
PHYSICAL REVIEW B VOLUME 16, NUMBER 10 15 NOVEMBER 1977

Multiple-trapping model of anomalous transit-time dispersion in a-Se

J. Noolandi
Xerox Research Center of Canada, 2480 Dun+in Dnve, Mississaugu, Ontario I.SL 1JQ, Canada

(Received 17 December 1976; revised manuscript received 29 July 1977)

A generalized model of multiple trapping from a band of extended or localized states is used to study time-

dependent charge transport in amorphous solids. The model differs from a conventional multiple-trapping

model by including a distribution of trap release rates for a constant trap energy. An extensive analysis of
transient photocurrent experiments on a-Se is carried out to determine the transport parameters for this

case. It is found that a small number of parameters can be used to analyze the experimental results over a
~ide range of temperature and sample thickness. The results of the analysis are interpreted in terms of trap-
controlled hopping, which is a special case of the generalized multiple-trapping model. The asymptotic value

of the theoretical photocurrent transient is obtained for the multiple-trapping model, and the results of Scher

and Montroll are recovered for the case of extreme or anomalous dispersion, vrhich occurs for a-Se at low

temperature (T 140 K). The density of trapping sites is estimated, and the dif6culties aemciated with

considering a continuous distribution of trap release rates are discussed. It is concluded that the generalized

multiple-trapping model, defined by simple first-order rate equations, is capable of describing detailed

shapes of photocurrent transients, including dispersive and nondispersive charge transport.

I. INTRODUCTION

Considerable information on the physics of
charge transport in amorphous materials has been
developed' ' and recently stimulated by the work
of Pfister, ' using the time-of-flight technique to
study photoinduced transient conductivity in chal--
cogenide glasses and other materials. In particu-
lar the large body of experimental data on a-As, Se,
verified the predictions of the Scher-Montroll (SM)
theory~ of anomalous dispersion of the observed
photoeurrent transients. SM developed a model
which describes the dynamics of charge carriers
executing a, time-dependent random walk on a
simple cubic lattice, under the influence of an ex-
ternal electric field. The SM model starts from
a generalized non-Markoffian master equation
to describe the transport process, and requires
mathematical analysis of considerable complexity
to obtain asymptotic solutions for the photocurrent
transients. In this paper it is shown that a wide
range of dispersion in photocurrent transients can
be understood using a generalized multiple-trap-
ping model. In the following paper' (hereafter re-
ferred to as II) it is shown that the first-order
linear rate equations describing multiple trapping
are formally equivalent to the continuum limit of
the SM master equation.

Since the' multiple-trapping model is formally
equivalent to the continuous-time-random-walk
(CTRW) model of SM, it is not surprising that
different classes of charge transport can all be
described by the multiple-trapping theory. Con-
ventiaGy, the distribution of release rates from
traps, r, = ~, exp( —E,/ksT), arises from variations
in the activation energy. In the generalized model

both the pxefactor e, and the activation energy E&

may vary and contribute to a distribut, ion of the

r,. A continuous distribution of r, for constant
E„may be conveniently described as "hopping";
however, the classification of different models
of charge transport is la,rgely a matter of taste,
since they can all be described as special cases
of a moxe general model.

In the absence of information about the trap den-
sity of states, we assume for the a-Se analysis
that the distributions of trapping parameters may
be approximated by a small number of discrete
levels. This assumption is justified by the suc-
cessful description, in terms of a consistent set
of parameters, of photocurrent transient shapes
over a wide range of temperatu"e and sample
thickness. In II these parameters are used to
compute the SM waitiag-time distribution function
P(t) for different temperatures. Agreement with
the power-law behavior cf P(t}, assumed by SM, is
obtained for low temperature (T-140 K} and the
evolution af P(f) to an exponential characteristic
of nondispersive transport is found for higher tem-
perature (T-250 K}.

Although the idea of conventional multiple trap-
ping has been discussed by a number of workers
previously, 3 the first analytic solution of the prob-
lem has been given recently by Schmidlin'. and
Rudeako. ' In the present payer the generalized
multiple-trapping model is developed to determine
the conditions for obtaining very disperse photo-
current transients. In addition, a large amount
of experimental data on a-Se is analyzed, and
specific values for the transport parameters as a
function of temperature are Obtained for a model
with three effective trap levels. The distribution
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of release x ates from the trap levels is found to
originate from variations in the prefactor, xather
than the activation energy, and the change in dis-
persion arith temperature is accounted for by the
temperature dependence of the capture rates.

In Sec. II the multiple-trapping model is formu-
lated, and the expxession fox the L~ace trans-
form of the photocurrent transient for a strongly
absorbed light Gash is derived. The results of the
analysis of the experimental data for a-Se are
given in See. III, where the superlinear be-
havior of the apparent transit time on sample
length is calculated and compared to experiment.
The asymptotic behavior of the theoretical photo-
current transient for the multiple-trapping model
is obtained in Sec. IV, and shown to be identical
to the asymptotic behavior in the SM model. We
show that just thxee types of trays with release
rates distributed uniformly on a logarithmic scale
give rise to the anomalous dispersion discussed
by SM. %'e also discuss the ease of a continuous
distribution of trap states, the concentration of
trap states, and the interpretation of the results
in terms of trap-controlled hopping. The results
are summarized in Sec. V.

II. MULTIPLE-TRAPPING MODEL

The multiple-trayping model for unipolar con-
duction is defined by the following equations@'.

=g(x, t)-v f(x, t),

centration of carriers temporarily immobilized
in the ith trap.

In order to solve Eqs. (1)-($) it is necessary to
specify the initia1 concentrations of mobile and
trapped carriers p(x, 0) and p, {x,0), respectively,
Rgd to relate the flux of mobile carriers to the
carrier concentration. For a broad range of con-
ditions, it is possible to neglect diffusion, aIIowing
us to write

v-p, E

where pQ is the mobility of the free carriers. In
writing E(l. (5) we have assumed that it is possible
to characterize the velocity of the mobile carriers
by a fieM-indeyendent mobility. In general it is
also necessary to supplement E(ls. (1)-(3)by
Poisson's e(luation in order to determine E(x, t).
In the present problem however we restrict our-
selves to the discussion of small photoeurrent
signals, with a constant voltage maintained across
the sample, and ere consider the electric field as
constant.

'

For a strongly absorbed light flash the Iocal
photogeneration rate can be written

g{x,t) = g5(x)5(t), (8)

where g is the photogeneration efficiency, and we
assume p(x, 0) ~p, (x, 0)=0. Using E(ls. (4)-(6},
E(ls. (1)-(8) can be solved using the Laplace-trans-
form (LT) techni(lue for first-order rate e(lua-
tions. ~o Defining

p(x, t) =p(x„t)+g p, (x, t)

=p(x, t)e, —P,(x, t)r, .

p(x, s) = e "P(x, t) dt,
Q

one obtains'

p(», s) = ()1/pp) exp[-a(s)t~/L j, (8)

As discussed in the following paper' this model
is a simple special case of a more general model
fox mulated in terms of linear transport equations. '
Here x-=(»„»„»3), t is time, and we consider a
yhotoeonductor of finite thickness, O~x, ~I, but
otherwise infinite in extent. The local photogener-
ation rate is denoted by g(x, t), and f is the flux
of mobile charge carriers. The total concentration
of carriers is p(x, t), defined by E(l. (2). The sum-
mation in E(l. (2) extends over all the different
kinds of traps in the material. Each txay is char-
acterized by a capture rate au, and a release rate
r&. The trap parameters are assumed to be in-
dependent of position, corresponding to a homo-
geneous trap distribution. The concentration of
mobile carriers is p(x, t), and p, (x, t) is the eon-

where to=L/pP is the transit time of untrapped
eaxriexs, the electric field is in the x direction,
RXl

s(s)s = s (s +I
g S+ f'g

t(s)= " — j )(s, s)Ch, (10)

where e is the charge of a carrier. Using E(l. (8),
E(l. (10) gives

where M, = co,tQ is the number of times a carrier
is captured by trap i alone while crossing the sam-
ple. The measured current f{t) is given in terms
of the spatial avex'age of the flux of free carriers
acxoss the samyle, hence
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III. RESULTS OF a-Se ANALYSIS

Experimental photocurrent t.ansients for a-Se
were analyzed for a range of temperatures (T
= 122-293 K), electric fields (E= 2.5-10 V/pm),
and sample thicknesses (L =20-79 p, m). A least-
squa~ s fit to each individual transient was car-
ried out using Eq. (11) and the numerical LT in-
version described in the Appendix. The number
of capture events by each type of trap M, =co,to,
the corresponding release rates ~,-, and the. amp-
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FIG. 1. Photocurrent transient for a-ge for the ex-
perimental conditions indicated. The solid line shows
the experimental curve, and the two straight lines show
pre-transit and post-transit slopes, which correspond
to —(1 —e) and —(1+e), respectively, according to the
Scher-Montroll theory. The dashed line shows the best
fit to experiment using the three-level multiple-trapping
model.

f(s) = (eq/f, )[[1—exp[-a(s)t ]}/a(s), (ll)
which is the basic result for the transform of the
photocurrent. Equation (ll) is of the same form
as Eq. (54) of SM.' This indicates there is a close
connection between the multiple-trapping model
and the SM model. This connection will be dis-
cussed in Sec. DT A of this paper, and in II. Here
it should be noted that the mathematical analysis
required to obtain Eq. (11) is elementary, and the
effect of the absorbing boundary is included in a
simple way by carrying out the integration in Eq.
(10) between finite limits corresponding to the
sample length.

The inverse of the current transform can be
evaluated using the inverse I.T tables. ' The re-
sulting expression involves a convolution of the
modified Bessel function of first order and must,
in general, be evaluated numerically. In the pres-
ent analysis, it was convenient to evaluate the in-
verse of I(s) numerically by deforming the contour
of integration to a circle which encloses all the
essential singularities along the negative real
axis. The integration technique is described in
Appendix A, and is more powerful than an earlier
technique which was found to be effective only for
very disperse transients. "
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FIG. 2. Photocurrent transients for a-3e, showing a
nondisperse transient for T= 250 K (upper panel) and
a transient of "intermediate" dispersion for T =188 K
gower panel). The dashed lines show the best fits to
experimental data using the three-level multiple-
trapping model.

litude of the photocurrent were treated as indepen-
dent parameters for each transient. Each experi-
mental curve was digitized and represented by
about 50 points. Typical fits for low (T =143 K),
medium (T= 188 K), and high (T= 250 K) tempera-
tures with E=10V/pmand L=79 pm are shown

in Figs. 1 and 2. Fits were carried out using dif-
ferent numbers of traps, and it was found that
three different types of traps were sufficient to
fit the data within a relative error of 5%. Using a
large number of traps did not significantly improve
the fits; moreover the parameters for additional
traps fell within the spectrum of values already de-
termined from the three-trap fit. In Fig. 1 the theo-
retical photocurrent transient shows small oscilla-
tions which are not present in the experimental curve.
These oscillations occur because we are using a
small number of discrete traps, and they disappear
completely when a small amount of dispersion in
the trap release rates is included in the model. In
the present analysis these osciQations do not give
rise to any difficulties, because they are small
and can be ignored. From Figs. I and 2 the dis-
tinguishing feature of the photocurrent transients
in a-Se, namely, the disappearance of dispersion
with increasing temperature, can be seen clearly.

The results of the three-trap fit for E =10 V/pm
and L =79 p, m are shown in Fig. 3. The photocur-
rent amplitude Q is not shown because absolute
photocurrents were not measured and Q is merely
a scaling factor. Although the number of physically
relevant parameters is large (8), it should be
noted that the fits were carried out independent
ly for each temperature shown in Fig. 3, and the
good correlation for different temPeratures in-
dicates that the parameters are meaningful.
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Equation (12) is to be compared with the result
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FIG. 3. Multiple-trapping parameters r;,&;= co; to for
a-Se obtained by a least-squares fit of Eq. (11) to ex-
perimental data for each temperature indicated. The
solid symbols indicate the release rates, and the open
symbols indicate the corresponding number of trapping
events.

Throughout the whole range of temperature the
release rates for the three traps were found to
have the same activation energy (-0.3 eV). Since
r, = u, exp(-PE, ) in general, the variation in the
release rates at a given. temperature arises solely
from the variation in the prefactor, n, . From
Fig. 3 it can also be seen that the x, are distributed
uniformly on a logarithmic scale. The correspond-
ing release times r, ' are distributed uniformly
along the log, Qt axis of the transient curve. For
low temperatures (T = 122 K and T = 143 K) it was
found that M, -1 for ~t -.1, where the apparent
transit time t is defined by the i.ntersection of
tangents to f(t) for t«f and f»t . For a discrete
txap morsel, this means that maximum dispersion
occurs when a charge carrier visits a trap with a
long release time only once. Also, we found that

pi M,
i

where the prime indicates that only terms with

M, & 2 are to be kept in the summation. Hence the
apparent transit time is determined by the faster
carriers which are trapped and released many
times during transit.

which was obtained directly from the multiple-
trapping equations using asymptotic methods, for
M&»1, or r, f »1." Equation (12) indicates that
this result (with a restricted sum) gives a good
approximation to t also in the general case. In,
the present numerical analysis the quantity tQ by
itself in Eg. (9) was neglected, because the free
transit time can be estimated to be very small, "
and is unobservable in Pfister's experiments. '
For T=143 K the approximate relation M,. ~ vQ,."
was found. The significance of this relation will
be discussed in Sec. IV. For T=122 K all the M,.
were of order unity, and the approximate power-
law relation was not as evident as for T= 143 K.
A difficulty with the analysis for T = 122 K is that
t is very long, and the tail of the photocurrent
is difficult to observe for long times because the
amplitude becomes very small.

As the temperature increases, the dispersion
decreases; and at room temperature, photocur-
rent transients characteristic of nondispersive
transport are observed. An interesting result of
the analysis is that the disappearance of dispersion
is accounted for solely by the temperature depen-
dence of the M s. As the temperature increases,

i&4, increases while M, and M, decrease. From
Fig. 3, an activation energy of 0.06 eV can be es-
timated for M, . The temperature dependence of
the M, reflects the fact that there is a sharpening
in the shape of the transients with increasing tem-
perature, while the observed activation energy
for the mobility, defined by p, =l./f E, remains
constant. Our analysis shows that the only way
a constant activation energy for the mobility is
consistent with a dramatic change in shape is to
have a change in the M, . This result was checked
by introducing a shallow trap (activation energy
-0.1 eV) with a fixed large release rate greater
than r, into the theoretical photocurrent expres-
sion. %hen the shallow trap was substituted for
trap 3, the fit to experiment became poor, and
when the shaQow trap was included as a foux'th

trap in the thx ee-tx ap fit, then M~ -0. Hence the
disappearance of dispersion in a-Se cannot be at-
tributed to the presence of shaQow traps, or to the
changing of deep traps into shaQow traps as the
temperature is increased. " At present there is no
fundamental explanation for the temperature depen-
dence of theM, obtained here. However, it is hoped
that the charge capture and release kinetics canbe
related to the properties of the low-lying defect
states recently proposed for the chalcogenide glas-
ses x~, ~5 Finally» error bars typical of the un
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FIG. 4. Length dependence of apparent transit time
obtained from theoretically predicted photocurrent

traces using the multiple-trapping parameters for
a-Se with E=10 V/pm, L = 79 pm, and the temperatures
indicated. .The solid circles correspond to experimental
points, and the open circles denote predicted values.

the number of times a trap is visited, and gives
rise to a nonlinear thickness dependence for t .
Analytically, the nonlinear dependence follows
from Eq. (12) where the absolute value of M, de-
termines whether the corresponding trap should
be included in the summation. Writing t =L/pE,
the Nonlinear dependence of t on L can be inter-
preted in terms of a thickness dependence of the
mobility p.. However, this interpretation is mis-
leading, since it is clear from the previous dis-
cussion that p, defined in terms of t is not an in-
tensive quantity.

The analysis was also carried out for transients
taken at a constant temperature and subjected to
a variable electric field (2.5-10 V/pm). However,
it was found that the range of fields investigated
experimentally was too small to obtain meaningful
trends in the parameters &a, (E) and r, (E)
= a, (E)exp[ pE, (E)-]. In particular it was not pos-
sible to distinguish between the different possible
physical models for r, .'~ More extensive mea-
surements would establish the limitations of "un-
iversality" of the transient current shapes with

respect to E, and would enable the determination
of the functional dependence of the trap parameters
on E.

certainty in the parameters have been included
in Fig. 3. At room temperature relatively large
errors are obtained for r, and r, because M, and

M, are very small, and these traps have little ef-
fect on the shape of the transient.

The length dependence af t was investigated by
scaling M, = ~,t, = ru, L/p, ,E proportional to L. The
trap parameters for the transients at T = 143 K
and T = 188 K, with L = 79 p, m, were used to cal-
culate the theoretical transients corresponding
to L=50 p, m ang L=20 p, m. The results for t
are shown in Fig. 4, and exhibit the superlinear
dependence on L observed experimentally 2 At
T =143 K the slopes of the experimental transient
shown in Fig. 1 give 1 —n = 0.42 for t& t, and
1++=1.54 for t&t . The sum of the. slopes is
1.96, close to the theoretical value of 2 predicted
by SM for very disperse transients. 4 According
to the SM theory, the inverse of the slope in Fig.
4 is n ', giving @=0.59 for T=143 K, in good
agreement with the average value a =0.56 deter-
mined from Fig. 1. At higher temperatures the
SM sum rule is no longer satisfied experimentally
for a-Se, and the slopes af the log„t -vs-log, g
plots tend to unity. From Fig. 4 the value of the
slope at T = l88 K is 1.2V, in good agreement with
the experimental value of 1.34 obtained at T
=181 K. The explanation of the superlinear be-
havior in terms of trapping events has been sug-
gested earlier. ' The sample thickness determines

IV. DISCUSSION

A. Asymptotic form of I(s)

The asymptotic behavior of the current trans-
form can be studied using Eqs. (9) and (11). De-
fining

z(s) =sZ M~

4 S+r
Eq. (9}becomes

a(s)t, =st, + Z(s}. (15)

From the analysis of the c-Se photocurrent trans-
ients at law temperature (T= 143 K), discussed
in Sec. III, we found that the trap release rates
were uniformly spaced on a logarithmic scale,
and that the (discrete) capture rates were related
to the release rates according to a pcnver law

M, ~r, (discrete levels}, (16}

Z(s) =s
over two decades in s space. This behavior is

(17)

where n =0.5 for T=143 K. This relation was
found for the three-trap model used in the a-Se
axmlysis. It is remarkable fact that, for just three
different traps, with the appropriate parameters,
the quantity Z(s) behaves approximately like a
power Bw
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8. Continuum distribution of trap states

07 - Q. ll W'ithout any loss in generality one can write Eq.
(14) Rs

Z(s) = s "M(r)g(r)
S+ 'V

n

M(r)g(r) =PM, (r)5(r - r,.),
60
Zn(IfnS)

FIG. 5. Real and imaginary parts of lnZ/lns, arith
Z(g) defined by Eq. (jL4) and g along the imaginary axis.
The plot shows the approximate paver-1m' behavior of
Z(s) using three traps, vrith ~& spaced uniformly along
the logarithmic axis, and (d; =ro&'~.

sho%n 1n Flg. 5 %'here both the real alld imagin-
ary parts of lnZ/lns have been calculated for s
along the imaginary axis. For the purpose of this
calculation, the proportionality constant in Eq.
(16) WRs pll't ellual 'to unl'ty Rlld a = 0.5 Th8
variation in Re(lnZ/lns) was within &.03 of 0.5
over the two decades in ln(Ims) defined by the
choice of the release states. The imaginary part
of lnZ/lns over the same range of ln(Ims) was
found to be small and oscillatory. Hence Eg. (15}
may be approximated as

a{s}fo—sfo+ cs

where c is a constant. For small s, vrith 0&0.&1,
the second term in Ell. (18) dominates the first.
For very ~ge s, st» es . Since to is estimated
to be very small~a homever, the value of s such
that sto» es corresponds to extremely short
times which are not easily accessible experimen-
tally. Here ere are not eoneerned with these short
'tlnles RIld we lgllol'8 'the fll'st iel'Ill ill EQ (18) so
that

and g(r) is the density of states. From the results
of the a-Se analysis it is tempting to assume

M(r)g(r)dro-r dlnr,

since Ell. (21}then becomes a Stieltjes transfo~~, "
which gives Z(s) ~s . We would like to point out
that there is not enough information in the shapes
of the photocuxrent transients to uniquely deter-
mine the functional form of both M {r) and the den-
sity of states, g(r). As an example of this inde-
terminacy, as are have just seen, a, three-level
discrete trap model also gives a pounder-lair de-
pelldellce of Z(s). Hellce 1't ls not cleRr whetllel'
the relation M(r) ~r" has any significance in the
continuum limit; since other choices for the func-
tional form of M(r}, along with the density of
states g(r) can also give a power-law dependence
of Z(s). In order to uniquely determine M(r} the
density of trap states should first be determined
independently from other experiments on the same
samples.

C. Concentration of trap states

Having determined the trap parameters (&o,, r,}
from the 8-Se analysis, %e no% use the pr1nclple
of detailed balancing to provide a connection be-
tween {d, and r„ thereby determining the concen-
tration of trap states¹.%e ferrite

a(s)f, ~s

Using Eg. (11) we then obtain the result

s, a(s)f, » 1,
1(s) cc

s, a{s)f,«1,
which is the same result obtained by SM from
solving the absorbing boundary problem. In the
SM forma1ism, 4 the effect of the absorbing bound-
ary is to cause a "time-dependent" transitional in
the branch point (s -s.) in the Laplace trans-
form of f(t). In the multiple-tray formalism the
same result is obtained from the poorer-lax' be-
havior of Z(s) for very disperse photocurrent
transients, and the form of the current trans-
form, Ell. {11).

where N, is the concentration per unit volume of
'tl'Rp $. Tile steady-state solu'tloll of EQ. (3) gives

P& u& A&a&

p r l a ~ exp( pE1)- (25)

whence a, = cl,/N„ froln the principle of deta, iled
balancing, and N, is the concentration per unit
volume of valence states. Hence

Nl/N = (al/a 1 =M)/a )f0,

vrhere M, is the number of times a carrier is
captuxed by trap i alone while crossing the sam-
ple, and to=I/y, ,E is the transit time of free car-
r1ers Assuming a microscopic hole mobility

po fx T~~2, and using the value go=0.34 +0.005
cm'/V sec at room temperature, "

fo can be calcu-
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lated for a given sample thickness I., electric
field E, and temperature T. From Fig. 3, the
slowest tray in u-Se for maximum dispersion at
T=143 K has the parametexs M&-1, e, -10"sec ',
and using Eg. (26) with L = V5 pm, E =10 V/pm
gives N, /N, -10~, which agrees with correspond-
ing values determined elsewhere. ~ Assuming a
concentration of states at the valence-band edge
of N -1030 em~PI gives H, -10"cm~, in agree-
ment with accepted values of N, -10"-10"cm '.~

D. Interpretation in termns of trapwontrolled hopping

From Fig. 3, it is seen that the prefactors of
the release rates vary by two orders of magnitude.
For the case of trap-controQed hopping one can
write'3

n, = W~ exp(-Rq/Ro),

where S'0 is a transition rate, and Ro is the radius
of the local charge distribution. Assuming W, -10"
sec ' (Ref. 1.8) gives R&/R, in the rute 10-20 for
a, in the range 10~-10'4, in agreement with values
obtained for othex ~orphous materials. " In the
case of trap-controlled hopping the small number
of trapping events refers only to hopping sites
where the carrier encounters long hops. Thus,
although there is a large numbex of hopping events,
which corresponds to transport through a hopping
"band" in the generalized multiple-trapping model,
the anomalous dispersion arises entirely from the
few trappiag events where the carriex is held back
for a long tive. The concent13II;i. oQ, of trapping
states zibtained in Sec. Dt'C then refers to the
hopping states which are 'relatively well separated
from the remaining states by their long release
times. Thus, unlike the conventional multiple-
trapping model, the generalized model includes
txap-controDed hopping as a special case.

V. CONCLUSIONS

In the multiple-trapping model, a small number
of charge capture and release events from traps
with release times on the order of the time scale
of the experiment gives rise to the kind of ano-
malous or extreme dispersive transport discussed
earlier by Scher and Montroll. Trapping takes
place fx'om a band of extended states or a band
of localized states which are responsible for
charge transport in the material. The small num-
ber of trapping events can be interpreted in terms
of trap-contx'oiled hopping~ in which only hopping
sites with loag release times are called "traps."
The apparent transit time t is given approximate-
ly by the amount of time carriers spend in traps
with fast release times, and the predicted super-

linear behavior of t on sample thickness L i.s in
good agreement with the experiment.

The change in shape of the photocurrent trans-
ients in a-Se with temperature is explained solely
by the tempexature dependence of the trap capture
events M, = &o,L/p, E, and the activation energy of
the release rates r& is constant up to room tem-
perature. It is a remarkable fact that only three
effective trap levels are sufficient to describe the
shapes of photocuxrent transients over a wide
range of dispersion. A detailed study of these
shapes through the transition from dispersive to
nondispersive transport shows no evidence for a
deep trap changing to a shallow trap with increas-
ing temperature. "

A study of the asymptotic value of the theoxetical
photocurrent transient for the multiple-trapping
model shows how the Scher-MontroD results can
be recovered at low temperature for a-Se. The
general connection between the multiple-trapping
model and continuous-time random walk is discus-
sed in II.

A continuous spread in release times from traps
can be described easily in the multiple-trapping
model by using an integral representation of the
sums over tx'ap indices. However, in order to
obtain information about the functional form of
a&(r) by comparison with experimental photocurrent
transients, it is necessary to obtain the trap den-
sity of states g(x) independently. From the a-Se
analysis there is no evidence that ~(r) -r in the
continuum limit of a trap distribution. The approx-
imate power law relation is valid only for a dis-
crete set of trap l.evels, with the trap release
rates spaced uniformly on a logarithmic sca1e.
However the concentration of tray states can be es-
timated for u-Se, giving N& =10" cm~.

The conventional multiple-trapping model can
describe a distribution of r, = o., exp(-E, /kNT) only
by introducing a distribution of energy levels E,.
In the genera1ized model a distribution of prefac-
tors u, can also be important. Recent work'4'"
has shown that a large number of electronic de-
fect states, having approximately the same energy
levels, can exist in the chalcogenide glasses. It
is the task of future work to understand the charge
capture and release kinetics of the effective trap-
ping levels introduced here in terms of the struc-
tural disorder of the material, and the properties
of the valence-alternation pair states. '4s"

In general it is concluded that the multiple-trap-
ping model is easy to solve analyticaQy and easily
applied to an analysis of experimental data. The
model can describe the detailed shapes of photo-
cux rent transients, using a small number of para-
meters and can be used to:~yze a wide range of
dispersion in charge transport.
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FIG. 6. Contour of integration in the complex s plane
used for numerical evaluation of I(t) (cf. Appendix).
The crosses indicate the location of essential singul-
arities in I (s).

As discussed in Secs. III and IV, the term st, has
been neglected in Eq. (A2}. We first note that R-R, =a, R+R, &max(r, ), (A5)

(As)

and we subtract this term from I(s) in order to
eliminate the corresponding 5(t) singularity in
I(t). Next we see that I(s) has essential singular-
ities at s = -r„.. . , -r„.. . , —x„, where there
are h' traps and O~x,.&~.

A convenient contour for evaluating

where e is a small positive number. It can then
be shown that

1
exp[-a(s) ] I

~ 1 (A6}

everywhere on C. The integrati'on of I(s) converg-
es rapidly using the trapezoidal rule, since I(s) is
periodic on C, and hence

n

L '(l(s)) =g I(s,) exp(s, t)+ E„, (A V)
k=&

L '(I(s)) = I(s)e"ds (A4) where

numerically is the circle shown in Fig. 6, where
Is —s, l =R and s, =(-R„0). R and R, are chosen
subject to the constraints

s~ =R exp(t 8,) —R„e,= 2wk/n,

and estimates of the error E„can be obtained
from standard formulas. "
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