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We have performed and analyzed optical-absorption experiments which provide clear evidence of Breit-
Wigner-Fano resonant interactions between the electronic continuum states of acceptors and localized

excitations involving optical phonons in silicon. For boron, the 519-cm

~! zone-center phonon lies within the

region of excitation to the continuum of the p;, valence band, leading to an antiresonance at that wave

number. In addition, antiresonances are observed in silicon doped with boron at 764 cm

~!, aluminum at 962

cm™!, and gallium at 989 cm™'. These numbers correspond to the one-phonon sidebands of the bound-to-
bound 18S;,,—2P;,, impurity excitations, which lie within the region of excitation to the continuum of the
P\, valence band. Fano’s theory is used to analyze these results.

I. INTRODUCTION

The valence bands of silicon and their related
acceptor impurity states have been thoroughly
studied both theoretically*'? and experimentally .-
Because of this, the positions of the accep-
tor energy levels and their symmetries are known
with great precision and the character of their
wave functions is known to a considerable extent.
The phonon spectra of silicon have also been de-
termined by a number of techniques.®™®

The electron-phonon coupling for shallow accep-
tors in silicon is weak, as compared with crystals
which have any degree of ionicity. This is one
reason why the optical-absorption spectra of these
defects can yield so much information: all of the
spectral lines commonly repdrted are zero-phonon
lines, and consequently are quite sharp. However,
acceptor levels are separated by energies whose

order of magnitude may be comparable with phonon

energies, and thus interesting resonant effects*?®
may still occur even though the coupling is not
strong. Such effects were first noted by Hrostow-
ski and Kaiser® in the bound- state optical-absorp-
tion spectrum of gallium in silicon, and were at-
tributed by Onton, Fisher, and Ramdas® to a res-
onant interaction of the excitation with a phonon.
Subsequently these data have been further analyzed
theoretically by Chandrasekhar, Ramdas, and
Rodriguez,® who also noted that a similar reso-
nance occurs in aluminum-doped silicon. These
resonances involve interaction between two
classes of zeroth-order excitations: in one of
these, the defect remains in its ground electronic
state while one localized phonon is created, while
in the other class a zero-phonon electronic ex-
citation takes place to a bound excited state of the
defect. When these excitations are at or near the
same energies, their interaction can be detected
by shifts and broadening of the bound-to-bound

zero-phonon lines.

A different resonant effect!® has been observed
in optical studies of the decay of excitons bound
to neutral donors in CdS and CdSe. In this case,
the zone-center longitudinal-optical (LO) phonon
energy is greater than the donor binding energy.
Therefore, when the exciton decays, the final state
of its one-phonon sideband is degenerate with no-
phonon final states in which the donor is ionized.
The data do not appear to be consistent with a
simple Breit-Wigner-Fano (BWF) resonance'!'!2
between a discrete state and a continuumjs rather,
the results have been attributed to an interference
between different LO phonons caused by the elec-
tron-phonon interaction.

A third class of electron-phonon resonance has
been noted in the exciton absorption spectrum of
several crystals, including CdTe. In this case
the one-phonon sideband of the exciton is degen-
erate with the no-phonon continuum, and interfer-
ence effects exist in the spectra.!®

A fourth situation, leading to a BWF!'!2 reso-
nance, involves interference between one-phonon
transitions and free-carrier absorption between
valence-band states in heavily doped p-type sili-
con. Such effects have been observed by Raman
scattering'* and a general theory*® for these non-
local excitations has been developed. Several of
the preceding examples are discussed in the re-
view article by Levinson and Rashba.l®

In this paper, we present data which indicate the
existence of two types of resonant effects asso-
ciated with the shallow acceptors in silicon, which
have not been previously reported. The first of
these occurs in boron-doped silicon and involves
resonant interaction between no-phonon electronic
excitations from the ground state to the continuum,
and excitations in which one localized optical pho-
non is created while the acceptor remains in its
ground electronic state. This is equivalent to the
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effect observed in the bound-state spectra of galli-
um and aluminum,*%° put occurs in the continuum
of boron due to the relative shallowness of its
ground state. The second effect, which has not
been heretofore suggested in these systems, in-
volves a resonance between the one-phonon side-
band of the bound electronic excitations of the ac-
ceptor, and transitions to the no-phonon contin -
uum. This is similar to the exciton resonance
.mentioned above, although it is quite different in
detail. These effects appear as well-defined BWF
resonances''!? superimposed on the continuum
absorption.

II. EXPERIMENTAL PROCEDURE

The absorption spectra were taken on two com-
mercial double-beam spectrophotometers. For
the energy region below 650 cm™, a Perkin-Elmer
PE-21 instrument with a CsBr prism was used.
Above 650 cm™, a Beckman IR-7 was used. The
spectra were taken at 20.4 K with the cold sample
in one of the beams. The absorption coefficients
for the acceptor excitation spectra were deter-
mined by comparing the transmission of a doped
crystal with that of an undoped crystal (run con-
secutively in the sample beam).

With the IR-7, a strip mirror replaced the usu-
al second beam chopper (after passing through the
sample) to avoid offset error due to the cold sam-
ple. No such modification was available for the
PE-21 and the absorption coefficients calculated
from measurements on it are therefore somewhat
less accurate. The resolution of both instruments
in the range of interest is estimated to be <5 cm™.

The boron- and aluminum-doped crystals were
floating zone crystals containing 2 X 10*®/cm? of
the corresponding acceptor. The gallium-doped
crystal was pulled from the melt (Czochralski)
and contained 8 X 10'5/cm?® of gallium. The ref-
erence crystal was floating zone and undoped.

III. EXPERIMENTAL RESULTS

In Fig. 1, we show the absorption spectrum for
the boron acceptor in the energy range beyond the
onset of the continuum excitations to the p,,, val-
ence-band edge. (The sharp bound-to-bound zero
phonon excitations®* are at lower energies and only
the last resolved peak of the series is visible in
Fig. 1.) The most startling feature is the sharp
dip at 519 cm™ in the otherwise relatively smooth -
absorption tail. To our knowledge this is the first
time this prominent feature has been reported.
Shown dashed are two estimates for the expected
absorption tail in the absence of this feature. This
suggests that in addition to the dip at 519 cm™, a
broader increase in absorption also exists to lower
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FIG. 1. Absorption spectrum at 20.4 K for the boron
acceptor in silicon (~2 x 10¥¥/cm?) in the energy range
beyond the onset of the continuum excitations to the p;/,
valence-band edge at? 357.5 cm™.

energies.

At higher energies the zero-phonon excitations
to the “bound” 2p’ and 3p’ states made up from
the split-off p, ,, valence band are also observed.'’
Beyond the onset of the continuum excitations to
the p, ,,band, at* 712.6 cm™!, a second weak dip
at 764 cm™ is also observed.

In Fig. 2, we show that this second dip is also
present and somewhat more prominent in the alu-
minum- and gallium-doped samples. In the figure,
the spectra have been shifted so that the 1S, ,,~ 2P, ,
transitions at lower energies (245.0 cm™ forboron,
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FIG. 2. Absorption spectra at 20.4 K in the region of
transitions to the p;,, valence-band edge. The spectra
have been shifted so that the 1S;,,—~ 2P;, transitions at
lower energies coincide. Indicated are the positions for
the one-phonon (519 cm™) sidebands of these transitions.
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442.7 cm™ for aluminum, and 496.7 cm™ for gal-
lium*) coipcide for each. The dips are observed
to occur at these wave numbers plus 519 cm™, as
indicated.

IV. ANALYSIS
A. General

For both types of data presented in Sec. III the
spectra appear to be characteristic of relatively
weak Breit-Wigner-Fano'!'!2 resonances. The
most prominent feature in both cases is a single
dip (antiresonance) in a relatively strong contin-
uum absorption. In the absence of further struc-
ture, then, it is most reasonable to begin to ana-
lyze these results by considering the mixing be-
tween a single localized state and a continuum. We
shall use the form of the analysis developed by
Fano.!?

In Fano’s notation, one has a Hamiltonian H, a
bound state ¢, and continuum states ¢,. The ma-
trix elements of H are written

(6|H|$)=E,, Wp|H|d)=Vp,
(Vgw |H | gy =E'SE"~E").

Fano’s analysis leads to an expression for the
ratio of the transition probability between the ini-
tial state ¢ and the modified continuum eigenstates
¥ to that between i and the unperturbed continuum

Yg, given by
¥ |T3)[2 _(a+e)

6y

R(e 2
O lrial 1 ?

where T is the transition operator. Here,

€=(E-E,-F)/iT, 3)
where

r=2m|v.|?, (4)
and

FE)=P [ &’ _EEL' (5)

“P” means “principal part of.”
The parameter ¢ is defined by

q=((¢]T!i)+Pdel(¢lHllﬁ’EE«_)élliE.]Tli))

X (1(¢ | H | dg)bg | T [)* . (6)
The magnitude of g is also given by
__lelrp]®
=Ty Il (1)

where & is the “modified” discrete state.
The curves of R vs € are asymmetric, contain-

ing the well-known resonance (increase in absorp-
tion) and antiresonance (dip in absorption). The
antiresonance occurs at € =—¢g, while the reso-
nance occurs at € =¢™* and has magnitude

Ro..=q*+1. (8)

On the other side of the antiresonance, R is <1.

Consider the interaction of a single phonon with
transitions to the zero-phonon defect continuum.
Here ¢ is a state in which the hole is in its ground
state G and one phonon is created, while for {; no
phonons are created and the hole is excited into
the p,,, valence band, as modified by the boron
impurity. Vj is then a measure of the electron-
phonon interaction in linear coupling. We write
the unperturbed states as

[9)=161), |4g)=|E,.0). 9)
The transition moments in the absence of mixing
are (0G IT ]Gl) for optically exciting one phonon,

and (0G |T |E, ,0) for a no-phonon transition into
the continuum. V is given by

V5 =(0E,,| H|G1). (10)
The part of H which mixes ¢ and 3, may be written

2 (Qz,72,+Qa 22 »

gi

where a ;i (ag i) creates (destroys) a phonon of wave
vector g belonging to branch ¢, and the operators
Q&!,Qi , act on the hole states.® Thus

VE=Z<E3/2|Q§{ lG><Olagill>- (11)

g;

The form of the electronic operator Qg depends
on the details of the problem. For example if
the Frohlich Hamiltonian!® were used, Qg, would
be proportional to e ¥

It is clear from the experimental spectrum that
a sharp antiresonance occurs at 519 cm™, pre-
ceded by a broad but discernable resonance. Anal-
ysis of the data is somewhat arbitrary, inasmuch
as one must judge where the unperturbed contin-
uum would lie; reasonable choices, however, lie
between certain limits which do not strongly affect
the results. Figure 3 shows the experimental
curve of R versus wave number for two different
choices of the unperturbed continuum, as indicated
in Fig. 1.

B. One-phonon model

We first consider only one phonon (the zone-cen-
ter optical phonon) in resonance with the contin-
uum, i.e., direct application of the Fano equa-
tions.’* The observed maximum value of R is used
to determine g, Eq. (8), yielding ¢~ +0.4. The
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FIG. 3. Predicted Breit-Wigner-Fano resonance
(solid line) for the simple case of interaction of a single
lattice phonon at 519 em! with transitions to the zero-
phonon continuum of the boron acceptor in silicon. The
two dashed lines represent the experimental results for
two different choices for the unperturbed continuum as
given in Fig. 1.

minus sign is then chosen as correct because the
antiresonance is at higher energy than the reso-
nance.

The energy scale is determined by noting that
the difference between resonance and antireso-
nance is g +¢™, in terms of €, whereas energy
scales as 3T'e. The experimental separation is
19 em™, yielding I'=13.4 cm™. E, is taken to be
519 cm™, the experimentally determined zone-
center optical phonon energy.” Finally, F is de-
termined to be 2.76 cm™ by the experimental re-
sult that R is a minimum at E =519 cm™, yielding,
from Eq. (2),

(E-519)

(E-516.2)+44.83 ’ (12)

R(E)=

where E is in em™

This theoretical curve is shown in Fig. 3. While
the comparison between theory and experiment is
fair, it is not outstanding. The experimental curve
does not go to zero, while the theoretical curve
does; and beyond 519 cm™ the theoretical curve is
consistently too low. While the first difference
might possibly be attributable to spectrometer res-
olution, the second cannot be. More seriously, it
is disturbing that the location of the antiresonance
at the zone-center optical-phonon energy is ac-
cidental, depending on just the right value of F.

A similar experimental situation occurs for the
one-phonon sidebands, and it is not likely that the
same accident will occur several times.

C. Distribution of phonons

We now consider a generalization of the above
approach in that a distribution of phonons away

from g£=0 is allowed to participate in the inter-
action. This is a logical extension of the simpler
approach, for several reasons. First, the assump-
tion that only g=0 phonons participate is valid only
if the impurity wave functions are constructed from
Bloch waves at K =0; in reality, a range of K space
is needed for such expansions. Second, the den-
sity of available phonon states increases rapidly
away from §=0.

In this generalization we treat the phonons in-
dividually. We do not, for example, consider
that phonons may mix through the continuum, as
did Henry and Hopfield.!® This means that we
simply convolve the BWF result with a normalized
distribution function z(E,) for the participating
phonons, obtaining
R’=[R(§L§12‘—F)hwo)dm. 13)

2
We have chosen to use a simple sawtooth ramp
function for k(E,) as shown in Fig. 4, with maxi-
mum at 519 ecm™. This accounts in an approximate
way for the importance of the zone-center phonon
while allowing other phonons to participate in a
monotonically decreasing fashion.

We set ¢ =—1; Fano has shown'? that when g%=1
and the parameters are independent of energy,
there is no extra absorption due to the discrete
level; it merely redistributes the continuum. For
acceptors in silicon, absorption to the continuum
is rather strong. On the other hand, direct trans-
itions to the one-phonon excited states are weak
(only in the presence of a defect is there a dipole
moment and this is expected to be small in a non-
polar material such as silicon). Therefore, g=~-1
appears to be a reasonable assumption.

Equation (13) can be evaluated analytically, and
by matching the depth of the resulting antireso-
nance and the separation between resonance and
antiresonance to experiment, we determine I'=2.8

08+
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FIG. 4. Predicted Breit-Wigner-Fano resonance
(solid line) for the case of interaction with a distribution
of phonons as indicated. The dashed lines represent ex-
perimental results for two different choices for the un-
perturbed continuum as given in Fig. 1.
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cm™ with the width of the distribution function
equal to 28 cm™, as shown in Fig. 4. The result-
ing predicted shape for R’ now matches the data
quite well, as shown. In addition, the antireso-
nance now occurs at 519 e¢m™ naturally without the
requirement of an accidental cancellation by F.
The value of F is now zero or very small, a re-
sult of V.~ const, or small.!?

It remains to determine whether a range of ~30
cm™ of phonons is reasonable. This range cor-
responds to a distribution half-width of ~15 cm™t.
From the dispersion curves of Dolling ® repro-
duced by Temple and Hathaway,” one may ascer-
tain that this energy range corresponds to a range
in phonon wave vector g of ~10% of 2n/a, or ~0.1
A™'. Since the electronic wave functions G and E
may be expanded in Bloch waves, the question be-
comes whether these states contain Bloch waves
whose wave vectors % differ by ~0.1 A", since
these are the functions involved in the electronic
matrix elements.

The continuum states E of interest lie ~63 meV
above the ground state, or ~18 meV into the val-
ence band. Using the silicon band-structure para-
meters of Hensel and Feher,® we can determine
what 2 values correspond to this energy. These.
range from 0.025 to 0.06 A™l. Since the ground
state G is relatively localized, we may use the
uncertainty principle to estimate the range of 2
values contained in it; if we assume a Bohr radius
of 25 A, we find £~0.04 A™'. This gives us a total
range of uncertainty for G and E of from ~0.06 to
~0.1A™. This is in close enough agreement with
the range of phonons used to suggest that our ap-
proach is reasonable.

We turn next to the dips observed in the contin-
uum absorption of boron at 764 cm™, aluminum at
962 cm™, and gallium at 989 cm™. These coincide
to within 1 ¢cm™ of the sum of the 519-cm™ phonon
and the 1S, ,, - 2P, ,, bound-state excitation energy
in each case, and there is thus compelling reason
to attribute these features to Breit-Wigner-Fano
resonances between the one-phonon sideband of
the bound excitations, and the continuum. Because
the experimental data contain other nearby struc-
ture and no well-defined resonances, we shall not
attempt a quantitative analysis of the type done on
the one phonon-continuum resonance of boron.

In this case, V is given by

Ve={0E,, |[H|W1), (14)

where E, ,, is the p, ,, continuum and |W1) is the
one-phonon sideband of excited state W. The elec-
tronic part will then be of the form (E, ,|Qq,|W).
A puzzling question is why this antiresonance is
observed only in connection with the lowest excited
state, especially since the intensity of the transi-

tion to this state is weaker than that to some of the
other 2P states lying at higher energies.* We have
verified that there are no rigid selection rules to
forbid coupling of these higher states to the con-
tinuum. We suspect that the answer lies in the
mismatch of & space occupied by W and E, ,,. The
excited states W are diffuse and sample much less
k space than the ground state G, and the higher the
states the less k& space they use. The %k space
occupied by E, ,, is determined by its energy, and
is farther from %2 =0 as the energy increases.
Whereas for the one-phonon resonance matrix ele-
ment (€, ,, ]Qz,. IG), one had good overlap of &k space
among all factors, in the present case the overlap
is small for the phonons of interest and becomes
even smaller for resonances involving higher ex-
cited states, in which E, ,, samples larger values
of £ and W samples smaller values. The antires-
onance should be there, but more difficult to ob-
serve.

Figure 5 shows a composite of results for the
one-phonon antiresonance and the one-phonon-
sideband antiresonance for boron in silicon. The
widths of the bound states indicate their approxi-
mate range in k space.

V. DISCUSSION AND CONCLUSIONS

The preceding sections have summarized the ex-
perimental results and have provided theoretical
arguments indicating that Breit-Wigner-Fano res-
onant interactions have been observed. In the case
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FIG. 5. Schematic illustration of the acceptor
states for boron in silicon, the valence-band states,
and the resonant interactions. The width of the bound
states indicates their approximate range in % space.
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analyzed in greatest detail, one localized phonon
degenerate with excitations from the ground state
of the boron impurity to its continuum states, the
Fano parameter “g” was found to be negative. We
may analyze Eq. (6) to ascertain whether a nega-
tive sign for g is understandable.

The argument given earlier that (¢ ] T [i) is small
(or zero) means that we may write Eq. (6) as

qglpde,(«p |H |45 <wE.)Tlf>) 1 s
m (¢ |H gy Wg|T|i)/ E-E

q [actually, ¢(E)] will be positive if the contribu-
tion to the integral for E’<E exceeds that for
E<E’, while it will be negative if the contribution
for E <E' exceeds that for E'<E.

Experimentally, the continuum falls off with in-
creasing energy in the region of interest; there-
fore, the contribution from (¥, |T |i)/(¥ |T |1} will
be larger for E’<E than for E’>E. This is anal-
ogous to a situation analyzed by Fano'? and alone
would make g positive. Whether the ratio
(¢ |H|¥g)/{$|H|¥g) can increase with increasing
E’, and faster than the other ratio falls off, is dif-
ficult to predict; in one model we have found F [Eq.
(5)] to be zero, which means that this ratio is con-
stant in E’; in another we have found F to be posi-
tive, meaning that this ratio decreases with in-

creasing E’. Fano, in analyzing Eq. (15) for a dif-
ferent situation, treated this ratio as constant in
E’. There is then no simple indication that the g
of Eq. (15) should be negative.

An alternative explanation is that (¢ |T |i) in Eq.
(6) might be both negative and large enough to
make g negative. If so, then the value g =-1 which
we have chosen is accidental.

More information could be brought to bear on
this question and others if higher-resolution data
were obtained. Not only could the boron phonon
resonance be studied with greater precision, but
further analysis of the one-phonon sideband res-
onances would be possible and other resonances
from other bound states might be detected.

We may nevertheless conclude that interactions
between zone-center optical phonons: and the con-
tinuum states of shallow acceptors in silicon have
been observed for the first time in excitation spec-
tra. This type of study may provide a powerful
and direct method of studying the vibronic coupling
in such systems.
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