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Detailed measurements of the specific heat and resistivity have been made on samples of 2H-TaSe, and 28-
TaS2 near their charge-density-wave phase transitions. Because the crystal quality of 2H-TaSe, is much
better than that of 2H-TaS, „we emphasize the results on 2H-TaSe, and make quantitative comparison with

the theory of charge-density waves in this material. In 2H-TaSe, the normal to incommensurate phase
transition was found to be second order; the incommensurate to commensurate transition was first order.
Specific-heat measurements on this material indicate that the zero-temperature coherence length is relatively
short; m(0 14 A. The resistivity of 28-TaSe2 immediately above the normal to incommensurate phase
transition is dominated by resistive scattering from the periodic structural deformations accompanying the
charge-density waves. The specific-heat and resistivity measurements both indicate that the normal to
incommensurate phase transition in 28-TaSe2 can be analyzed within a nearly-mean-field model.

I. INTRODUCTION

In the past several years, transition metal di-
chalcogenides have been the focal point for a con-
siderable amount of research effort. ' This in-
terest has been generated by the unique physical
properties of these solids which have such a highly
anisotropic layered structure. The basic building
block of these crystals resembles a sandwich with
a layer of transition-metal atoms between two
layers of chalcogen atoms. 'The sandwich layer is
hexagonal with the transition metal sitting in a site
of either octahedral or trigonal prismatic coordin-
ation with respect to its nearest-neighbor chalco-
gen atoms. These two basic layer morphologies
can be combined in several ways to form different
polymorphs of a given transition-metal dichalco-
genide. The simplest polymorph (IT) has octahed-
ral coordination of the transition-metal atoms
within the layer which is repeated perpendicular
to the layer. A slightly more complicated struc-
ture with a larger unit cell (2H) has two layers of
chalcogen-tr ansition-metal-chalcogen atoms with
trigonal prismatic coordination and alternate stack-
ing perpendicular to the planes (i.e., AcA BcB).
Because of the layered structure and bonding of the
metallic dichalcogenides the Fermi surfaces of
these materials are very anisotropic. ' Couplings
between the conduction electrons on these aniso-
tropic Fermi surfaces and the lattice phonons are
responsible for the nonuniform charge-density
waves (CDW) and the low-temperature periodic
structural deformations (PSD), which have recent-
ly been observed. ' The stability and structure of
these charge-density-wave states depends upon the

shape of the Fermi surface which is in turn related
to the symmetry of the polymorph under considera-
tion.

In 1T-TaSe» electron-diffraction experiments
at high temperatures" give an undistorted hexa-
gonal diffraction pattern which comes from the
basic lattice. Below T, = 600 K, new spots appear
which have the same hexagonal symmetry but a
different wave vector. These spots arise from the
incommensurate charge-density wave. ' At T~
= 473 K this superlattice rotates and q, shrinks
enah1. ing the PHD-CD% to lock into a 3 x 1 commen-
surate state. The phase changes in the 1T state
are first order in nature, i.e., there is a signifi-
cant hysteresis and difference in free energy be-
tween the normal, undistorted state and the incom-
mensurate CD% state and between the incommen-
surate CDW state (ICDW) and the commensurate
charge density wave state (CCDW). In the IT ma-
terials the Fermi surface is essentially flat in the
k, direction and forms open parabolic surfaces in
the Q„-k, plane symmetrically around the I'M line.

In 20-Tase» however, electron" and neutron'
diffraction experiments indicate that there is no
superlattice above T, = 120 K. Below this a super-
lattice appears which has hexagonal symmetry and
wave vector q, = —,'(1 —5)a,*, with the discommen-
suration parameter 6 = 0.02. 'This incommensurate
state is stable in most crystals down to T~=90 K.
At this temperature, 5, which has been decreasing
with temperature, drops discontinuously to zero
and a CCD% phase with q, = 3a,* is stable. In 2H-
TaSe, the phase transition between the normal
undistorted phase of the material and the ICD%
phase is apparently second order; the transition
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between the ICD% and CCD%' is first order. In
the 2H polymorph, the Fermi surface remains
essentially flat in the k, direction, but becomes
multiply connected in the k„-k, plane. There
is an hexagonal electron surface centered around
I and there are smaller triangular hole pockets
centered at the six K points of the Brillouin zone.

ln the 1Tpolymorpbs the CD%'-PSD occur witha
given wave vector because there is significant
nesting of the Fermi surfaces, i.e., a single wave
vector can span large areas of the nearly parallel
sheets of the Fermi surface. The reduction in
electronic energy due to the opening of the gap in
the Fex'mi surface is sufficient to overcome the
gain in elastic energy Decessax"y to form the dis-
tortions Rnd the PSD-CD% becomes a stable gxound
state. The origin of the PSD-CD% state in the 2H
polymorph 1s less clear~ howevex'. Rice Rnd
Scott' have proposed that it is not nesting of the.
Fermi surfaces which is responsible for the CD%'
instability in 2H-TaSe, but that it is the possibility
of connecting saddle points in the band structuxe,
which have sufficiently high density of states with

ave vector ~a,* in length. This distortion
would remove the saddle point and lower the re-
sistivity below the phase transition. MCMillan'
has developed an alternate theory. He assumes a
nesting wave vector Sao~ which connects hole sur-
faces near the K point in the Bx'illouin zone and
develops a micx'oscopic model of the CD%-PSD
at zero temperature. The more important impact
of his theory, bowevex, is its challenge to the con-
ventional model which maintains that the major
contribution to the entropy at finite temperatures
comes from the excitation of electrons across the
gap in the band structux'e which has been induced
by the CD%. His finite temperature theory is
based upon an assumption that the coherence length
of the CD% state is very short and it implies that
lattice entropy, not the electronic entropy, is dom-
inant.

In the present paper we present precision mea-
surements of the specific heat and resistivity ot'

samples of 2H-TaSe, and 2H-TaS, in the vicinity
of theix second order normal to ICDW phase tran-
sitions and near the first-order ICD% to CCD%
phase transition in 2H-TaSe, . An analysis of the
specific-heat data is performed which reflects the
presence of fluctuations for T near T, in 2H-TRSe, .
The results of our analysis indicate that a short
zero-temperature coherence length of the charge-
density-wave fluctuations is consistent with the
specific heat data. This result is favorably com-
pared with recent theox etical predictions of Mc-
Millan. The resistivity of 2H-TaSe, immediately
above the normal to ICD%' transition at T, is dom-
inated by resistive scattering from the periodic

structural defo'rmations accompanying the charge-
density waves.

In our analysis of the fluctuations effects on the
specific heat and resi, stivity near T, we have found
asymptotic values of the power-law exponents that
would be expected if the Gaussian model' exten-
sion of mean field theory wexe valid in this ma-
terial.

This paper is organized with experimental meth-
ods and results presented in Sec. II. Analysis of
the specific-heat data and a comparison of oux'

results with recent theories of CD% phase tran-
sitions 1s glveQ 1Q Sec. III. AQRlys1s Rnd discus-
sion of the resistivity behavior near To with a
comparison of the effect of fluctuations on the spe-
cific heat and resistivity is presented in Sec. IV.
A summary of our results is given in Sec. V.

II. EXPERIMENTAL RESULTS

The 2H-TaSe, samples wexe prepared from
99.995% pure Ta wire and 99.999% pure Se shot.
The iodine vapor transport' was set up at 730-640
'C and increased slowly to 760-690 'C after two
dRys, The oven %'Rs tux'ned off Rftel five dRys.
This procedure resulted in complete transport
Rnd yielded a small quantity of large, thick
crystals.

Powder pattern x-xay diffraction verified the
2H structure and showed unusually sharp lines
for these layered materials. Mass spectrographic
analysis found of order 100 ppm total impurities,
with calcium the largest single impurity at 40 ppm.
Iron and niobiuxn were each less than 10 ppm.
One possible disordex effect remaining in the 2H-
TRSe, crystals is the presence of five common
isotopes of selenium, with an 8% spread in iso-
topic IDass.

The 2H-TaS, samples were pxepared from Ta
,wire and 99.999% pure 8 powder. They were io-
dine vapor transported from 900 to 800'C in the
iT phase. Transformation to the 2H phase was
accomplished by annealing them at 600 and 500 'C
for two days each. Because the unit cell experi-
ences a volume change at the 1T-2H phase trans-
formation, the crystals are wrinkled and experi-
ence a large internal strain. As a result, the x-
ray diffraction spectrum of 2H-TaS, has linewidths
which are 50 jo broader than those in the 2H-TaSe,
spectrum. One expects th1s stra1Q 1n TaS, to lead
to broadening of the superconducting and CD%
transitions. 'The 2H-TaSe, cx'ystals have no such
effect Rnd thex efol.e should g1ve shRxpex tx Rns1-
tlons.

Specific heat measurements on the layered sRm-
ples were made using an ac calorimeter. " The
heat pulse to the sample was provided by interrupt-
ing the light from R tungsten-halogen light with a



SPECIFIC HEAT AND RESISTIVITY NEAR THE. . ~

mechanical chopper. Details of the experimental
method and apparatus have been published pre-
viously. " The proper operating conditions are
those where the internal thermal relaxation time
of the sample-thermometer combination v, and the
relaxation time between this sample thermom-
eter and the dc background, v„obey the relation-
ship r« 1/&u«r, . When this is satisfied the tem-
perature excursions of the sample are inversely
proportional to the operating frequency. Results
for the frequency dependence of the temperature
excursions of a sample of 2H-'TaSe, are shown in
Fig. 1. 'The specific-heat measurement on this
sample was taken at 14.2 Hz. Measurement of the
absolute temperature and ac temperature excur-
sioas were made with cromel-alumel thermo-
couples.

The ac specific heat method used gives high-
precision relative measurements, but does not give
absolute measurements of the specific heat without
detailed knowledge of the power absorbed from the
light pulse. Absolute measurements were per-
formed in a separate calorimeter using a thermal
relaxation method and joule heating. 'The absolute
results were, to within our experimental error
(+ 6%), equal to the values reported by Harper, "
and, since his reported error for the absolute
value is smaller (+3%), we have used his absolute
values to calibrate our relative ac measurements.
Our specific-heat measurements far from the
transition regions agree with his absolute data.

The specific-heat results on one sample of 2H-
TaSe, extending from 80 to 140 K illustrate the
overall features of interest. (Fig. 2). The normal
to ICD% phase transition occurs at 120.6 K and
indicates the presence and importance of fluctua-
tions but gives no indication of hysteresis.

'The incommensurate charge-density-wave to
commensurate charge-density-wave phase transi-
tion in this sample takes place near 110 K. This
phase transition is indicated by a small nearly dis-
continuous rise in the specific heat when the tem-
perature of the sample is increased so that the
sample goes from the CCDW phase to the ICD%
phase and a similar nearly discontinuous drop in
the specific heat when the sample temperature is
decreased and the sample goes from the ICDW to
the CCDW phase. There is a different transition
temperature which is dependent on the rate and
direction of the temperature change. 'This hy-
steresis gives strong additional evidence that this
ICD% to CCDW phase transition is first order.
The specific heat immediately above the small dis-
continuity is about 0.4 J/mol K larger than the
specific heat just below the discontinuity. This is
not a measure of the latent heat, however, since
the ac technique is not very sensitive to latent heat
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FIG. 1. Sample response as a function of frequency.
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FIG. 2. Specific heat of 2B-TaSe2 near the normal to
ICDW transition at 120.6K and the ICDW to CCDW phase
transition at = 13.0 K. The dashed line near the normal
to ICDW phase transition (at To) indicates an estimate
of mean-field behavior near To. Hysteresis, at the lower
gCDW-CCDW) implies that this transition is first order.

singularities which occur at first-order phase
transitions. In these circumstances, "the latent
heat affects only a few cycles (less than or ap-
proximately equal to the time constant of the lock-
in) of the temperature oscillations of the sample
and does not appear as a spike in the specific-heat
data. The jump in specific heat does represent
the difference in the specific-heat values on either
side of the transitions. The ICD%-CCDW transi-
tion temperature in this sample is the highest that
has been seen for this material.

The hysteresis loop and differences in the spe-
cific heat between the ICD% and the CCD% are
larger for this sample than for other samples
from this batch of material which have this phase
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transition at a lower temperature. Most of our
samples had phase transitions between 90 and 98 K.
The larger hysteresis loop associated with the
higher transition temperature is consistent with
the larger value of the discommensuration param-
eter, 6, which is expected to exist at this tem-
perature, ' and with the presumed larger free-en-
ergy difference between the ICDW and CCDW
ground state which is associated with this 5.

The second-order phase transition between the
normal state and the uncommensurate charge-
density wave state at 120.6 K has a large specific-
heat anomaly associated with it. We can calculate
a lower bound for'the energy involved in this
phase transition by fitting a mean field model to
the data near T, (normal to the ICDW transition).
As we have illustrated by the dashed line in Fig.
2, the mean-field estimate is made by extrapolat-
ing the nearly linear specific-heat curve for tem-
peratures far from T, (reduced temperature

~

t
~

—=
~
(T —Tp)/Tp

~

~0.1) into the phase transition
temperature. The difference in the specific heat
above and below the transition which is estimated
by these straight lines extrapolations is =4 J/mol K.

We can see in Fig. 2 that there is clearly an ex-
cess of specific heat above this straight line ap-
proximation. This excess specific heat is due to
fluctuation effects in the vicinity of this second-
order phase transition and the exact power-law
dependence of these results will be determined in
Sec. III. The point-by-point data which will be
analyzed in Sec. III is shown in Fig. 3. We have
calculated the excess enthalpy under this specific-
heat curve by fitting a smooth background through
the data far from T,. This approximation is simi-
lar to what Harper has done with data taken by a
scanning calorimeter. Our estimate of the enthal-

py of 67 J/mol is close to his value 55J/mol and

within his experimental accuracy. This gives ad-
ditional confirmation that there is no excess latent
heat associated with a first-order transition at T,.

Measurements of the specific heat of 2H-TaS,
are shown in Fig. 4. The absolute calibration of
these data was done in a separate calorimeter us-
ing a thermal-relaxation method. The sample used
for calibration purposes weighed 149.12 mg and
came from the same growth batch as the sample
which was measured in the ac calorimeter. The
absolute specific heat was measured from 30 to
100 K and the temperature dependence agreed with
the ac data to within our error bars (+ 10/p).

'The severe sample strain in 2H-TaS, which
was mentioned above is probably responsible for
the rounding of the specific heat in the vicinity of
the phase transition. We do not see any evidence
of hysteresis, "however, and cannot tell from our
measurements when the ICDW-CCDW transition is
taking place. Predictions that this lock-in transi-
tion can be lowered by the presence of impurities
should also apply to strain. The ICDW-CCDW
transition might be completely suppressed for this
material.

We have indicated by the dashed line in Fig. 4
an extrapolation of the nearly linear specific-heat
curve far from the transition. This mean-field-
approximation gives us a lower bound for the en-
ergy involved, in the charge-density-wave transi-
tion in 2H-TaS, ~ A jump in the specific heat of
2.8 J/mol K is indicated by this extrapolation.
Even in the presence of rounding caused by
strains, the specific heat at T, seems to be di-
verging faster than the mean-field approximation
for this material. Although we have not done a
detailed analysis of the power-law behavior of the
specific heat of 2H-TaS, because the material is
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FIG. 3. Detail of specific heat near normal to ICDW
phase transition for 2H- TaSe2.

FIG. 4. Specific heat at charge-density wave transition
for 20- TaS2. No hysteresis was observed or ICDW-
CCDW transition detected. The dashed line is an esti-
mate of mean-field behavior in this system.
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strained, we feel that a positive exponent would
not be inconsistent with this data.

Resistivity measurements along an a ~s of
2H-'TaSe, and 2H-TaS, have a,iso been made by a
four-probe dc method from 4 to 300 K. The re-
sults for one sample of 2H-TaSe, are shown in
Fig. 5. 'The resistivity is essentially linear from
room temperature down to the vicinity of the nor-
mal to ICDW phase transition. This linear resis-
tivity intercepts zero temperature at a value much
higher than expected for a normal metal. As the
phase transition is approached from above, the
resistivity starts to increase, with the slope dR/dT
reaching a maximum negative value at Tp Below

T, the resistivity goes through a maximum then
decreases monotonically to its measured normal
state value at =4 K. Kinks in the R vs T curve,
which have been seen before at T~,"are indicated
by arrows on the figure. The resistance ratio for
the samples measured was very high, ranging
from 200 to 400. There was no correlation, how-
ever, between the higher resistance ratio and
higher T,. Variations of T, between 90 and 110 K
from sample to sample are not yet well under-
stood.

'The temperature dependence of the resistivity
near T, has been examined in greater detail using
two different methods. First of all, we used an
ac Wheatstone bridge with a lock-in amplifier as
a null detector to measure the resistivity with
greater precision (1 part in 10'). These results
are shown in Fig. 6. The resistivity is smooth
and shows no hysteresis near T,. The tempera-
ture derivative of the resistivity near T, was also
measured using a thermal modulation technique.

In this later technique, "a constant dc bias cur-
rent is passed through the sample at the same
time that a small, spatially uniform thermal modu-
lation is applied. 'The small change in. tempera-
ture changes the resistivity, and hence the voltage
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FIG. 6. Details of the resistivity near the normal to
ICDW phase transition in 2H- TaSe2. The phase transi-
tion is at the point of maximum negative slope.

drop across the sample. In the limit of small
temperature oscillations compared to the dc tem-
perature drift we find that

1' 1 &V
RdT V &T

The thermally modulated resistivity derivative and
the specific heat of the sample were measured
simultaneously. This is advantageous since it
clearly defines the relationship of the resistivity
derivative to the phase transition. Our results for
2H-'TaSe, clearly indicate that the phase transition
at T, which we see in the specific heat coincides
with the negative singularity in the temperature
derivative of the resistivity. Since we modulated
the temperature of our sample with a chopped light
pulse of constant power, simultaneous measure-
ment of the voltage oscillations and the tempera-
ture oscillations which are related to the inverse
of the specific heat is necessary. The tempera-
ture oscillations change dramatically near T, for
a constant heating power.

The temperature derivative of the resistivity
has also been measured for 2H-TaS, using the
thermal modulation technique. The results of these
measurements are shown in Fig. 8 and they indi-
cate that the maximum negative slope in the resis-
tivity is at the same temperature as the maximum
in the specific heat. The anomaly in the derivative
of the resistivity is not as sharp in 2H-TaS, as it
is in 2H-TaSe, . 'This rounding or smearing of the
resistivity is also a reflection of the strain in the
crystals of 2H-TaS, .

The resistivity measurements of Figs. 6-8 bear
remarkable similarity to the resistivity measure-
ment on dysprosium, an anisotropic antiferromag-
net. " In that material, a gap is opened up at the
Fermi surface by a magnetic superlattice which
has a wave vector Q, near 2k~. The detailed tem-
perature dependence of (1/R)(dR/dT) and its re-
lation to fluctuation in the charge-density-wave
materials will be examined in Sec. IV.
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III. DISCUSSION OF SPECIFIC-HEAT RESULTS

The results on the specific heat which were
shown in Sec. II indicated that fluctuation effects
were visible in the specific heat of 2II-TaSe, near
the second-order phase transition from the nor-
mal state to the incommensurate charge-density-
wave state. In this section we analyze the critical
behavior of these results and then compare our
results to recent theoretical predictions for the
behavior of charge-density-wave systems.

The specific heat in the vicinity of T, should be
describable by a function of the reduced tempera-
ture t= (T —T,)/T, For positiv. e t this function
becomes

C~ = A'(t —1)/a + B'+Dt,

and for negative t,

Cn = A ( I
t

I

—&)/o" + B + Dt

These functions describe the specific heat in terms

of many parameters (A', A, B', B,n, n', D, T,)
and a blind approach to determining these param-
eters is extremely complicated. We have used a
method of analysis similar to that used by Leder-
man, Salamon, and Shacklette" to test the uni-
versality hypothesis on various ferromagnets and
antiferromagnets. Their analytical technique
introduces additional physical constraints in two
distinct steps and it allows a more self-consistent
determination of the parameters from the data.
Qne of the first assumptions in the above equa-
tions is that the lattice contribution to the spe-
cific heat is not singular for temperatures near
T, and that it can be approximated by a linear
term proportional to D. This assumption of
linearity is not entirely correct and, as we will
discuss later, a better estimate can improve the,
fit somewhat. Subtracting off the lattice back-
ground and defining C~=C~-Dt, we can compare
the data above and below the transition for equal
values of

I
t

I

and we find

A, (Cq B)a.'-
n A.

According to mean-field and asymptotic critical
calculations there should be symmetry in the spe-
cific heat measured about T„ that is, n should
equal a'. If we set n = o. ' in this equation we find
that the specific heat above the transition scales
linearly with the specific heat below the transi-
tion,

Cp' ——(A'/A )Cp+ (B' A'B /A -).

A plot of C~ vs C~ for equal values of
I
tI is shown

in Fig. 9. 'The linearity of this plot implies a = o'.
We have analyzed the data in two different ways.
We first assumed that the lattice background could
be approximated by a linear term. Although the
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FIG. 8. Temperature derivative of the resistivity for
2H- TaS2 near its charge-density-wave transition.

FIG. 9. Excess specific heat above the normal to
ICDW phase transition as a function of the specific heat
below the phase transition with temperature as an im-
plicit variable. The linear relation implies n = n'. The
extrema of t =

) (T —To)/To~ are indicated.
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fit to a straight line of C~ vs C~ for small values
of ltl was quite good, there was significant sys-
tematic variation for large values of ltl. An al-
ternative approach is to calculate a reasonable
lattice background based on the similarity between
the 2H-TaSe, structure and the structure of MoS, .
Neutron scattering experiments have been done
for MoS, in order to determine the phonon disper-
sion curves and the phonon density of states. "
'This density of state reflects the layered natures
of the crystal, the fact that the lattice vibrations
in the plane are much more energetic than flexural
modes perpendicular to the planes. Specific-heat
calculations based on this density of states indicate
a monotonically increasing and temperature-de-
pendent Debye temperature eD. We have used this
Bn(T) normalized to BD = 140 K of TaSe, for low
temperatures" to derive the lattice background
shown in Fig. 10. Using this function and a small
value of D improved the fit of a straight line to the
data for larger

l
t l. We show this fit in Fig. 9.

The transition temperature has been chosen to be
120.6 K. Variations of T, by 0.1 K become quite
noticeable and T, = 120.6 K represents a minimum
in the least-square deviation of the data from a
straight line.

Once we have determined D, T„and the fact that
z = a' from the linear relationship between C~ and

C~, we ca@ merge the data below T, with the data
Rbove Tp

' This RlgebrRlcRl ly merged dRtR is then
plotted semilogarithmically, i.e. , Cp vs log„lt l,
to determine the sign of o and a'. This plot is
shown in Fig. 11~ A straight line on, this plot
would correspond to a logarithmic divergence and
would imply that a = n'=0. An upward curvature
(positive second derivative) implies that the spe-
cific heat is diverging faster than logarithmic, i.e.,
a &0; a downward curvature (negative second de-
rivative) implies that n &0 and that the specific
heat has a cusped singularity rather than divergent
singularity. at T,. It is immediately clear from
inspection of Fig. 11 that n&0.

We have fit the function
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mean-field theory. " The Gaussian model predicts
that the specific heat should diverge like t'
For a system with three-dimensional fluctuations
d=3 and n= n'=-,'. One possible explanation for
seeing nearly-mean-field behavior in the asymp-
totic critical region is that the system is in the
vicinity of a tricritical point. Such a suggestion
has recently been made on the basis of a model
which describes the energetics of amplitude and
phase variations associated with the incommen-
surate phase. "

The excess specific heat above the linear mean-
field estimate shown in Fig. 2 for T&Tp is a direct
measure of the scale of fluctuations when the Gaus-
sian approximation is valid. In this region
Cp v t= (2II$,) ' where $„ the zero-temperature
coherence length, is a measure of the scale of
fluctuations. " From the specific-heat data above
T, we find Cpu t = 0.8 J/molK or II)p= 14 A. This
number represents a spherical average coherence

to the data minimizing the X' of the deviations as
a function of all three parameters A, B, and n.
We include the uncertainty in the specific heat and
uncertainty in our ability to determine the reduced
temperature t. We find R global minimum in the
g' of the deviations for a = n' = 0.45 ~ 0.035, A
=0.191~0.036, and B=14.1~0.2. 'The value that
we find for a is extremely large compared to
what one would expect from theories of asymptotic
universality (n = -0.01). It is possible, however,
that the transition can be described by the Gaus-
sian approximation, a lowest-order extension of
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FIG. 11. Excess specific heat (merged data from
above and below Tp) as a function of logtp( (T )/TTpp[

Curve represents a least-square fit e= G' = 0.45+ 0.035.
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length for 2H-TaSe, ; $, =($„„$~,g, )'~'. '
We can also use the specific results on 2H-TaSe,

presented in Sec. II to make a quantitative com-
parison between the predictions of a conventional
theory of charge-density-wave transitions and
McMillan's recent model for 2H-1aSe, . The for-
mer theory assumes there is a long coherence
length (, and that the major contribution to the
entropy at temperature T&0 comes from electronic
excitations. McMillan's model, however, is based
upon a short coherence length and concludes that
phonon entropy is very important near the normal
to ICDW phase transitions.

The conventional model, derived by Chan and
Heine, "is a mean-field model (for large („ fluc-
tuations are negligible). They. find a gap equation
which is similar to the BCS gap equation for a
superconductor. Using BCS, then, a transition
temperature can be found,

ksT, = 1.13Es exp [ N, A/2g-'N ~(0)]

where E~ is the bandwidth, N, the density of Tan-
talum atoms, A the bare elastic constant, g the
electron-phonon coupling parameter, and N

&
(0).

the density of states at the gap for a given spin
state for each CDW. 1he energy gap at T =0 be-
comes

2W(T = 0) = 3.52kB T~;

the heat capacity jump at T, (mean field) is for a
3 CDW state,

&C„=3 x 8.4N &(0)k2sT, ;

and the change in susceptibility due to the opening
of the band gap is

&X= X(T.) —X(0)= 5 2V&N &(0)

In order to compare this model with the specific-
heat experiment, we use the susceptibility mea-
surements' to find &y = 55 x10 ' emu/mol. Using
Eq. (4) we find N i(0) = 0.33 (state/eV Ta-atom).
This model then predicts -nC„= 0.8 J/mol K from
Eq. (3). Our specific-heat results are clearly in
contradiction with this model. First of all, we do
see evidence of fluctuations; secondly, if we esti-
mate the size of the mean-field jump by extrapo-
lating the nearly linear portion far from T, we
find &C~ =4 J/mol K. This is five times larger
than the predictions of the conventional theory.

McMillan has developed a finite temperature
theory based on a short coherence length. When
the coherence length is small, phonon frequencies
(k, cutoff = 1/$, ) are modified over a large region
of reciprocal space near the CDW wave vector.
This lowers the normal to ICDW phase transition
from what it would be if a large number of phonons
were not involved, and leads to a prediction that

the zero-temperature gap is»3. 5 kT, . Using the
elastic parameters for the phonon frequencies
which were determined from the low-temperature
Raman data of Holy, et aL," and the transition
temperature T„an estimate of the specific-heat
jump of 1.67 ks/mode can be made. ' The mea-
sured specific-heat jump is 4 J/mol K= 0.48 k~/Ta-
atom- This implies that there are 3 modes per
10 Ta atoms, or that the correlated area is about
equal to the superlattiee cell area. The coherence
length becomes m$, = 10 A, which is as short as is
physically reasonable. McMillan points out that
this seems to be in agreement with other measure-
ments, particularly neutron scattering results and
the weak absorption edge in the infrared reflec-
tivity at 0.25 eV. '4 This is also in remarkably
good agreement with the zero-temperature co-
herence length which we found earlier in this sec-
tion from analysis of the excess specific heat
above T„m(,=—14 A. The two estimates both indi-
cate that a short coherence-length model is very rea-
sonable for 2H-TaSe, .

IV. DISCUSSION OF THE RESISTIVITY FOR T NEAR To

The detailed analysis of the specific-heat re-
sults has indicated that fluctuation effects near
T„ the normal state to incommensurate state
phase transition, can be described by a three-
dimensional nearly-mean-field model. We have
analyzed the temperature dependence of the resis-
tivity near T, in order to give additional evidence
for these fluctuations, and to test the applicability
to 2H-TaSe, of general theories of the electrical
resistivity near second-order phase transitions.

Most of these theories originated from the study
of the resistivity of a metal near a magnetic phase
transition, but they can be applied to more general
problems. Some landmark papers in this field are
those of de Gennes and Friedel, "who suggested that
the temperature dependence of the spin-spin cor-
relation function should be important to the critical
scattering of electrons near a ferromagnetic phase
transition; Fisher and Langer, "who used a more
complete knowledge of the wave vector and asymp-
totic temperature dependence of the spin-spin cor-
relation function to predict that the temperature
derivative of the resistivity near a ferromagnetic
transition should look like the specific heat; and
Suezaki and Mori, "who looked in greater detail
at the electrical resistivity near an antiferromag-
netic transition and predicted that because of large
angle scattering and the divergence in the spin-spin
correlation function at value of Q near 2k~, the
temperature derivative of the resistivity should
have a strong negative divergence. In all of these
theoretical treatments there is one important and
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underlying assumption; that in metals the electri-
cal resistivity samples only the static and not the
dynamic properties of the critical fluctuations.
This is true for two reasons, (i) elastic scatter-
ing processes dominate the electrical resistivity
in a metal and (ii) the conduction electron passes
through the spatially restricted region of a critical
fluctuation in a time which is short compared to
the lifetime of this fluctuation. As the transition
is asymptotically approached, the latter assump-
tion remains valid because the lifetime of the
fluctuations increase, that is, there is "critical
slowing down. "

The phase transition in 20-TaSe, between the
normal state and the incommensurate charge-
density-wave state is not a magnetic phase tran-
sition, but there are many similarities between
this phase transition and the antiferromagnetic
phase transition. " Above T„ the norma1. to in-
commensurate charge-density-wave transition,
there are fluctuations invo1ving periodic structural
deformations. These structural deformations pro-
vide a periodic potential which corresponds to
twice the Fermi wave vector in the solid. An elec-
tron will be strongly scattered by this potential
and suffer a large change in momentum. Elec-
tronic scattering from these structural deforma-
tions will be resistive.

One major difference between the rare earth
antiferromagnets and the layered dichalcogenide
with charge-density waves is that the CDW's and
PSD's in the layered materials are driven by the
electron-phonon interaction between the conductor
electrons and the underlying lattice, whereas thy
magnetic moments which are scattering the elec-
trons in rare earths are intrinsic to its atomic
electronic configuration. Because of this, a com-
plete discussion of the resistivity in a layered ma-
terial must take into account the many-body nature
of the interaction and include this fully renormal-
ized electronic susceptability. We do not feel,
however, that such a treatment is necessary to
understand the temperature dependence of the
resistivity for temperatures near Tp As stated
above, such resistivity is dominated by elastic
processes with quasi-static fluctuations. Horn
and Quidotti" have recently published an analysis
of the resistivity near the Peierls transition in
anisotropic conductors. 'The results that they
derive for a three-dimensional material with large
anistropy in the conductivity is applicable to the
phase transition between the normal state and the
ICDW state in 2H-TaSe, .

In 2H-TaSe, the population of the fluctuating peri-
odic structural deformations is related to the dy-
namical structure factor S(k, &o). The tempera-
ture dependence of the resistivity for T nIE, ar T,

is dominated by the behavior of S(k, &o) for &u =0
and 0 = 2k~. Horn and Guidotti" find that for T
~TO

dp (2k')'
i
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FIQ. 12. Log of the resistivity derivative versus re-
duced temperature. Straight line is a least-square fit
of slope -1.03+ O.l.

when g is the magnitude of the electron-phonon
2k~

coupling parameter and the integration is over the
two dimensions since the initial and final states are
strongly restricted to the basal plane of the CDW
system (p„/p, = 30). Although the scattering is two

dimensional, the fluctuations of the PSD are three
dimensional in nature. ""Using the known three-
dimensional dependence of S(k, 0),"we find dp/dT
= t "'"'. When the sample is still in the mean-
field region, the temperature derivative of the
resistivity should go like dp/dT= f ', since g=0.
For temperatures in the asymptotic critical region
the divergence should be stronger since g w 0, but
is equal to a small positive number.

A logarithmic plot of the temperature derivative
of the resistivity for 2H-TaSe„(1/R) x (dft/dT)
vs log„(f) is shown in Fig. 12. Far from the trans-
ition temperature the resistivity is not dominated
by the divergent fluctuations associated with the
charge-density wave, and the logarithmic deriva-
tive of the resistivity becomes nearly constant.
In order to analyze the behavior of the resistivity
of 2H-TaSe, near T„we have subtracted this con-
stant background (8) determined from this behavior
far from T,. The straight line which is drawn on
Fig. 12 represents a least-square fit to our data.
The slope of this line equals -1.03+0.1 and in-
dicated that the resistivity 2/I-TaSe, above To can
be described by the model of Horn and Guidotti.
Since q=—0 even for non-mean-field behavior it is
difficult to determine from these results the exact
size of the asymptotic critical region, however.
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If the logarithmic temperature derivative of the
resistivity goes like T ', one would expect that at
T, the resistivity itself would actually diverge.
Since this does not happen, one must conclude that
at some temperature very close to T, the theory
should not be applicable. In the magnetic case,
Kasuya and Kondo" argue that sufficiently close
to T, the singularity should behave like (1/p)(dp/
dT) = t', and hence the resistivity should not di-
verge. A similar result which is based on the be-
havior of the dynamical structure factor at all
wave vectors must also hold true for this charge-
density-wave transition.

For temperatures less than T„analysis of the
resistivity becomes more difficult. Fluctuations
in S(k, v) are still important to the scattering, but
the density of electronic states available for con-
duction is also being lowered due to the opening
of the Peierls gap. 'This change in the effective
number of carriers should be related to

~

t ~~ where
P= —,

' for a mean-field model. A calculation in-
cluding the importance of both of these terms for
T &T, in the layered materials has not been done.
Analysis of the data for T & T, indicates (1/R)(dR/
dT) = ~t ~", which is not in agreement with these
simple predictions.

V. SUMMARY

We have presented detailed measurements of the
specific heat and resistivity of 2H-TaSe, and 2H-

TaS, in the vicinity of the charge-density-wave
phase transitions. 'The major emphasis has been
on 2H-'TaSe, where we have shown that the size of
the specific heat anomaly and the precursive fluc-
tuations above the phase transition indicate a short
coherence length m$, = 14 A. This short coherence
length is consistent with McMillan's model for
these phase transitions, with the electronic con-
tribution to the entropy at high temperature being
dominated by the phonon contributions. The nor-
mal to incommensurate phase transition is second
order, the incommensurate to commensurate phase
transition is first order and sample dependent.
A critical exponent analysis of the specific heat
gives a= a'=0.45 ~0.035 which is nearly consistent
with predictions of the Gaussian approximation,
an extension of mean-field theory.

Resistivity measurements indicate a negative
divergence in (1/R)(dR/dT) at T„ the normal to
incommensurate phase transition. The tempera-
ture dependence of the resistivity for T & T, is
dominated by divergence in the dynamical struc-
ture factor and the resistivity above T, goes like
t """.The fluctuations are resistive near T,
and a gap at the Fermi surface opens up below
this temperature.

Measurements on 2H-TaSe, are in qualitative
agreement with this, but the microscopic strains
in these samples smear the phase transition and
prevent detailed quantitative comparison.
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