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Half-field EPR transition in the one-dimensional paramagnet tetramethylammoninm-manganese-
trichloride (TMMC)*
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We report the observation of a half-field transition in the EPR spectrum of tetramethylammonium-
manganese-trichloride (TMMC). The observation of this new resonance is a direct consequence of the one-
dimensionality of the spin dynamics of this manganese salt. We present a theory which accounts for many of
the observed features in a very satisfactory way. The experiments are performed with the microwave field
parallel to the static magnetic field. The most important characteristics of the transition are the scaling of
the linewidth with the EPR spectrum obtained with the microwave field perpendicular to the static magnetic
field, and its highly anisotropic intensity.

I. INTRODUCTION

Only the magnetic resonance techniques are able
to reveal the dynamic properties of one-dimen-
sional magnets at high temperatures. These tech-
niques sample only k=0 modes. However, in this
region the effect of the lower dimensionality is
most dramatic. This was shown for the first time
by Dietz et al. ,

' who studied the EPR spectrum of
TMMC (tetra. -methyl-ammonium-manganese-chlor-
ide), the best one-dimensional Heisenberg magnet
known. The experimental proof of the existence
of spin diffusion of two-spin correlation functions
in a one-dimensional magnet has been given re-
cently, using NMR spectroscopy. ' Similarly, the
existence of spin diffusion of four-spin correlatio'n
functions has been demonstrated with EPH, .' All
magnetic resonance studies of one-dimensional
systems reported so far, refer to the resonance
at the (nuclear or electronic) Larmor frequency.
We wish to report here a new resonance in the
EPR spectrum of a one-dimensional Heisenberg
magnet. The fact that this resonance can be ob-
served is a consequence of the low dimensionality
of the spin dynamics. It cannot be observed in
exchange-coupled three-dimensional magnets. The
fact that the resonance should exist can be under-
stood readily, although the quantitative interpre-
tation of the experimental results is very difficult.
The phenomenon can be understood most easily
by explaining why it is not present in a three-di-
mensional paramagnet, and identifying the pa-
rameters which prohibit the observation of the
resonances in this case.

In the next section, we will present the theory
of EPR absorption in three-dimensional para-
magnets using a formalism which is very suitable
to treat one-dimensional cases, too. In a natural
way, the theory will then be extended to discuss
the magnetic resonance absorption in one-dimen-

sional systems. In Sec. III, the experimental de-
tails are presented. The experimental results and
their discussion will be found in Secs. IV and V,
respectively. The sections are presented in that
order because it represents our work in chrono-
logical order.

II. THEORY

We want to describe the EPR spectrum of a
three-dimensional paramagnet at high temper-
atures. The total Liouville operator of the system
is

S(k, t) = N ' ' Qs, (t) exp(-k. r,),

and denote the Kubo relaxation function by'

(s"(k, t))s (k))
8
dh((S-"(-k, t) exp(-kf, i)S (k))), (3)

0

where a is 0, + or —corresponding to S„S or
S, respectively, and the double brackets indicate
thermal averaging. The Mori projection operator
method will be used. ' P is the projection oper-
ator which projects onto the single spin states,

P"=g ~s (k))[g (k)] (S (k)(, (4)

L =Lz+La+ I-H~

where I.z, I~, and 1.& are the Liouville operators
of the Zeeman interaction, the dipolar interaction,
and the Heisenberg exchange coupling, respect-
ively. The fact that we take into account the di-
polar interaction in order to describe the spin
dynamics is because we want to represent the
k=0 mode. For the other modes, the dipolar in-
teraction can be neglected because we assume to
deal with strong exchange coupling. We will need
the spin-wave coordinates
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in which Z~(k) represents the susceptibility,
(S"(k)(s"(k)). Q projects onto the complementary
space,

Q~ =I —P",

It can be shown, "that the one-sided Fourier
transform of the equation of motion of the relax-
ation function can be written as

(S (k)((z —L) [S (k))=y (k)[z —ul (k) —r (k, z)]

in which A. and & are spin operators. This is not
true in general, but it certainly is for the k =0
mode at high temperatures. The frequencies of
interest in our case are, in temperature units,
about 0.5 K, which is much smaller than the tem-
peratures of interest here (room temperature).
Consequently, we will assume that we can use Eq.
(10) for the dynamic k =0 properties. We will ex-
pand the propagator of the self-energy I'"(k = 0, z)
with the dipo1ar part as a small parameter

where the self-energy

I' (k, z) = & Q
"IS"(k)

~ (z - Q"Lq")

xq~LS"(k))[y "(k)] ',

(6)
(z —Q"LQ ) =(z —Le Lz) +(z —Lz-Lz)

x[-I'(L„+Lz) + QLD] (z L

+ ~ ~ ~

(9)

The fluctuation-dissipation theorem connects re-
laxation functions and correlation functions. One
can make a high-temperature expansion of the
fluctuation-dissipation theorem. As long as the
frequencies of interest are much smaller than
kT, the high-temperature form of the fluctuation-
dissipation theory can be used, '

&W ~B) = P&&W+B)), (10)

and where the frequency

~ (k) =[@X "(k)1 '«[S "(-k),S (k)]» (6)

%e are interested in the k =0 mode. In this case, the
self- nergy can be simplified in the following way:

r (k O=z), &L=,S (k"0)=~(z q-"I.q")-'

xL~S "(k =0)) [X~(k =0)]

Inserting this expansion in expression (9), we find
that an order of magnitude calculation shows that
the contribution of the next nonzero term after
the first is already smaller than the first one by
a factor of (&o&/~,„)', ~~ being the dipolar frequen-
cy scale, and ~,„being the exchange frequency
scale. This number is very small, and all terms
except the first one can safejy be neglected when
we substitute expansion (11) in expression (9).
This argument fails if it is applied to one-dimen-
sional systems, because divergencies will show
up. It is now a question of straightforward calcu-
lation to express the zero-wave-vector self-ener-
gies in terms of four-spin correlation functions
of the pure (that is without dipolar propagators)
Heisenberg system. The two self-energies
I"(k =0, z) and r'(k =0, z) are given by

I'+(k=0, z)=-iPk 2N '[y+(k=o)]

e'" Q Q [—,'a(r»)a(r, ) «(jk(t)},(lm(O)}, ))e-' o'
1&0 l&m

+4B(r„)B*(r,.) «(jk(t)},{im(O)},)) e- ' "
+ 16B*(r»)B(r1 ) «( jk(t )}(lm (0)} ))

+4C*(r»)C(ri ) «(jk(t)},(lm(0)},))e' 0'] dt, (13a)

I' (k= 0, z)=-illli z& 1[go(k = 0)] -1

""Z Z [B*(r»)B(r1 )(&(jk(t)],(lm(O)}, ))e' 0'
j&A' j&

+4C*(r,,)C(r,„)&((jk(t)},(lm(0)},»e" o'+c.c.] dt, (12b)

in which

A(r») = ,' gz p2r~„'-(3-cos'8» —1),

B(ri~) = egg p~r» sln8» cos8» e

(13a)

(13b)

and

C(r») = —8 g', p', r,„' s1n' e„e"&'a

in Egs. (I&), Kubo and Tomita's notation (jk}„
has been used to denote irreducible spin oper-

(13c)
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ators, and the time dependence of the four-spin
correlation functions in Eqs. (12) is due to the
Heisenberg propagator.

It is known that at temperatures not too close to
T, (or T„)all modes are highly damped, ' which
means that the four-spin correlation functions in
Eqs. (12) are simple-decaying functions. Conse-

quently, F+(k =0, z) and 1"o(k =0, z) possess sev-
eral resonances. The resonances have a strength
of the order &uD2/&u, „and a width of the order &u„.
In an ordinary magnetic resonance experiment,
(that is the microwave field polarization perpen-
dicular to the static magnetic field) one observes
the normalized spectral function I+(~),6

I '(~) = -2Im(S'(k = 0) I (z L) ]S'(k = 0) &

=-2Imr'(k=0 z) ([z ~+(k=o)]2-2[z-~'(k=0)]Rel"'(k=0, z)+If"(k=o, z)I') ', (14a)

in which

8 = (8 +&E'.

and with the microwaves polarized parallel to the static magnetic field one observes

Io(~) = -2Im& So(k = 0) ( (z —L) ' [So(k = 0)&

= -2Im 1'(k = 0, z) (z' - 2z Re I'(k = 0, z) +
~

1"'(k = 0, z)
~

' j '. (14b)

Now we will study the structure of the spectral
functions (14a) and (14b). Do these functions show

resonances at other frequencies than the funda-
mental resonance [&u+(k=0) for I+(&u), or 0 for
Io(~)]? The conditions for these resonances being
observable are p «p. However, this cannot
be fulfilled for three-dimensional strongly ex-
change coupled systems. The reason is that the
correlation time of the four-spin correlation func-
tions is too short (r, =&a,„'). In other words, the
narrowing process in three-dimensional para-
magnets is so effective that all details of the di-
polar spectrum are washed out.

In one-dimensional systems the situation is quite
different. The correlation time defined in the
usual way would be infinite due to the e ' ' di-
vergence characteristic for one-dimensional dif-
fusion. The conclusions which can be drawn from
this observation are that the narrowing will be inef-
fective and that the lineshape will deviate substan-
tially from a Lorentzian shape. The theory of mo-
tional or exchange narrowing is always much more
difficult if the observed lineshape is non-Lorentzian.
In this case, it means that the dipolar Hamiltonian
has to be kept in the propagator e'~ ' in order
to suppress the divergence. The time-scale will
be increased accordingly and we may expect the
observation of satellite lines to be likely. The
time-scale of the narrowing process is set by the
interplay of dipolar interaction and exchange in-
teraction, and it is of the order of the EPR line-
width. ' This is called the region of intermediate
exchange narrowing. Eqs. (14) shows that under
favorable conditions the satellite lines have a width
of the order of the correlation time, which is, in

principle, observable in one-dimensional systems.

In three dimensional systems these resonances
are much too broad to be observable.

The one-dimensional case will now be discussed
in detail. Eqs. (6)-(10) still hold, and we will
again use them as our point of departure. Reiter
and Boucher' have used mode-coupling arguments
to treat the EPR spectrum of a one-dimensional
paramagnet with only the secular part of the di-
pole interaction as the broadening mechanism.
%e extend this work by introducing the total di-
polar interaction. This is necessary if we want
to describe possible satellite lines in one-dimen-
sional systems. Eqs. (12) show clearly that these
satellite lines are a pertinent consequence of the
nonsecular terms. These terms, however, do
prevent us from applying the same strategy as
Reiter and Boucher did, and we are forced to in-
troduce additional approximations. The key-prob-
lem is that XD does not commute any longer with

X~ if one keeps the nonsecular terms in XD. This
is a complication which prevents simple manipu-
lation of the relevant propagators. %e know that
[S'(&)&, ~S (&)&, and ~S'(k)& are eigenoperators of
Lg,

e""~S"(u)& =e'-" ~S (u)&, (15)

and we would like to use this information. The
following paragraph is meant to arrive at a situa-
tion where we can use property (15).

The four-spin correlation functions in Eq. (9)
are decoupled according to

&(~LCD)) =&&XIl)) &( CD&& +&&~C)) && aD&&

+«»» « Il~&&, (16)

where in the propagators of the decoupled correla-
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{(S'(k)e'"S'(-k))), (17)

because only the nonsecular terms in L can change
the total spin-angular momentum. These terms
start out to be zero at t =0, and cannot have long
diffusive tails. The long diffusive tails dominate
the low frequency spectral functions and all other
terms decaying faster can be neglected. Correla-
tions like (17) will be neglected for this reason.
The next assumption is that the nonsecular part
of the propagator e' ' will be treated in a pertur-
bative way. That is to say we can use expansions

tion functions the projection operator I'" has of
course been neglected. We do not wish to comment
on the validity of this decoupling scheme, because
many others have already done so. However, we
do want to point out that the four-spin correlation
functions I occurring here are a consequence of our
approximation scheme, which is the Mori pro-
jection operator method. Consequently, these
functions have nothing in common, except possibly
at high frequencies, with the pure four-spin cor-
relation functions of the Heisenberg magnet. In
addition, this means that the statement that the
EPR experiments sample pure four-spin correla-
tion functions cannot be supported in general. When
we use E(ls. (9) and (10), and apply decoupling
(16) we are left with two types of two-spin cor-
relation functions. One type is zero if we neglect
the nonsecular terms in the propagator, like

like expression (11), with the nonsecular part as
a small parameter, and need to consider only a
few terms. Actually, we will take all terms into
account approximately, but we need the above
assumption in order to treat the Zeeman interac-
tion. In addition, we use our rule that, also in
this case, only correlations with diffusive tails
will be taken into account, because they force us
to do the whole calculation self-consistently. Then
we can show that the following simplification holds:

~sLt i,I 2& g«J.&+ L,D~ t (18)

whenever this propagator occurs in the self-ener-
gies. This approximation is crucial, because it
permits proper treatment of the Zeeman interac-
tion, as given by Eq. (15). We also get the reso-
nance structure of I'"(k =0, z) we are looking for.

The justification for treating contributions per-
turbative rather than self-consistently in these
types of calculation ean be given a Postioxi. If we
wind up with-divergencies we should do the compu-
tation self-consistently. If we do not end up with
zero-frequency poles it should be simple to show
that we have taken into account the major contribu-
tion.

It is now a question of straightforward calcula-
tion to find the two self-energies for the one-di-
mensional paramagnet. Guided by our results
(12) concerning the three-dimensional paramag-
nets, it is easy to find that

I'(k =0, z) =-i' 'b'(k=0)N) '

9 (A(k)
~

'e ' o' Z'(k, t ) Z ' (k, t ) + 8 ( &(k) (
'8 " o' Z+ (k t )' + 32 ) B(k) )

' go (k, t)'
0

+41}}(~)l*c'(}',})c-(}',})+}6)c(}')I*""'c-(~,})~'(a,})Id}

and

I'o(k =0, z) = iPh '[g-'(k =0)N]

~'"P I41}}(a)I'e '"'c'(0, })I'(k})+8
1 c(a) )

',e-""'z'(0 }}*+,t:
I

d}

(19a)

(19b)

where A(k) is given by

A(k) =pe ""(~A(r, ), (20)

However, this is a formidable task and will not be
attempted here. First, we will take the high-tem-
perature limit of Eqs. (19). The simplifications
in this limit are

in which A(r;I) is the one-dimensional counterpart
of the geometrical coefficient (13a). The other
coefficients &(k) and C(k) are defined accordingly.
& "(k, t) represents

and

g (k =0) =( I ~I+ i)(-,')s(s+I) p, (22)

& "(k t) =((S- (-k)e-'&' ' &'Sqk)&& (21)

These equations should be solved self-consistently.

&u (k=0) = uec. (23)

In arithmetic expressions n represents 0, +I, or
-1, depending on which spin operator is involved.
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Z "(k, t) =(
~
u

~
+ I)(—,')S(S + 1)e (24)

The influence of the dipolar interaction on the dif-
fusion constant is very small and has been ne-
glected in Eq. (24). Those wave-vectors for which
Eq. (24) is not appropriate do not contribute to the
wave-vector sums we will perform. This can be
verified readily. %e would like to emphasize that

We will use a trial solution for g "(k, t). The
frequency independent parameters in this trial
solution will be determined by solving Eqs. (19)
for two relevantly chosen frequencies. The solu-
tion at other frequencies will be obtained by solving
Eqs. (19) with the trial solution as input. In this
way we obtain, what we would like to call, a first
cycle of an iteration process. Such a calculation
is much better than any perturbation calculation
because there will not appear any diffusion poles.

The trial solutions we propose are

the trial solution does not contain satellite lines
and we have not introduced the answer into the
problem. It is difficult to estimate how close our
solution will be to the solution of the full self-con-
sistent treatment. Inspection of the results for
the normal EPH linewidth, for which a better
treatment is available, ' indicates that the trial-
solution method gives very satisfactory re. ults.

If we want to solve Eqs. (19) self-consistently,
we have to solve them in the frequency domain.
This complicates the calculation considerably be-
cause we have to deal with convolution integrals.
Our trial solutions imply that in that case we put
lorentzians, centered at zero frequency, into the
problem as trial distributions (the Zeeman prop-
agator has been taken out of the propagator). The
next step would necessarily have to be done nu-

mericallyy.

Calculating the damping constants as indicated
yields

r =ir'(k=o, ~,)

=a(-,'S(S+1)}'k '(2D) '~'[—,'A(0)'(r'+ I"') '~' +BE(0)'(i(u,) ' '+12'(0)'(-i(u, ) '~'+ BC(0)'(—2iur, ) '~']

(25a.)

I' =iI' (k= Q, Q)=&] 3 S(S+ 1)j k 2(2D) ~ 2[4Xl(0)2(iv) ) ~ 2+ IBC(0)~(2iv ) +c.c.], (25b)

where a is the lattice constant. The factor i be-
tween I' and I' (z) is due to the fact that we found
it simpler from a notational point of view to define
the frequency-dependent self-energies in terms
of (z —L) ' rather than i(z —L) '.~ The frequency
dependent damping constants of a three-dimension-
al system are of the order of uPD/&u, „, and their
widths are of the order of ~«. This can be veri-
fied readily with the help of Eqs. (12). Thefre-
quency dependent damping constants of a one-di-
mensional system are much larger whereas their
widths are much smaller compared to the three
dimensional case. A quantitative confirmation of
this statement will be given later on, but now we
will give an order-of-magnitude estimate. Eqs.
(25) show that I"' and I" are of the order of
uPD(ur, „coo) '~2 and Eqs. (19) show that their widths
are of the same order. Since ~,„»(d» ~, we see
indeed that I' (k=0, z),«» I' (k =O, z),«and
I' (k = 0, z),««&ex. These small. widths indicate
that the self-energies I' (k =0, z) do have several
resonances which are separated by more than their
widths Inspecti. on of Eqs. (14), which are exact
relations, points out that these resonances can
manifest themselves in the EPR spectrum. How-
ever, for X '(~) in the case of a one-dimensional X'(2 &u, = v) = -2Xmr'(k =0, ~)/cp. (2B)

paramagnet these resonances are suppressed by
the highly allowed transition at the Larmor fre-
quency. In a magnetic field-swept resonance ex-
periment with the microwave parallel to the static
magnetic field [that is observing X'(H), H being the
static magnetic field], the disturbing resonance
at zero frequency is mapped towards infinite field.
Bearing this in mind, we see that one should ex-
pect two extra resonances to occur in the "relax-
ation configuration, " at ~, and 2w, . As will be
explained in the experimental section (Sec. III),
it is very difficult to do meaningful experiments
at the Larmor frequency ~, in the relaxation con-
figuration, and so we will focus our attention on
the resonance athalf-field (at 2e, ). Expression
(14b) gives the spectral function X'(~). This ex-
pression can be simplified considerably when ~
differs much from zero. The fundamental resonance
of X'(&u) is at v = 0, but when ~ differs much from
zero, expression (14b) can be simplified consider-
ably. The self-energy I""(k =O, z) is of the order
of I'". When 2', =m, I'"(k =0, &u) is always much
less than cu. The denominator of expression (14b)
can be simplified and the result reads:
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hap = 3.13I' ", (28)

if one neglects the s~all imaginary part of I"'.
To conclude this section we would like to say that
we have shown that in one-dimensional paramag-
nets which are exchange-coupled we expect, as a
result of their one-dimensionality, a half-field
transition in the relaxation configuration. The
angular dependence of both linewidth and line-in-
tensity of this transition is very important be-
cause both should show one-dimensional behavior.
An observation of such an angular dependence
would, on the one hand, prove that we are ob-
serving an intrinsic, one-dimensional, effect and
on the other hand strongly support present ideas
of high-temperature spin-dynamics in one-di-
mensional systems. ' '*"

III. EXPERIMENTAL

Single crystals of TMMC were grown as has
been described previously. " The crystals used
in this study had dimensions of about 7 && 2 && 2

&'(k =0, ru) can be calculated with the help of Eqs.
(19}, (21), and (25). Retaining the largest, reso-
nating term at 2~p= cu gives:

I'((u)(2(u, = (u) = —",k 'S(S +1)(2D) ' 'C(0)'(u &

x Re(i(u —e —2i(u —2&'} ' '
(27)

which resonates at 2~o = v. Eqs. (26) and (27) have
been derived under the implicit assumption that ep
rather than &u is varied (that is sweeping of the
magnetic field. ) From Eq. (27) we conclude that
the resonance should be observable, because its
linewidth is of the order of the EPR linewidth in
the normal resonance configuration, viz. I". The
intensity factor C(0)' o- sin'9 indicates that the in-
tensity should be highly anisotropic, with a max-
imum when the magnetic field is perpendicular
to the chain axis (0 =90'}. Actually, the intensity
of the derivative of the absorption (that is the peak-
height of the derivative spectrum) should be pro-
portional to the factor

C (0)2(1 + )-3/2

An interesting and important feature of Eq. (27)
is also that it shows that the linewidth of the half-
field transition should roughly have the same an-
gular dependence as the normal EPR line. In
other words, a maximum in the linewidth when
0 =90' and a minimum when 8 =54.76'.' The max-
imum linewidth at 6) =0' can, of course, not be
checked experimentally because the intensity is
zero then. The peak-to-peak derivative linewidth
of the resonance Eq. (27), bH», is

mm', the first number referring to the chain di-
rection.

The EPR experiments were performed with a
commercial Varian F. 12 spectrometer operating
at X-band. Low-frequency field modulation (270
Hz) was achieved with the help of two home-built
coils which were secured onto the poles of the
magnet. Using an audio amplifier, modulation
amplitudes of about 100 G peak-to-peak were ob-
tained.

The cavity, needed to perform experiments in
the relaxation configuration, should have a very
homogeneous microwave field and should allow
rotation of the sample. These two requirements
cannot be optimized independently. However, the
previous section has shown that the detection of
angular variations is essential. Bearing this in
mind the following high Q (-9000) cavity has been
constructed. The brass cylindrical cavity oper-
ates in the TE„,mode. The degenerate TM„,
mode is suppressed by electrically insulating one
of the base plates. A hole is drilled in the middle
of the cylindrical cavity wall 90 away from the
coupling hole. This hole supports a quartz sample
rod onto which the sample was glued. The ho-
mogeneity of the microwave field is very good,
although not enough to eliminate completely the
strongly allowed transition of the resonance con-
figuration. The known methods to improve this,
usually do not permit rotation of the sample, which
we think is the most important aspect of the pres-
ent experiment. Of course, in all experiments
we have minimized this effect by careful rotation
of the magnet with respect to the cavity.

IV. RESULTS

A. Relaxation configuration

In Fig. 1, we present the first derivative EPR
spectrum observed in the relaxation configuration
with the magnetic field perpendicular to the chain
axis of TMMC at room temperature. The fact
that there is indeed a new resonance is beyond all
doubt. In Fig. 2, the peak-to-peak linewidth is
displayed as a function of the orientation of the
applied magnetic field. In Fig. 3, we present the
intensity (that is peak-to-peak height of the deriv-
ative) as a function of the direction of the static
magnetic field. No attempt was made to analyze
the results obtained in the neighborhood of the
Larmor frequency. The off-axis components of
the microwave field were still not small enough
to completely eliminate the strongly allowed (dp

transition of the resonance configuration. All
that can be said is that there are indications that
the ~p resonance of the relaxation configuration
is present at 6 =45 . The intensity of the half-,
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V. DISCUSSION

t
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FIG. 1. EPH spectrum of TMMC at room tempera-
ture with the microwave field polarized parallel to the
static field. The angle 0 between Ho and the chain axis
is 90'.

field resonance is roughly 300 times smaller than
the intensity of the normal resonance.

B. Resonance configuration

No satellite lines have been observed in the nor-
mal EPR spectra, not even at the magic angle
8= 54.76', where the allowed transition has the
smallest linewidth.

The qualitative features of the half-field tran-
sition, predicted in the theoretical section, are
extremely well obeyed. The line intensity is at
a maximum when (9= 90' and decreases very rapid-
ly when the magnetic field is rotated away from
this direction. The linewidth does indeed scale
with the normal linewidth. It shows a maximum
at the orientation 8= 90 and a minimum when the
magnetic field makes the magic angle with the
chain axis.

We will now compare the results from Sec. II
quantitatively with experiment. In the first place,
we will compare using Eq. (27), the experimental
AH»(8=90 ) with the calculated, value. The cal-
culated EH»(8=90 ) is 515 G. One should be care-
ful in converting frequency units in magnetic field
units b'ecause g=4 at half field. The experimental
AH»(6=90') is 355 G which means that the theo-
retical value is about 1.5 times larger than the ex-
perimental value. This is not surprising. All cal-
culations done so far for TMMC yield linewidths
which are larger than the experimental ones by
factors of about 1.6-1.9.' "Two explanations
for this discrepancy have been put forward so
far. A first explanation is sought in the inade-
quacy of the mode coupling theory. One fact favor-
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FIG. 2. Angular dependence of the peak-to-peak line-

width of the half-field transition in TMMC. Solid line:
theory.
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e (DEG)

FIG. 3. Angular dependence of the peak-to-peak height
of the half-field transition in TMMC. Solid line: theory.
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FIG. 4. Comparison of experimental lineshape with
theory (least-square fit). The figure shows the high-
field portion of the half-field resonance for 8 =90'. The
origin corresponds to the center of the half-field line
(see Fig. 1).

than I" because we would like to test line-
width and intensity independently. The agree-
ment is very gratifying. From (27) the in-
tensity of the half-field resonance is esti-
mated to be smaller than the normal reso-
nance by two orders of magnitude. This is con-
firmed by the experiments. In Fig. 4, we present
the experimental line shape at 0=90' together with
a least-square fit to the fir st derivative of the
lineshape function (27). Realizing that this is es-
sentially a two-parameter fit it is clear that the
agreement is satisfactory. Both a fit to a gaus-
sian and a lorentzian were worse.

EPR experiments on three-dimensional para-
magnets in the parallel configuration have been
performed. " In the strongly exchange coupled
systems no resonances were detected. This proves
that the resonance we have observed is a pure
one-dimensional effect.

VI. CONCLUSIONS

ing this explanation is that diffusion coefficients
calculated with this theory are wrong by -50%."
The experiments of Ref. 3 do not support this
explanation. These experiments sample pure
four-spin correlation functions. No projection
operators are involved. The discrepancy found
could be attributed solely to the decoupling. " How-
ever, it is hard to accept that the simple decou-
pling would be that wrong. A second explanation
put forward is that TMMC could have a sizable
single-ion anisotropy, DS, . In one-dimensional
systems the sign of this interaction determines
whether an additional narrowing or an additional
broadening takes place. " The interplay of dipole-
dipole interaction and single-ion anisotropy is
possible because the @=0 modes are dominant.
In three-dimensional systems no interplay is pos-
sible and as a result single-ion anisotropy is
always an additional broadening mechanism. The
susceptibility data seem to indicate that there is
no single-ion anisotropy in TMMC. '4 Anyway, we
think that the fact that theoretical and experiment-
al linewidth differ by a factor of 1.5 is reassuring
rather than alarming and indicates that our simple
approach is not far from a full mode-coupling
treatment. In Fig. 2, a, theoretical curve is drawn
showing the angular dependence of the linewidth
scaled at the b H»(8 = 90 ) value. The agreement
is quite satisfactory. In Fig. 3, a theoretical line is
drawn representing sin48(& H») ' ~' scaled to the
maximum intensity. We have used b, H» rather

We have reported the observation of a half-field
transition in TMMC using EPR with the micro-
wave field polarized along the static magnetic
field. The transition has highly anisotropic fea-
tures. A simple theory has been presented which
indicates that the half-field transition is due to
the one-dimensionality of the magnetic interactions
in TMMC. The theory accounts in a very satis-
factory way for the anisotropic features. The
only discrepancy is that the absolute magnitude
of the linewidth is about 1.5 times smaller than the
calculated one. However, all resonance liriewidths
calculated so far for TMMC show this, "'"'"and
this type of disagreement is not surprising.

It is important to point out that the half-field
transition of one-dimensional systems can serve
as a quantitative measure of the one-dimension-
ality. Another interesting question is to what ex-
tent impurities (para- or diamagnetic) can in-
fluence the half-field transition. " The study of
this effect has already been started in our labor-
atory.
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