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In a set of closely related papers, one by Das and Peierls, the other by this author, identical expressions
were derived for the driving force in electromigration. Two later papers, one by Sham, the other by Turban,
Nozi¢res and Gerl, cite the same expression. It is shown that the apparent agreement by Turban, Noziéres,
and Gerl is not a result of real agreement about the detailed physics of the process. The argument given by
Sham has some ambiguity about geometry and boundary conditions, but is closer to that of the two earlier

papers.

In a set of closely related papers, one by Das
and Peierls,! the other by this author,? identical
expressions were derived for the driving force in
electromigration. This author has called this re-
sult the Das-Peierls theorem. For a set of lat-
tice defects in “jellium,” the force per unit volume
given by the Das-Peierls theorem is

—Ezenqy(p—p,)/p -

Here E, is the space-average field in the material
containing the defects and p is the resistivity of
that material. p, and », are the resistivity and
carrier density in the pure material, without the
defects. Two other papers, one by Sham,® the
other by Turban, Noziéres, and Gerl* use momen-
tum-balance arguments to derive the same ex-
pression. Indeed two further recent notes®® point
to the agreement between the four results.”™ Here
we will discuss whether the apparent exact agree-
ment of the momentum-balance considerations in
Refs. 3 and 4 with those of Refs. 1 and 2 is a re-
sult of real agreement about the detailed physics
of the process. Even without attention to the de-
tails, it is clear that Refs. 1 and 2 exhibit a good
deal of concern for boundary conditions, not found
in Refs. 3 and 4. Ref. 2 introduced a particular
geometrical configuration which at first sight may
- seem a little complex to the reader. It was actually
introduced, however, to emphasize the difference
between the space-average field in the sample, and
that portion of the field arising from charges out-
side the sample (or at its very edge). That dis-
tinction, however, is not important for very dilute
alloys, with a very small residual resistivity. The
derivation in Ref. 2 is nof limited to the dilute
case.

We will, in this paper, focus on electromigration
in a slab of limited thickness, with plane-parallel
electrodes. Unfortunately, Refs. 3 and 4 do not
mention geometry and boundary conditions. An
alternative geometry to the slab is that of a torus.
The use of a torus to deduce the driving force for
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electromigration from momentum balance argu-
ment has been invoked in the past.”® A torus is
not without complications of its own. Contrary to
the prevailing assumption among theoreticians

a torus is not a slab with periodic boundary con-
ditions. The torus has surfaces which complicate
electrostatic considerations. It is now generally
agreed that current flow in the presence of lattice
defects is accompanied by nonuniform fields and
that the electronic charge distribution near the
defect is polarized. In the case of a torus such a
local polarization must be accompanied by charges
on the surface of a torus which guide the lines of
force, emanating from the local polarization,
around the circular shape of the torus. While
neither Sham® nor Turban et al.* specify a torus,
Sham, in his Eq. (2.2), uses a time-dependent
vector potential as the source of the electric field.
This is at least somewhat suggestive of the toroi-
dal geometry. By contrast, Turban ef al., in their
Eq. (19), as well as by their references to elec-
trons, “...free to reach the end of the crystal,”
clearly invoke a terminated linear sample. In any
case, we will leave it to others to do a careful
electrostatic analysis of the torus, and we will
only discuss the terminated sample. Sham’s mo-
mentum-balance equations, as given in Sec. III

E of Ref. 3 are, in fact, likely to be directly ap-
plicable to the case of a torus. Since, however,

I have not carried out the required detailed elec-
trostatic analysis of the torus I will not make that
as a formal claim. The analysis of Turban et al.
is also likely to be more applicable to a torus, as
indicated by Gerl® and Noziéres.' Intheir case, how-
ever, not only is that more clearly in contradiction
to the actual content of their paper, it is also
clearly inadequate as a “repair” for all of the sub-
sequent deficiencies to be discussed.

Let us first discuss Sham’s analysis. We limit
our considerations to one short section in Sham’s
paper, Sec. IIIE. This was clearly intended to
be a simplification of Refs. 1 and 2, (of this
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present paper) as a service to the reader.
Nevertheless we can ask whether it is a
valid simplification. As already emphasized,
we shall consider a slab geometry, even
though that may not be the best way to view Sham’s
equations. Sham considers the forces on all the
conduction electrons, and sets this sum equal to
zero. One of the terms represents the force of
the bare defect ions on the electron gas, and this
is the negative of the driving force exerted by the
electron gas polarization on the ions. So far Sham’s
procedure agrees with that in Refs. 1 and 2. Sham
in his force balance, however, does not include
the interaction between the polarized electron gas
and the uniform ionic charge of the original un-
perturbed lattice.

To make this point in more detail, we must con-
sider boundary conditions. If an electronic polar-
ization is established near a defect, the resulting
field is determined not only by the charge distribu-
tion, but also by the boundary conditions. For a
sensible discussion of boundary conditons we
must specify a particular physical environment
for the sample. Let us assume that the specimen
is terminated by highly conducting equipotential
electrodes. Two obvious boundary conditions: (i)
Maintain the total voltage across the sample as the
polarization is established. (ii) Maintain the in-
tegrated flux of the field across far away elec-
trodes as the polarization is established. Let us
assume that a boundary layer, near each electrode,
roughly a few mean free paths in thickness, con-
tains no impurity atoms. Then it becomes clear
that this boundary condition (BC) corresponds
to maintaining the original current flow. At the
same time the thin layer of pure metal will cause
a negligible change in the average properties of
the sample, as well as in the environment (and
therefore in the electromigration force) seen by
most of the impurities. (The pure boundary layer
is a tutorial simplification, and not an essential
part of our argument.)

The effect of these boundary conditions is most
easily understood by superposing a uniform dis-
tribution of similar polarization patterns, in which
the polarization charges are displaced transverse
to the direction of the dipole moment. We thus
simplify to an essentially one-dimensional prob-
lem. As long as we are concerned only with quan-
tities integrated over planes perpendicular to the
direction of current flow it does not matter whether
we consider the electrostatics of three-dimension-
ally localized dipoles, or of dipole sheets.

Let us discuss the BC (ii) in more detail. It re-
quires that fﬁ-ﬁdo taken across each electrode
remains unchanged as the polarization is estab-
lished. Now all of the charge distributions we

will consider correspond to charge displacements,
or polarizations, leaving the sample neutral. We
will not be concerned with the injection of a charge,
producing a deviation from neutrality. For ana-
lytical convenience, however, it will be convenient
to generalize (ii), to include that case. If a net
charge is introduced then the surface integral
fﬁ-ﬁ do summed over the two electrodes must re-
flect the charge that has been introduced, and
cannot vanish. Now we note that (ii) as defined
above, corresponds to “floating” electrodes. The
value of f E-Tdo for each electrode is that de-
termined by the dipole field in free space. There
may be a local image charge pattern arising from
a point dipole, since the electrode is an equipo-
tential surface, but the net charge induced on each
electrode by a dipole vanishes. The natural gen-
eralization of this: The lines of force emanating
from a charge head equally for the two electrodes,
as they would be in free space. Thus fﬁ-ﬁdo for
the two electrodes changes equally as a charge is
introduced into the sample. Figure 1 gives the
potential distribution for a sheet dipole. Figure
1(a) corresponds to BC (i), whereas Fig. 1(b)
corresponds to BC (ii). It is clear that the con-
stant-potential boundary condition [Fig. 1(a)] cor-
responds to no change in the space average field,
and therefore to no interaction with the positive
host lattice charge (within the jellium model,
where that constitutes a uniform positive charge).
Let us, for the moment, assume that this is the
BC implicity assumed by Sham, since he does

not mention an interaction between the electron
polarization and the positive host lattice.

In calculating the rate of momentum delivered
by the field to the electron gas, Sham takes the
total electron density in the alloy and multiplies
it by a field value, without regard to the spatial
variation of the electric field.!! Now the actual
electric field can be thought to differ from its
average value in view of the presence of terms
of the form shown in Fig. 1(a). Can electron-elec-
tron interactions, due to nonuniformities of this
form, affect the net rate of momentum delivery
to the volume involved? Normally, one thinks of
electron-electron interactions as momentum con-
serving. That is obviously true, however, only in
an infinite space, otherwise we must take boundary
conditions into account. The dipole layer shown in
Fig. 1(a) is, after all, accompanied by image
charges on the electrodes.

Consider the interaction of two charged planes,
one close to the left end of the specimen, the other
in the middle of the sample. The field (not the po-
tential) variations are shown in Figs. 2(a) and 2(b).
The fields have been chosen so as to satisfy BC
(i), i.e., fE dx=0. The charge densities in the
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two planes are presumed to be equal, leading to
the same discontinuity in E, in the two cases. If
we consider the forces exerted by the two planes
on each other, the field generated in Fig. 2(a), at

a location in the middle of the sample, is relatively
weak. The forces exerted by the charge planes on
each other are opposite in direction, but far from
equal in magnitude. Thus if we assume BC (i),

the sum of the forces that the two charge planes
exert on each other does not vanish.

Consider the contrasting situation associated
with BC (ii). Here the fields emanating from a
charge plane are independent of the plane’s loca-
tion, and only a function of the charge density in
the plane. Thus the total force that two planes ex-
ert on each other vanishes, and electron-electron
interactions can be ignored. We can, therefore,
choose BC (ii) and cause electron-electron in-
teractions to vanish, or else BC (i) and eliminate
the interaction with the positive jellium host lat-
tice; but we cannot make both effects disappear
simultaneously. (In the case of a torus we pre-
sumably can make the two effects disappear simul-
taneously.)

While this author’s earlier papers have not ex-
plicitly discussed the alternative possible boundary
conditions, we have consistently invoked BC (ii).
We have repeatedly used the equation E =D -47P,
in analogy with dielectric theory. Here D is the
field due to the charges on the electrodes E is
the actual space-average field, and 47P repre-
sents the change in field due to the dipole forma-
tion, assuming BC (ii). Sham’s calculation goes
on to include two further errors. (We again re-
mind the reader that we are discussing the ter-
minated sample, and that this may not be the best
way to interpret Sham’s equations.) If the elec-
tron-electron interactions produce no momentum
change, then the field used to multiply the total
electron density must be the field arising from
charges outside the specimen (E, in Ref. 2, rather
than E;). Sham, however, uses the field used in
Ohm’s law, i.e., the space average field. Further,
in calculating the direct force Sham again uses

(a) (b)

FIG. 1. Potential (V) due to a sheet dipole layer. (a)
For constant potential difference, or short-circuited,
electrodes. (b) For floating, or open-circuited elec-
trodes. L is the distance between electrodes.
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FIG. 2. Field distributions due to a charged sheet,
between electrodes held at a constant potential differ-
ence. (a) for sheet near left end electrode. (b) for
sheet halfway between electrodes.

the space average field, which includes the extra
field due to the residual resistivity dipoles. But
here, once again, only the field due to external
charges (£,) should be invoked, the effects of mo-
mentum transfer from the electron gas are, after
all, already included in the momentum balance
consideration which is the main point of Sham’s
Sec. OIE.

The discussion, so far, has focussed on Ref. 3.
While we have argued with the validity of Sham’s
derivation, it is clear that the agreement of his
result, in his Eq. (3.30), with Refs. 1 and 2 is not
just a typographical coincidence. Sham stresses
that the distinction between p, the alloy resistivity,
and p,, the resistivity of the pure metal, arises
from carrier density changes, as well as from
changes in scattering action. By contrast Ref. 4
makes no allowances for the effect of carrier den-
sity changes on the resistivity. In fact, as pointed
out very clearly by Turban ef al., they invoke Mat-
thiessen’s rule. Turban et al. also omit boundary
condition questions.

Reference 4 consists of two, somewhat separate
discussions. The initial portions of Ref. 4 enlarg-
ing upon a point made by Flynn'2 show that the ef-
fective charge, Z*e, which determines the electro-
migration force equals the total charge which
moves with the lattice defect, when that lattice de-
fect is moved by nonelectrical forces, in the ab-
sence of an applied field.

Turban et.al. then go on, in their Sec. (2.4), to
some essentially unrelated momentum balancing
considerations. They engage in some initial con-
siderations, in which they separate “bound” elec-
trons from “free” electrons, with the implication
that screening electrons are “bound” and that the
number of electrons “free to reach the end of the
crystal” must be equal to that in the pure host met-
al. This decomposition between free and bound
electrons is baffling in the case of a repulsive im-
purity, or in the case where an attractive impur-
ity is screened by an accumulation of mobile
charges. The distinction causes difficulty, how-
ever, even in the case where the screening elec-
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trons are actually bound to an attractive impurity.
The original conduction electron density distribu-
tion is disturbed, even in that case. Are these
spatial disturbances part of the “bound” charge
distribution or part of the “free” charge? Near

an attractive impurity potential, even after com-
plete screening by bound states, the conduction
band states are still perturbed in such a way that
the electrons move faster, near the impurity. The
higher velocities at the Fermi surface lead to in-
creased current fluctuations. Through fluctuation-
dissipation theory this in turn implies a higher
conductivity. That is what we have called, “car-
rier density modulation] or “conductivity modu-
lation” in earlier papers. Its effects are included
in the Das-Peierls theorem derivation given in
Refs. 1 and 2. It is an effect which is not com-
patible with Matthiessen’s rule.'' Most of the mi-
croscopic theories of electromigration, aside
from those generated by the authors of Refs. 1

and 2, seem to have had difficulty with the carrier
density modulation concept. While the quantative
treatment of three-dimensional carrier density
modulation has only been given in a very approxi-
mate and physical discussion,'! the basic concept,
as exemplified by the one-dimensional case,® is
elementary.

Turban ef al. then go on to provide a force bal-
ance argument for the “bound” charge. In this
balance they omit: (i) The interaction of the pola-
rized bound charge distribution with the positive
host lattice; (ii) The interaction of this bound
charge distribution with the lattice vibrations. The
importance of this term depends on the exact de-
finition of “bound” charge, i.e., whether the
“bound” charges carry current or not,

In their subsequent Eq. (33), Turban et al. state
that the total force on the impurity consists of that
transmitted via the bound and free electrons sup-
plemented by that exerted directly by the field. In
this latter field related term they invoke the space
average field. We have already criticized that
point in connection with our discussion of Réf. 3.
Turban et al. then go on to invoke a force balance
for the “free” electrons. In this they once again
ignore the interaction of local polarizations with

the uniform positive host lattice (or else they ig-
nore the electron-electron interactions, depending
on their choice of boundary conditions). Subse-
quently, they invoke Matthiessen’s rule. As al-
ready pointed out, that eliminates any remaining
possible effects of carrier density changes on the
resistivity.

The final section of Ref. 4, “Thermodynamic
Analysis,” once again disregards some of the
points we have emphasized, but we will not take
the space, here, to make that case in further de-
tail.

We would like to include here some supplemen-
tary comments, which we hope will clarify some
concepts related to the preceding discussions but
which are not strictly essential to the discussion
of Refs. 3 and 4.

(i) Carrier density modulation (or conductivity
modulation) results from the acceleration of a
nonuniform electron gas. The existing discussions
of that® have emphasized the case where the spa-
tially nonuniform momentum generation term is
balanced by lattice vibration scattering. Actually,
however, the treatment of Ref. 11 does not really
invoke the presence of lattice vibration scattering.

(ii) Residual resistivity dipoles are inevitably
accompanied by the interference terms first dis-
cussed by Bosvieux and Friedel.” This has been
pointed out particularly clearly by Schaich,'® and
also by this author.*® Conductivity modulation,
as discussed in Ref. 11, should also be accompa-
nied by interference terms which have not yet been
discussed.
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