mixtures
of two stable liquid crystalline compounds, one of which has the nematic, smectic-4 and smectic-C phases,
while the other has only nematic and smectic C. The phase diagram for this system is found to have the
following features: (i) a line of second-order nematic~smectic-4 transitions with large pretransitional effects,
(i) a line of continuous smectic- A-smectic-C transitions, (iii) a line of first-order nematic—smectic-C
transitions with very weak pretransitional effects, and (iv) a multicritical point where these three lines meet. A
phenomenological Landau-like theory is presented, which qualitatively describes the observed phase diagram.
On the basis of this work it is argued that the nematic-smectic- C transition is always of first order.

I. INTRODUCTION

Recent interest in the study of higher-order
critical points,! called poly- or multicritical
points, has led to the discovery of apparent tri-
critical®™* behavior in several liquid-crystal sys-
tems. As of now, only the nematic (or cholesteric)
to smectic-A phase transition has been studied in
this manner. It has been found that these transi-
tions may apparently be changed from first to
second order by application of pressure®* or by
mixing.* The binary-mixture study was first
suggested by Alben® who has more recently sug-
gested® that one might find a higher-order critical
point in a binary-mixture system where one com-
ponent has nematic (N), smectic-A (A), and
smectic-C (C) phases and the other has only N
and C phases. Mixing such compounds would re-
sult in a phase diagram exhibiting an A phase that
gets squeezed out. This would happen at a poly-
critical point if at that point the three phases be-
come the same, or at an ordinary triple point if
at that point the three phases coexist.

We have found such a binary-mixture system’
that exhibits a polycritical point. The phase dia-
gram is shown in Fig. 1, and the polycritical
point (PCP) has some unusual features which we
report and discuss here.

II. EXPERIMENT

The phase diagram of Fig. 1 was determined in
two independent ways, namely, differential scan-
ning calorimetry (DSC-2)® and thermal microscopy.
The latter was also used to characterize the
phases. Transition temperatures determined by
these two methods agreed to within 0.5 °C; except
for the AC transitions which, because they pro-

duced only a slight change in slope on the DSC-2
traces could only be determined by this method
to within +2-3 °C. Thermal microscopy on homeo-
tropically aligned samples, on the other hand,
allowed us to determine the AC transition tem-
peratures to within +0.1 °C. The most striking
features of the DSC-2 data are as follows: (%) the
AC transitions ave continuous and show little or
no pretvansitional effects; (ii) the NA tvansitions
ave continuous and show vather stvong pretvansi-
tional effects® which vanish as the PCP is ap-
proached [see Fig. 2(b)]; (iii) the NC transitions
are very weakly first ovder and show very weak
pretvansitional effects [see Fig. 2(a)]. The NC
latent heats vanish as the PCP is approached, as
shown in Fig. 1.

The near absence of NC pretransitional effects
is especially striking when placed in perspective
with the present and previous* work on the NA
transition. The NC latent heats are extremely
small, the largest being only ~0.1R,, and the
smallest detected one ~0.01R,, where R, is the
ideal gas constant. NA transitions having such
small latent heats exhibit very pronounced pre-
transitional anomalies,* whereas these extremely
weak NC transitions are by comparison void of
pretransitional effects. We discuss pretransition-
al effects briefly later, but we have no clear ex-
planation for these differences. The most pro-
nounced feature of the DSC-2 results is that the
PCP in Fig. 1 is a point where a line of weak and
decreasing first-order NC transitions branches
into two lines of continuous transitions, namely
NA and AC transitions.

Our microscope studies of the NC transition
reveal that the tilt angle just below the NC trans-
ition is finite and decreases monotonically to zerr
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FIG. 1. Solid circles @
Jo represent the nematic-iso-
tropic, nematic—smectic-
A, smectic-A-smectic-C,
and nematic- smectic-C
phase-transition tempera-
.08 Eures, _f_or the mixtures
885, — 7S5,.,, where x is
the mole fraction and
ranges from zero to one in
increments of 0.1. The
solid squares ® represent
. the transition entropies
for the nematic—to—smec-
tic-C transitions. The
dotted line shows that the
NC transition entropies
04 vanish at the polycritical
point to within experimen-
tal accuracy. The solid
lines through the solid
circles are aids to the
02 eye, whereas the solid
line through the solid
squares is a best fit of the
NC transition entropy data
to a straight line.
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as the PCP is approached. This fact indicates
that there is a discontinuity in the optical property
of biaxiality which complements the latent heat
data by suggesting that the NC transition is first
order. On the other hand, the AC transitions are
continuous as determined by both conoscopic and
orthoscopic observations. We proceed to discuss
these results.

III. DISCUSSION

1t has been shown by de Gennes® that the NA, AC,
and NC transitions may all be continuous accord-
ing to the Landau rules.!® Therefore, one expects
to have the possibility here of finding an NAC
polycritical point where three lines of continuous
transitions meet, i.e., the NA, AC, and NC lines.
Since the NC line is a line of first-order transi-
tions the point in Fig. 1 where the three lines
meet is not this kind of a point; therefore it is
somewhat unexpected and consequently interesting.
The fact that the NC line branches at the polycrit-
ical point into the NA and AC lines, both of which
are lines of continuous transitions, suggests that
this may be a bicritical point. However, as we

will show, using existing Landau theories, this

is not the case. This point is a new kind of poly-
critical point having neither tricritical,'' tetra-
critical,'?'!% nor bicritical'?'!3 characteristics. In
fact, Chen and Lubensky'* have recently suggested
that it is a Lifshitz point.

Phenomenologically bi- and tetracritical be-
haviors are thought to occur as a result of com-
petition between two kinds of order expressed in
Landau theory by the free-energy expression

F=a?+3B¢* +an®+ 3bn* + en®y?, 1)
where 7 and 3 are the order parameters and a

= ao(T - Tl), a:‘ao(T - Tz); and a,, a,, B, b>0.
The coupling coefficient ¢ may be positive or

- negative, but if ¢<0, then we must have c?<gb.

One phase diagram for such a free energy is
illustrated in Fig. 3(a). There we see that for
c?< b four phases are allowed, namely, I
(y=1=0), II ( #0,n =0), LI (y=0; n#0), and IV
(¥#0, n#0) and all of the phase transitions are
continuous, and meet at the so-called tetracritical®®:*®
point. If, on the other hand, c?>8b the most
ordered phase (IV) gets squeezed out and the
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transition line between the ordered phases (II and
III) becomes a first-order line whereas the two
disordered to ordered phase transitions (I-II
and I-III) remain continuous. Figure 3(b) shows
a typical phase diagram for this type of behavior
which has been designated as bicritical.'?'!®* The
first-order antiferromagnetic to spin-flop transi-
tion and superfluid to solid transition in He* are
thought to epitomize such behavior at the point
where they branch into second-order lines of
transitions into the disordered phases.

For the purpose of attempting to understand the
present case of an NAC polycritical point on this
basis, we assign to i the role of the amplitude of
the density wave normal to the smectic layers and
to n the role of some measure of biaxial order.
Thus the tetracritical phase diagram would then
have the following phases: (I) Uniaxial nematic
n=9=0; (II) smectic A (uniaxial smectic) n=0, §#0;
(I11) biaxial nematic n# 0, $=0; (IV) smectic C
(biaxial smectic) n#0, y# 0; whereas the bicriti-
cal phase diagram would have a first-order bi-
axial nematic to smectic-A line branching into
two second-order lines from uniaxial nematic to
biaxial nematic and smectic A. Neither of these
correctly describes the present situation where
we have no biaxial nematic phase. That is, unlike
the bicritical phase diagram, the most ordered
phase (smectic C) is present in our phase diagram
instead of the biaxial nematic.

We have attempted to reproduce the phase
diagram by adding a term of order n° to Eq. (1)
and letting b vary as some linear function of

S
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(a) NEMATIC TO SMECTIC C
TRANSITIONS FIG. 2. (a) DSC-2
traces of the nematic—
smectic-C transitions of
several 8S5-7S5 mixtures
illustrating the rapid de-
crease of transition en-
tropy as the polycritical
point is approached and the
very weak pretransitional
heat-capacity anomaly as-
sociated with the NC tran-
sition. (b) DSC-2 traces
of the nematic—smectic-A
transitions of several mix-
tures of 8S5 and 7S5.
These traces show the
strong pretransitional
heat-capacity anomalies
characteristic of the NA
transition and the weaken-

(b) NEMATIC TO SMECTIC A
TRANSITIONS

—_— T S e—— ing of the transitions as
70/30 the polycritical point is
approached.
T,—T, Both signs of the coupling coefficient ¢

were considered. It appears from these calcula-
tions that any expression that has terms involving
7 alone and hence allows in principal for a bi-
axial nematic is unable to give the experimentally
observed phase diagram. One can arbitrarily
abolish the biaxial nematic phase by fixing a>0
and allowing ¢ to vary. This also fails to give the
correct phase diagram.

From the point of view of the present state of
liquid-crystal physics there is nothing unusual
in this. No convincing experimental data has
been reported which supports the existence of
a biaxial nematic phase, whereas the smectic-
C phase is common and never occurs in tem-
peratures above the smectic A which, in turn,
seldom occurs above the nematic.’® So our
experimentally observed phase diagram is,
from that point of view, what one might expect.
In fact, the order in which these phases occur
and the absence of any biaxial nematic phases
has led theoreticians to develop Landau theories
in which biaxiality cannot occur in the absence of
layers.®*'*+1® This is reasonable because biaxiality
appears to be intimately connnected with and may
just passively follow from tilt of the molecules
relative to the layer normal. Therefore, since
tilt cannot be defined in the absence of layers,
free energies of the general form

F = ayf + 5By + Y(an?+ 3bn* + cny?) , 2)

in which 7 never appears without 3, have been
suggested.’*"'®* The dependencies of the various
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FIG. 3. (a) Typical tetracritical phase diagram pre-
dicted by Eq. (1) for c?<gb. See text for interpretation
of phases. (b) Typical bicritical phase diagram pre-
dicted by Eq. (1) for ¢?>pb. See text for interpretation
of phases. Heavy (light) solid line means first-(second-)
order transitions. (c) Phase diagram predicted by
Eq. (3) for oy, ag, B, b, ¥ >0. The heavy line is the
first-order NC (I-IV) line that ends in a tricritical
point at a=gb/2c, i.e., at x/x,=1- pb/2ca,. This line
follows the parabola a=a%/2b + 1—36 (B=2ac/b)¥/ ty-3c¥/
2b). The dotted lines show the superheating and super-
cooling limits on the first-order section of the NC
line. The second-order NC line which joins the above
parabola at the tricritical point is the parabola «
=a?/2b. The AC (II- IV) transition line follows the
parabola a=g%@/cB- va %/¢23%) and joins the second-
order NA (I-II) line, =0, and the second-order NC
line at the PCP. The particular choices of coefficients
used were 4aqy/B%=16;al/20yb=1; and aec/Bb =- 2.
See text for further discussion. Heavy (light) solid
line means first- (second-) order transitions.

coefficients on the thermodynamic variables may
differ from theory to theory, and the coefficient

¢ is zero in Ref. 16. In this context, 7 is either

a rotational order parameter!® or a measure of

the deviation of the smectic density wave from
uniaxial symmetry. In the latter case it is directly
related to the phase of the complex density wave
¥,** and appears in the form shown above when

the derivative terms are evaluated. With a certain

choice of coefficients, this expansion has been
reported to result in a phase diagram generally
like the experimentally observed one'*''¢ except
that the NC transition line was calculated to be
a line of continuous rather than first-order transi-
tions.

One way to produce first-order transitions is to
allow the coefficient ¢ in Eq. (2) to change sign
at a critical concentration and add a term in y°.
An approach similar to this is the treatment of the
tricritical point which has been observed to occur
on the NA transition line in 80.3-20.3 mixtures.*
By including a term in the free energy of the form
—c(6S)y?, de Gennes® has taken into account the
coupling of the smectic order parameter to fluctua-
tions in the degree of nematic order. The result
is that the coefficient 3 goes like a constant
term supplemented by an additive term dependent
on the distance in temperature of the NA transition
from the isotropic-nematic transition: the narrow-
er the nematic range, the smaller 8 becomes.
However, in the case of 755-8S5 mixtures, the
widening nematic range corresponds to increasing
NC transition entropy, as is readily seen in Fig.
1. This is opposite to the behavior expected from
coupling between smectic and nematic fluctuations.
For this reason, we believe that fluctuations of
the nematic order do not have a large role in
determining the gross features of the phase dia-
gram and consequently we shall neglect such
effects in our description. In passing, it is worth
noting that an appropriate mixture might have a
tricritical point on the NA line so that, as a func-
tion of concentration, we would have a first-order
line which turns into a second-order line which
then merges with another second-order line (AC)
forming a first-order line (NC). If, on the other
hand, the nematic fluctuations are important in
the sense of Halperin, Lubensky, and Ma!” then
the NA line may always be very weakly first
order and the PCP may only be truly described by
more careful treatment of fluctuations. One does
not presently know how such treatments will come
out. Therefore, we will concentrate on the coarser
features of the phase diagram; namely the first-
order NC transitions with transition entropy that
increases with increasing nematic range.

IV. LANDAU THEORY
These features follow from a free energy ex-
pression of the form
F=ai?+3p9* + $yy°
+¥P(an®+ 3bn* + cn®P?), ®)
where a=a,(T -T,)/T,; a=ay(x, —x)/%; 0, g,
B, v, 6>0; ¢<0, and finally, for stability, v
—3¢?/2b>0. Here x is the concentration of the
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compound exhibiting only N and C phases (7S5 in
the present case) and x, is the polycritical point
concentration. We reemphasize here that this
model, as that of Eq. (2), has no terms with
alone because such models overemphasize the
potential for a biaxial nematic phase. Further-
more, 7 should be viewed here not as an indepen-
dent order parameter in a two-order-param-
eter model, but as coming from the phase factor
in a skewed density-wave order-parameter de-
scription which has the appropriate derivative
terms in the free energy such as that of Chen and
Lubensky.'* In fact, except for the y° term, Eq.
(3) is essentially equivalent'® to Eq. (A1) of Ref.
(14). The ¢® term is necessary to make the model
complete to sixth order, and, in fact, to stabilize
the C phase. Without it the condition ¢ <0 drives
the C phase unstable when a <fb/2¢. That is,
the ¢n®y* term behaves like an effectively negative
J* term requiring the addition of a positive y°
term for stability. The phase diagram of this
model is shown in Fig. 3(c). The model gives a
tricritical point on the NC line at a =8b/2c and
latent heats that increase with x. This latter fact
is in agreement with our data, however, there is
apparently no tricritical point. As Fig. 3(c) shows
the model yields both a PCP, where three lines
of continuous transitions meet, and the tricritical
point on the NC line at a distance from the PCP
proportional to B8, the coefficient of the §* term.
If in fact B=0 so that the NA line is a line of tri-
critical points or if 8 vanishes as the PCP is
approached, the experimentally observed phase
diagram would result. On the other hand, if 8
is merely small, as has been suggested by de
Gennes,’ then the PCP and the NC tricritical
point will be close together and it is conceivable
that it would be missed within the accuracy of the
present experiments or that the two points will be
drawn together by the effect of fluctuations. For
the latter reason we think it would be interesting
to see whether a renormalization-group treat-
ment of Chen and Lubensky’s model, modified to
include the y° term, would result in a merging of
the PCP with the NC tricritical point. This of
course would require an extension of renormaliza-
tion group to include y° and second derivative
terms which to our knowledge has not been done.
There is another possible explanation for vanish-
ing of the coefficient 8 at the PCP. In de Gennes’s
model of the NC transition an infinite-component-
vector order parameter is used. Therefore the
PCP may be in some sense a crossover point from
n=2ton=ow,

Bak, Krinsky, and Mukamel'® have recently
suggested the addition of a new “Landau rule”
which states that if there is no stable fixed point

in the ¢ expansion the transition must be first
order. This may be the case for the appropriately
anisotropic n-vector model®® as n — .

A crude, but we think illuminating physical pic-
ture of the NC transition which supports the as-
sumption that the effective y* term may change
sign near the PCP is the following. X-ray evi-
dence®' strongly suggests that there is short-range
smectic-C order in the nematic phase, i.e.,
“skewed cybotactic groups,” which exhibit well
defined tilt angles and hence finite local biaxiality.
The y* free-energy term is phenomenologically
related to the interaction between two such cybo-
tactic groups, and this interaction is logically
dependent on the relative azimuthal orientation
of the fluctuations. If two fluctuations have the
same tilt plane, i.e., the plane formed by the layer
normal and the long molecular axis, then they
should tend to merge into a larger fluctuation, in-
creasing the free energy. Conversely, in the
region between two fluctuations having different
tilt planes, translational motion within one set of
layers projects into interlayer motion with respect
to the second cybotactic group. This implies that
the effective molecular potential, i.e., the super-
position of the potentials of the two fluctuations,
is essentially nematiclike, with three degrees of
translational freedom, in the interfluctuation
region. Thus the fluctuations will not merge, but
tend to destroy each other, decreasing the free
energy. Assuming that the effective y* term is an
average over all possible tilt plane orientations
and that these orientations are random as required
by uniaxial symmetry, the ¢* term would be neg-
ative. On the other hand, above the A phase, the
xX-ray data indicate that the cybotactic groups are
not tilted. Now any two fluctuations can grow
together with at most some splay, implying a
positive * term. This effect accounts for the
observed results and, therefore, justifies the as-
sumption that the y* term changes sign near the
PCP. Essentially, this justification is based on
a symmetry argument which disallows a second-
order NC transition in the presence of short-
range smectic~C order. Since the symmetry argu-
ment depends only on the existence of shovt-range
ovder it seemsunlikely that any uniaxial nematic to
smectic-C transition will be continuous.

It begins to appear both experimentally and
theoretically that the NC transition must be first
order on symmetry grounds.
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