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I

A model of multiple trapping from a band of transport states is shown to be equivalent to the continuum

limit of the continuous-time-random-walk description of anomalous dispersion developed by Scher and

'Montroll and the waiting-time distribution function Q(t) is expressed in terms of the parameters of the

multiple-trapping model. Calculations of Q(t) as a function of temperature are present;ed for a-Se, using

previously determined multiple-trapping parameters obtained from an extensive analysis of transient

photocurrent data.

I. INTRODUCTION

The recent development of the multiple-trapping
theory' ' has given a new perspective on the prob-
lem of charge transport in amorphous materials.
Previously the continuous-time- random- walk
(CTRW) model developed by Scher and Montroll'
(SM) was the only formalism available for inter-
preting the kind of anomalous or extreme disper-
sion in charge transport observed in many mate-
rials. "' It is now known that the multiple-trapping
model can describe a wide range of dispersion in
terms of a small number of transport parameters.
In the preceding paper' (hereafter called I) an ex-
tensive analysis of photocurrent-transient data was
carried out for a-Se. New results obtained included
the superlinearity of the apparent transit time, the
criteria for extreme dispersion, and the explana-
tion for the disappearance of dispersion in terms
of temperature-dependent trapping parameters.

At low temperature (T-140 K), it was found that
the anomalous dispersion previously described by
the SM model" could be analyzed in terms of a
homogeneous distribution of only three different
types of traps. The same asymptotic value of the
theoretical photocurrent transient was obtained as
in the SM model, 4 indicating that there was a fun-
damental connection between the CTRW and multi-
ple-trapping formalisms. In the prt. sent paper
this connection is explored in more detail.

In Sec. II we derive the master equation for the
total charge-carrier concentration, starting from
generalized linear-transport equations. In Sec. GI
we carry out the same procedure for the multiple-
trapping equations of I, and show that they are
formally equivalent to the continuum limit of the
SM master equation. ' We obtain an expression for
the Laplace transform of the SM relaxation function
Q(s) and the corresponding waiting-time distribu-
tion function P(s) in terms of the multiple-trapping
parameters. We point out that an unknown param-
eter r =a,L/pQ must be specified independently

before $(s) is completely determined, where a, is
the lattice spacing for the CTRW, 4 is the asym-
metry factor in the transition probability between
cells, and pQ is the velocity of untrapped carriers
in the multiple-trapping model. We argue that a
reasonable choice is r = Q, &o,) ', the average time
for capture by any of the traps. With this choice for
r it can be shown that it is inappropriate to describe
a small number of trapping events in terms of the
SM model, whereas the multiple-trapping equa-
tions are always applicable.

We calculate P(t) as a function of temperature in
Sec. IV, using the a-Se trap parameters. At low
temperatures good agreement with the asymptotic
power-law behavior assumed by SM is obtained,
and for higher temperatures we show the evolution
of the distribution function to an exponential char-
acteristic of nondispersive transport. The results
are summarized in Sec. V.

II. MASTER EQUATION

FOR GENERAL LINEAR-TRANSPORT PROCESS

We consider the following linear-transport equa-
tions, which have been applied to a variety of dif-
ferent problems'.

et =gn+~ ~nm&m -~ (dion&n- ~n 8x

where p„(x, t) is the concentration of "particles" in
the nth state: g„(x, t) is the generation rate; and

~„, (d„„are transition rates between the different
levels. c„ is the proportionality coefficient between
the flux of particles in the nth state, and the cor-
responding particle "concentration. ' For, charges
moving under the influence of an electric field,
c„=pQ, where p„ is the mobility in the nth state
and E is the electric field. The set of equations
(1) have been written for one dimension, but the
generalization of the results for three dimensions
is straightforward. We consider a system of N+1
levels, so that n, m, v=0, 1, . . . ,N. Terms with
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n =m, v =n are included in the summation since
these terms cancel in any case.

We wish to derive an equation for the total con-
centration of particles in all levels p(x, t), where

p=p. ++p. =&[p.],
%0

and using the fact that p is a unique functional of
p„Eq. (10) can be inverted formally to give

p(x, t) =g p„(x, t) .

We first add the set of equations (1) giving

(2) p. =G.[p ].
Using Eqs. (8) and (11) we may write, in general,

(3)
p. =G.[p],

and Eq. (3) becomes

(12)

L (p„(x, t) )=p„(x,s)

e "p„(x,t) dt,
0

and write the equation for P„.. . , P„ in matrix
form

(4)

ap= =Ap+h, (5)

where P is a vector with components py p„,
h is a vector with components h„.. . , h„, where h„
~f„+a~ p„and A is a matrix with components

where all the terms corresponding to transitions
between the various levels cancel since we have
neglected recombination processes. Next we ex-
press the flux term on the right-hand side of Eq.
(3) in terms of p. The simplest way to proceed is
to express N of the N+1 concentration variables in
terms of the remaining variable, and to express
the remaining variable in terms of p. Without loss
of generality we choose to express P„.. . , p„ in
terms of Po. We introduce the Laplace transform
(I.T)

(13)

which is the desired master equation for p. In Sec.
III we show how the above formal procedure can
be carried out for a specific model of charge con-
duction in an amorphous medium.

III. EQUIVALENCE OF MULTIPLE-TRAPPING MODEL

TO CTRW

The multiple-trapping model, defined by Eqs.
(1)-(3)of I is a special case of the general linear-
transport equations (1). In this model direct tran-
sitions between trap states are neglected, and it
is assumed that the motion of free carriers can be
characterized by a single mobility p, o for the band
of transport states. In I it was shown that this sim-
ple model could describe a broad range of disper-
sion in photocurrent transients, using a small num-
ber of different types of traps. Here we show that
the multiple-trapping equations are equivalent to
the master equation of SM, using the general meth-
od described in Sec. I ~

' Another derivation of this
equivalence has been presented by Schmidlin. '

Using the relation between the flux of mobile
carriers, and the free-carrier concentration, we
write Eq. (1) of I as

A =a„-5„„g5„„
P

(6)
ap—=g-v, Vpat (14)

a„=(o„„/c„,

5„„=[&o„„+s/(N+ 1)]/c„,

f„=[g„+p„(x,0)]/c„.

where v is the velocity of the free carriers. In or-
der to obtain an equation for the total carrier con-
centration p(x, t) from Eq. (14), it is necessary to
obtain a relation between P(x, t) and p(x, t). This
can be done using Eq. (2) of I and introducing the
Laplace transform, giving

Equatidn (5) can be solved easily to give

X

p(s) = exp[(x —x')A(s)]h(x', p, ) dx',
Po

(8)

where the p„(x, t) are assumed to vanish outside a
finite interval 0&x~L. The inverse LT can be ob-
tained from Eq. (8),

p(t) =L '(p(s) ).
Equation (2) can now be written

~~i ~io ~+i ~i+i &

where

p,o=p,.(x, 0) .

Hence

p p+ p y+ i p+ ~io

or

(15)

(16)
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P=Qp —QP;OQ(s+~, ) ', (18) direction, caused by the electric field. In the con-
tinuum limit we get

where

q= 1++ "'

Using the convolution theorem, the inverse trans-
form of Eq. (18) is given by

t

P(t) = Q(t - t') p(t') «'
0

P(l, t) ~ p(x, t),
8p

P(l + 1„,t) ~p(x, t) + a, —~

(24)

and

l t
P(t —t') [q(l —l')P(l', t') —q(l' —l)P(&, t')]dt'

0

e "&'Q(t —t')dt'. (20)
t —t'

aors dt', 25
0

i 0

The second term in Eq. (20) corresponds to an in-
itial distribution of trapped charge, and would be
important in an analysis of thermally stimulated
currents, say. Here we assume P,-, =O, and substi-
tuting Eq. (20) in Eq. (14}we get

where in obtaining Eq. (25) the term corresponding
to diffusion has been neglected. " We equate Eq.
(25) to the integral in Eq. (21), and find if Q and

Q are holomorphic,

(26}

Q(t- t')v'&p(t') dt'.
et (21)

where

r =a,b/p, E. (27)
Equation (21) is to be compared with the general-
ized master equation which is the starting point
for the SM theory of anomalous dispersion'

dP(t, t)
dt

t
y(t t')g [q(t —-t')P(t', t')

q(+1, 0, 0) =s'a —2&,

q(0, +1,0) =q(0, 0, +1)=x', (23)

where 4 corresponds to the small asymmetry in
the transition probability between cells, in the x

—rt(l' —l)P(l, t')]dt'. (22)

SM superimpose a simple cubic lattice, lattice
constant a„on the material and denote the cells
by an index t. P(l, t) is the probability that a cell
is occupied by a carrier at time t. The quantities
rt(l —l') are transition probabilities between cells,
and P(t} is a relaxation function. The q(l —l') are
dimensionless, and p(t) has dimension t '. The ef-
fects of space charge are neglected in Eq. (22), as
well as in the multiple-trapping model. The gen-
eration term was not included by SM in the mas-
ter equation, but was discussed separately as a
boundary condition. In general, however, a term
g(l, t} must be added to Eq. (22), and P(l, 0} must
be given before the set of equations (22) can be
solved.

We multiply $q. (22) by the total number of car-
riers, and proceed to show the equivalence of
CTRW to the multiple-trapping equations by taking
the continuum limit of Eq. (22). We assume that
q(l —l') is different from zero only for nearest
neighbors, and taking the electric field in the x
direction, we have"

In order to complete the basic equivalence rela-
tion equation (26), the quantity r must be specified.
In other words the parameters of the CTRW mod-
el, specifically the product a,b, must be specified
before the multiple-trapping model can "mapped"
onto the CTRW model. We will argue that a rea-
sonable choice for r is the mean time for capture
by any of the 'traps

1T = (d) . (28)

From Eq. (27) the quantity p,rE is then sn "effec-
tive" schubweg, or distance travelled between
trapping events. The definition of r by Eq. (28} is
consistent with the interpretation of the asymmetry
factor &, which is given in terms of r by Eq. (2V),
only if 4«1, or @ATE«a, . Hence if there are only
a couple of trapping events as the carrier crosses
the sample, then the maximum cell parameter
possible (the sample thickness Q will still not
satisfy the condition p,ovE«ao. In this case it is
clearly inappropriate to establish an equivalence
between the SM and multiple-trapping theories, al-
though a small number of trapping events can still
be described using the multiple-trapping equations.
We would also like to point out that it ryan be pos-
sible to introduce definitions for ~ other than Eq.
(28). However, our definition is justified to some
extent by the reasonable results of the calculation
of the SM waiting-time distribution function P(t)
for a-Se as described in Sec. IV.

IV. WAITING-TIME DISTRIBUTION FUNCTION

According to SM, the relation between the relax-
ation function P(s), and the waiting-time distribu-
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tion (I)(s), is4

)t)(s) = [1+sy(s}-'] '. (29)

I ( )
j

) j ) 1
j

) ) ( (
j

) I ) )
j

j ) 1 (

Using Eqs. (19) and (26), and defining s = sr, &u,

= ()()gY, 'Y) =1'gv, Eq. (29) becomes

)1)(s) = [1+f)(s)] ', {30)

b(r) =s ()+ I
3=i ~+&i

It can easily be shown that for n traps, )1)(s} has
n+1 real poles, denoted by

(32)

Equation (30) can then be rewritten

~8
}

9

)I)(s) = II (s+i, (s+ c(;)

II+1

8+ Qi

&;= Q(F, —n, ) II (o(, —c(,.). (34)

It should be noted that this expression for the A, ;
is valid only when the r, are all different. By
taking the limit F-~, the sum rule

@+1

6 7
LOG(t/ 2)

FIG. l. Solid line —Scher-Montroll waiting-ti. me
distribution Q(t) calculated for a-Se using Eq. (36) and

previously determined trap parameters for 7.
' =143 K,

E =10 V/pm, L =79 pxn. The straight line indicates the
power-law behavior of the distribution function II}(t )

+~~, and the dashed line shows the approximation to

Q(t) calculated using Eq. (40), for s7«1. T'he propor-
tionality constant 7 is defined by Eq. (28). The arrow
indicates the apparent transit time t~.

is obt»ned from Eq. (33). The inverse transform
of Eq. {33)gives immediately

With v' given by Eq. (28), Eq. (38) becomes

Tg(f) = Q (()g F(exp(-t'(f), (40)

which is a special case of Eq. (36}.
The calculated waiting-time distribution function

for a-3e is shown in Fig. 1 for T =143 K. As dis-
cussed previously, ' a three-trap model was found

A simplification of this general formula can be ob-
tained for s « I. Expanding Eq. (30) gives

()(r)=l —s((+ Q=
l 8+Ti

adequate to analyze the shapes of photocurrent
transients in a-Se over a wide range of temper-
ature and dispersion. The parameters determined
from this analysis were used to evaluate g(f) ac-
cording to Eq. (36). The solid line in Fig. 1 shows
the result of this calculation, and the dotted line
shows the approximation to )t)(t) given by Eq. {40}.
As expected, the approximation is good for long
times, corresponding to s7«1, and deviates from
the exact result for shorter times. The straight
j.ine in Fig. 1 is drawn. to indicate the power-law
behavior )I)(t)-f " over two decades in time.

According to the 3M theory of extreme dispersion

y =1+n, where a is a disorder parameter, and

the exponent of the power law for the distribution
function should be the same as the exponent ob-
tained directly from the Iog,g Iog„t plot o-f the

photocurrent transient. From Fig. 1 we get
n =0.5, and the same value of n is obtained from
the corresponding photocurrent transient shown

in Fig. 1 of I, where I-f ~' ' for t&t (apparent
transit time) and I-t "' ' for t)t . The small
oscillations which appear both in the calculated
$(t) shown in Fig. 1 and the calculated photocur-
rent transient shown in Fig. 1 of I (dashed line)
are due to the assumption of purely discrete trap
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levels. The'se oscillations disappear when a dis-
tribution of trap release and capture rates is in-
cluded in the model. The good agreement of the
slopes in Fig. 1 of this paper and Fig. 1 of I is a
powerful check on the validity of the multiple-
trapping formalism, and also illustrates the use-
fulness of knowing the multiple-trapping param-
eters for a given material. For higher temper-
atures, the photocurrent transients in a-Se can no
longer be characterized by a single parameter,
n (Ref. 6) and the SM theory becomes difficult to
apply, since a temperature-dependent order pa-
rameter must be introduced a priori into the
waiting-time distribution function. However the
multiple-trapping model can be used to analyze
shapes of photocurrent transients over a wide
range of temperature, and the corresponding
waiting-time distribution function can then be
calculated directly from Eq. (36) and the multiple-
trapping parameters. A knowledge of g(t) in turn
can-give information about the importance of vari-
ous transport mechanisms in an amorphous ma-
terial.

In Fig. 2 g(t) is shown for a-Se at T =188 K.
The slope of the straight-line portion is now steep-
er, and at T =250 K (Fig. 3) the distribution func-
tion has evolved to an exponential, characteristic

I I I I
I

I I I I
I

I I I I
I

I I I I
I

I I I

T= 250K

Q 4
C90

8 I I I

0.5 I.O I.5 2.0
LOG(t/~)

I

3.0

FIG. 3. Solid line —Scher-Montroll waiting-time dis-
tribution function g(t) calculated for a-Se using Eq. {36)
and previously determined trap parameters for T =250 K
and same sample as in Figs. 1 and 2. The dashed line
shows the approximation to g(t) calculated using Eq.
(40) .

I 1 I I
I
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I I I I I
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2 3 4 5 6 7
LOG(t/~)

FIG. 2. Solid line —Scher-Montroll waiting-time dis-
tribution function rP(t) calculated for a-Se using Eq. (36)
and previously determined trap parameters for T =188 K
and same sample as in Fig. 1. The straight line shows
the power-law behavior of g(t), and the dashed line
shows the approximation to g(t) calculated using Eq.
(40). The arrow indicates the apparent transit time t ~.

of nondispersive charge transport. The corre-
sponding photocurrent transients are shown in
the two panels of Fig. 2 of I. The method of cal-
culating g(t} outlined here is valuable in studying
the transition between disperse and nondisperse
charge transport, as illustrated by the behavior
of the photocurrent transients in a-Se at T-188 K.
A discussion of various physical mechanisms in
a-Se, using the present results, will be given in
a future publication. "

V. CONCLUSIONS

A method of deriving the master equation for the
total particle or charge carrier concentration,
starting from generalized linear-transport equa-
tions, has been presented and applied to the mul-
tiple-trapping model. 'The multiple-trapping equa-
tions were shown to be formally equivalent to the
continuum limit of the SM master equation, pro-
vided that the parameter r, given by Eq. (2V), was
defined independently. Using the form@ equival-
ence of the two theories, it was possible to repre-
sent the SM waiting-time distribution function
g(t) in terms of trapping parameters, and the quan-
tity T.

$(t} was calculated for a-Se as a function of tem-
perature, assuming r '=Z, &u„and using previously
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determined tx apping parameters. The calculated
curves showed the evolution of g(t) from a power-
lam characteristic of extreme dispersion to an ex-
ponential characteristic of nondispersive trans port.

In general, the multiple-trapping model has been
found to be useful in several ways. It is a relative-
ly simple model which can be used to analyze pho-
toeurrent transient data in terms of a small num-
ber of transport parameters, and to obtain signif-
icant trends in these parameters with temperature,
electric field, and sample properties. However,
the multiple-trapping formalism also affords a may
of calculating P(t) for the SM model. Although the
CTRW formalism is very general, it is still nec-
essary to specify the distribution function before
quantities of interest can be calculated. In some
cases, e.g. , the transition to nondispersive trans-
pol't 11l Q-Se, 1't ls llo't clear wllat form of $(t)

should be assumed. Using the parameters from
an analysis in terms of multiple trapp&ng allows
us to calculate the detaijed shape of g(t), which
can Qe compared to the x"esults of model calcula-
tions. Knowledge about g(t} obtained via a multi-
ple-trapping analysis can thus be valuable in de-
termining the underlying physical mechanisms
involved in the charge txansport.
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