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Among cerium pnictides, the compound CeSb exhibits the most complex behavior, The magnetic structures of
the numerous observed phases have been determined. The magnetic field has been applied along a fourfold
axis of the rocksalt structure. For all the phases the order consists of square-wave structures characterized by
a propagation vector k = (0,0, k) of value commensurate with the crystallographic cell and by a strong
anisotropy confining the moments along the k vector. All the structures can be generated by a periodic
stacking of zero magnetized planes P and ferromagnetic planes with a magnetization parallel Ml or
antiparallel M~ to the applied field. Three types of structures can be distinguished: (a) at low temperature
only Ml and M( planes exist, the structures k = 4/7 (++ ++ ), k = 2/3 (++—), and k = 0 are
successively observed when the field is increased. (b) at high temperature and low field M&, M~, and P
planes coexist leading to an "antiferroparamagnetic order. " (c) at high temperature and high field only M]
and P planes exists defining a ferroparamagnetic order. The phase diagram feature can be understood by a
simple thermodynamic analysis considering an entropy So = kln2 for paramagnetic planes and a moment of 2. 1

p,~/Ce atom for magnetized planes.

I. INTRODUCTION

During the last ten years a great amount of work
has been done on cerium monopnictide compounds.
In spite of their simple rocksalt erystallographie
structure, all of them exhibit different magnetic
behavior. Among these compounds the magnetic
behavior of CeSb is the most complicated and is
still not well understood. The purpose of this pa-
per is to clarify this behavior, but in order to put
our work in context we will first summarize brief-
ly other studies which have been done on these
compounds. Some results are reported in Table I.

In Cew, ' ' cerium ions are predominantly tetra-
valent at room temperature and no magnetic or-
dering has been observed. CeP, CeAs, CeBi, and
CeSb exhibit magnetic susceptibility anomalies at
low temperatures. ' CeBi and CeSb follow a
Curie-Weiss law down to the ordering tempera-
tures, 25 and 16K, respectively. Below these
temperatures, the thermal variation of the recip-
rocal susceptibility shows a minimum followed by
a maximum.

CeAs and CeP susceptibilities follow a Curie-
Weiss law only down to 120 K whereas their order-
ing temperatures are 7.5 and 9 K, respectively. '
Below this temperature they exhibit a fcc type-I
magnetic structure, "' i.e., the propagation vector

is k=(0, 0, 1) (q=2wk/a), with the moments ori-
ented along the [001] direction [for CeAs p
= (0.68 a 0.07)p, s].' The deviation from the Curie-
Weiss law was first attributed to a continuous va-
lence change (Ce"-Ce") of the cerium ions with
decreasing temperature. ' However, Jones, ""
Rainford et al. ,

' and Wang and Cooper" have shown
that these susceptibility anomalies ean be explain-
ed by crystal-field effects if the ground state is a
F7 doub 1et we 11 is olated from the quadr up 1et state
F,(6=140+10)K for CeAs. ' lf the magnetic prop-
erties of CeAs and CeP seem well understood, this
is not the case for CeBi and CeSb in the ordered
state.

Below T~, high-field magnetization measure-
ments5, 6, i2-i7 have revealed a complex mlgnetic be-
havior for CeBi and CeSb; multiple-step magne-
tization processes with large hysteresis effects are
observed with increasing and decreasing tempera-
ture. This behavior was also confirmed by magne-
tostriction measurements. " At low temperatures
the main magnetization step value corresponds to
one half the saturated value for CeBi and one third
for CeSb. However, for CeSb, this magnetization
step value becomes one half the saturated value at
higher temperatures. " It must be noted that in de-
creasing field a weak remanent magnetization has
been observed which vanishes at 12.5 K, '4' and
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8 K,"respectively, for CeBi and CeSb. Therefore
these magnetization measurements have permit-
ted the determination of magnetic phase dia-
grams ' ' " which are quite unusual. For CeSb
the phase diagram is different and much more
complicated than that of CeBi.

Neutron-diffraction measurements were made on
CeBi to determine the type of magnetic order which
develops in this metamagnetic compound. In con-
trast to results obtained for polycrystalline sam-
ples'"" which show an antiferromagnetic struc-
ture of type I [k = (0, 0, I)], Cable and Koehler"
have found with single-crystal measurements that
two antiferromagnetic structures occur. The high-
temperature structure develops below 25.2 K and
consists of ferromagnetic (001) layers of moments
in a+ -+ —stacking sequence. At 12.5 K there is
a first-order transition to the low-temperature
structure which also has ferromagnetic (001) lay-
ers but in the sequence ++ ——(type IA). The in-
termediate-field structure has been determined by
Lander etal." The structure reported consists of
a+++ —stacking sequence of (001) ferromagnetic
planes, as first suggested by Tsuchida and Naka-
mura. " This structure exhibits a net magnetiza-
tion of one half the saturated value as given by
magnetic measurements. However, the phase dia-
gram may be more complicated because all the
magnetization steps" have not been analyzed by
Lander et al. Moreover, an important question
remains about the mechanism which drives the
transition between the two phases; Hullinger etal."
have observed no 1attiee-parameter discontinuity at
the transition temperature, whereas Lander et al."
have measured a volume discontinuity of (8+1)&& 10

For CeSb the phase diagram is much more com-
plicated, and this work deals with the determina-
tion of the numerous magnetic field structures by
neutron-diffraction experiments. In zero field the
magnetic structures have been investigated by
Lebech et al." and Fischer et al." Their neutron-
diffraction measurements on single crystals of
CeSb show a first-order transition to an antiferro-
magnetic phase at 16.0 K corresponding to the ap-
pearance of a slight tetragonal distortion of the
NaC1 structure. '"" Between T„and 4.2 K five
structures were successively observed, they con-
sist of ferromagnetic (001) layers with the mag-
netic moments oriented perpendicular to the layers
with a value modulated according to sine waves.
The propagation vector k = (0, 0, k) has in general
an incommensurate value, except just below
T~ (k = —',) and at a low temperature (k = —,'), where
a++ ——sequence occurs. This structure appears
at about 8.5 K, where x-ray and specific-heat mea-
surements" showed an anomaly, however, Levy"
and Busch et al."have not observed this anomaly.

After a brief description of the experimental pro-
cedure given in Sec. II, we will compare in Sec.
III the zero-field magnetic structures observed for
our crystal with previous published results. The
results will be analyzed in detail in order to under-
stand why there are differences. In Sec. IV the
phase diagram is reported together with a deter-
mination of the magnetic structures of the numer-
ous phases. In Sec. V magnetization measurements
are compared with neutron results and special at-
tention is paid to the remanent magnetization be-
havior. An analysis and a simple thermodynamic
justification of the quite original phase diagram
are given in Sec. VI. In particular the nature of
the phase transition observed at about 8.5 K in
zero field will be discussed in order to explain why
the experimental results ean be different. Another
important question concerns the nature of the Ce"
ground state in CeBi and CeSb. In the ordered
state the Ce" magnetic moments have about the
full free-ion moment value (2.10', ~, see Table I)
and are highly anisotropic along a fourfold axis.
In contrast to these results, magnetization mea-
surements in diluted compounds" 7' show that
the easy magnetization axis is a threefold axis.
The crystal field splits the multiplet J=-,' into a
quartet I', and a doublet I', . Inelastic neutron scat-
tering and specific-heat measurements revealed
that the I"7 —I', splitting is extremely low: between
9 K (Ref. 29) and 4 K (Ref. 30) for CeBi and be-
tween 24 K (Refs. 7, 31) and 38 K (Ref. 32) for CeSb
(Table I). The easy direction is (001) if I', is the
ground state and (ill) if it is the doublet I', . So in
the diluted compound the Ce" ground state is unam-
biguously the X', doublet. But in pure compounds
and in particular in CeSb, the experiments do not
allow the clear determination of the nature of the
ground state. However, Wang and Cooper" deduce
a F, ground state in order to interpret the anoma-
lous behavior of the susceptibility. Thus Cooper
and Vogt27 proposed a strong anisotropic exchange
to give a (001) magnetic-moment anisotropy. On
the other hand, Hullinger et al '8 observed no such
susceptibility anomaly in very-low-field measure-
ments and at T„a tetragonal distortion occurs.
This problem will be discussed in See. VI. Stevens
and Pytte' give a justification of such a distortion
(tetragonal rather trigonal) by a Jahn-Teller effect:
The low-angular-momentum value can stabilize
only a tetragonal distortion, this implies that l",
becomes the ground state at the transition which is
in fact split by the second-order crystal-field term.

So, as we have seen in this introduction, some
unanswered questions remain and we hope that our
results on CeSb will provide information to clarify
the magnetic properties of monopnictide com-
pounds.
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II. SAMPLE AND EXPERIMENTAL PROCEDURE

The single crystal of CeSb was prepared as des-
cribed by Busch and Vogt. ' This was a pillar-
shaped crystal of approximate dimensions 1 x 1, 5
&& 2.5 mm3 with the edges parallel to the (100) di-
rections of the rocksalt structure. Magnetic fields
were applied along the [001]direction which cor-
responds to the largest edge.

Magnetization measurements were performed in
static fields up to 150 kOe and in the temperature
range 2-25 K at the Service National des Champs
Intenses at Qrenoble. Magnetization curves, at
constant magnetic field or constant temperature,
were obtained by moving the sample between two
opposed pickup coils in a homogeneous magnetic
field (~/H =4%o) produced by a Bitter coil.'"4'

Neutron-diffraction experiments were performed
on the DN, spectrometer of the Siloe reactor at the
Centre d'Etudes Nucleaires at Qrenoble. This dou-
ble-axis spectrometer is connected to a computer
and is equipped with an elevating counter arm
which allows scanning of the nonequatorial recip-
rocal space up to an angle of 45 . Neutrons of
wavelength 1.115 A were used for all the measure-
ments. The crystal was put inside a cryomagnetic
system which produces a magnetic field until a val-
ue of 50 kOe either with a horizontal or vertical
direction. ' The sample temperature can be ad-
justed between 1.5 K and room temperature. The
temperature stability is better than 0.01 K in the
temperature range investigated (1.5-20 K). In our
experiments a vertical magnetic field was applied
along the [001] axis of the crystal allowing a more
accurate measurement of the ferromagnetic com-
ponent.

Nuclear reflection intensities were measured in
order to test the importance of extinction phenom-
ena and to determine the scaling factor. The fcc
structure gives rise to two kinds of nuclear reflec-
tions: strong reflections (E= bc, + b») with even
Miller indices and weak reflections (E= bc, b»)—
with odd Miller indices. At the magnetic ordering
an increase in the intensity of the strong reflec-
tions has been observed. For example, the (200)
reflection increase by 9% when the crystal orders
in a multidomain state while for a monodomain
state the intensity has the same value as for the
paramagnetic state. This result indicates an ex-
tinction of 9% for the strong reflections in the mo-
nodomain and paramagnetic states. Therefore,
these extinction effects are negligible for a crystal
in a multidomain state owing to the fact that the do-
main size is smaller than the size of the crystal-
lites. So for the Inagnetic reflections, we can con-
sider the extinction as negligible because their in-
tensityareanorder of magnitude smaller than the

strong nuclear reflections. In these conditions,
the measurements of the (200) reflection intensity
in the multidomain state permits us to determine
the scaling factor using the Fermi lengths in
10"cm, bc,=0.482 and b» —-0.564. ' The intensi-
ties were internally calibrated in order to obtain
absolute values which were compared to the calcu-
lated one for determining the magnitude and the di-
rection of the magnetic moment.

The fcc structure contains only one Bravais lat-
tice, thus the magnetic structure is completely de-
termined by the knowledge of the Fourier decomposi-
tion

where q is restricted to the first fcc Brillouin
zone. We will characterize each Fourier compo-
nent by the propagation vector k such as q= (2m/a)k
and by an amplitude A.~. The propagation vectors
k have been determined by scanning the Brillouin
zone (200) along the [20l], [2k0], or [k20] direc-
tions. The experimental geometry gives a very
good accuracy for the [2kO] and [k20] directions of
the equatorial plane (hk„„=0.001), whereas for
the vertical direction [20I] the vertical beam di-
vergence reduces the accuracy to bk, =0.005. The
amplitude value A„ is determined from the super-
lattice reflections corresponding to a scattering
vector h=H+k (H is the lattice scattering vector)
with an intensity given by the expression

I„(h)= (0.2V)'f '(h) (-,'A', ) s in'o. ,

where f (h) is the Ce" form factor calculated by
Blume, Freeman, and Watson, ' and n is the angle
between the scattering vector h and the moment di-
rection which is parallel to [001].

In the monodomain state the accuracy of the in-
tensity measurements leads to an error of +0.05'.~
for the amplitude value A~; whereas, in the multi-
domain state, the accuracy is lower by a factor 2
because the intensity is smaller and the domain
distribution inust be determined (hA~= +O.1ps).
The ferromagnetic component has been deduced
from the intensity of the reflections (111)and (311)
which have a weak nuclear contribution.

III. MAGNETIC STRUCTURES
IN ZERO APPLIED MAGNETIC FIELD

The magnetic structures of CeSb in zero applied
field have been investigated by Lebech, Fisher,
and Rainford. " They found five different magnetic
phases below T„=16.0 K. For all these phases,
the propagation vector is k=(0, 0, k), i.e., the mag-
netic structures consist of (001) ferromagnetic
planes with moments modulated according to sine
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FIG. 1. Thermal variation of the intensity maximum
of the (2k0) superlattice peaks for CeSb.

waves along the [001]direction. The magnetic mo-
ments are confined along the [001]direction. The
value of k varies discontinuously with temperature
and lies between —,', just below T~, and approxi-
matively —,

' at low temperature. The five magnetic
structures have been observed in the following tera-
perature range: I: 16.0-15.4 K; II: 15.4-14.8 K;
III: 14.8-,12.2 K' IV: 12.2-8 K and V: ~ 8.0 K.
Higher harmonics in the modulation of the mo-
ments are present except for the commensurate
phases I and V. Experiments performed on a new
crystal of CeSb by Fischer, Meier, and Vogt" have
confirmed these results, but a new phase has been
observed between the phases IV and V. A pro-
nounced hysteresis is associated to the transition
between this phase and the phase k= —,'.

The results obtained with our single crystal show
some differences, the main one is that we have not
observed the k = —,

' phase for temperatures down to
1.7 K. Instead the magnetic structure corresponds
to a propagation vector k=0.572, i.e., to the phase
III of Lebech et al. and Fischer et aE.'~ When
temperature is increased the results are reported
in Fig. 1(a). This phase (k =0.572) disappears at
15.4 K, above this temperature a phase k =0.667
(phase I of Refs. 23 and 24) develops until 16.35 K
where a transition to the paramagnetic state oc-
curs. The superlattice reflection intensities of the
structure vanish in a temperature range of only

0.06 K, indicating a first-order transition in
agreement with previous work. ""~ When the tem-
perature is decreased [Fig. 1(b)] the phase
k=0.667 appears at T=16.2 K, so a temperature
hysteresis is detected at the Neel temperature.
Below T = 15.3 K a new phase k = 0.614 occurs
which corresponds to the phase II of Refs. 23 and
24. This phase was not observed with increasing
temperature. The phase k = 0.572 appears at
14.4 K and remains down to 1.78 K. However at
4.2 and 1.78 K a small contribution of a phase
k = 0.55 is present together with k = 0.572. There-
fore, in zero magnetic field, from our experimen-
tal results we can take into account only the two
main phases k=0.667 and k=0.572, observed, re-
spectively, at high and low temperature, because
the phase k= 0.614 was observed only with de-
creasing temperature and in a very small temper-
ature range.

Within the experimental accuracy, the propaga-
tion vector values can be considered as fractional
numbers; i.e., k= —,=0.572, k= —,', =0:615, and

k 3 0 .667 . So the magnetic structures are com-
mensurated with the lattice; for example, k= 7

corresponds to a magnetic cell equal to seven
times the nuclear cell.

If we analyzed in detail the results of Lebech
et al."and Fischer et a/. "we see that the so-called
incommensurate value of the propagation vectors
are in fact also fractional numbers I: k= 3,
II: k = zs,

' III: k = 7, IV: k =
9 = 0 .555; V: k =

~~

=0.547; and VI: k= —,'. These values are not arbi-
trary and are given by a general formula
k=n/(2n —1) except the value k=,—', . The value
k= —,

' corresponds to ~= ~.
Moreover, in addition to the magnetic superlat-

tice peaks associated to the propagation vector k,
small superlattice peaks have been observed which
corresponds to the third-order harmonics. In
these conditions the magnetic structures of these
phases can correspond to square-wave structures
with a wave-vector value equal to the Fourier com-
ponent associated to the more intense superlattice
peak. A more detailed discussion is given in an-
nex. Thus for v=1, 2, 3, 4, 5, 6, . . . , ~ the corres-
ponding square-wave structures are reported in
Fig. 2. It can be seen that all the structures are
derived from the phase k= —,

' which corresponds to
a++ ——staking sequence of ferromagnetic (001)
planes. In such a structure each plane has two
neighboring planes with an opposite moment direc-
tion, Let us call a "fault" in the sequence a plane
which has two neighboring planes with the same
moment orientation (i.e., —+ —or + —+ ). Thus a
structure with 0 = n/(2n —1) corresponds to a
++ ——staking sequence with a "fault" which ap-
pears periodically each n crystalline cell (hatch~~
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in Fig. 2). It must be noted that a crystalline cell
contains two planes. For n even the "fault" plane
(Fig. 2) have their magnetic moments which are
parallel, so a ferromagnetic component associated
to the harmonic of order 2n —1, can exist with a
magnitude p/(2n —1) per Ce" ion. For n odd the
structure is purely antiferromagnetic. However,
when n is even, it is possible to cancel the ferro-
magnetic component by choosing conveniently the
phase of the square wave (see Appendix), but in
this case two ferromagnetic planes are trans-
formed into two paramagnetic planes. The same
result can be obtained for ~ odd. It is a special
type of magnetic order that we shall call antiferro-
paramagnetic (AFP) (Fig. 2).

We shall examine now each phase in more detail.
Phase S,: k= 3. At 1.6 K the intensities of the

magnetic supperlattice reflections have been mea-
sured for the three domains E„E„E,associated
with the propagationvector (k, 0, 0), (O, k, 0), and

(0, 0, k). We must note that they are distributed
with an almost equal proportion. An amplitude
value A, = (1.9+0.1)p, ~ is deduced for the sine-wave
modulation. As no ferromagnetic component has
been observed, the magnetic structure may be de-
scribed by a square-wave structure such as to
have a+ —0+ —0 stacking sequence. This problem
will be discussed in more detail in Sec. VI.

Phase S,: k=» . Because of the size of our
crystal and the weakness of the observed intensi-
ties it was not possible to obtain quantitative mea-
surements for this phase.

Phase S,: k=-, . Measurements have been done
at 13 and 10 K. The results show that the intensity
values and the domain distribution are about the
same for the two temperatures, but the three do-
mains are not distributed with an equal proportion
(33, 42, and 35/~). The amplitude of the Fourier
component k =-', is (2.6+0.1)ps at 13 K and (Z.7
+0.1)p~ at 10 K. These values are larger than the
free-ion moment value (2.14',~). They are associ-

ated to the fundamental term of a square-wave
modulation. In addition a third-order harmonic
(0=0.286=2) is present, an amplitude A»
= (0.86 +0.2)p, ~ has been measured at 10 K. Thus
the experimental ratio A„/A» takes the value
3.1 +0.3 which lies between the theoretical ones
3.5 and 2.8 associated, respectively, to a AFP and
antiferro-ferromagnetic (AFF) structure (see Ap-
pendix). However, at this temperature, as will be
discussed in Sec. VI, we may consider this phase
as a square-wave structure with a zero net mag-
netization, i.e., corresponding to a
++ —-+0 —++ ——+ 0 —stacking sequence of ferro-
magnetic and "paramagnetic" (001) planes. In a
ferromagnetic plane the magnetic moment of a
cerium ion is given by p, = A~/1. 252, i.e.,
= (2.15 + 0.1)p, ~ at 10 K.

In all these three phases the magnetic moments
are aligned along the propagation vector, i.e., a
fourfold axis..

IV. NEUTRON-DIFFRACTION INVESTIGATION
OF THE MAGNETIC FIELD VERSUS

TEMPERATURE PHASE DIAGRAM

The magnetic phase diagram of CeSb has been
investigated by neutron-diffraction experiments at
different temperatures with an increasing and de-
creasing magnetic field applied along a fourfold
axis. The variation of the propagation vector ver-
sus magnetic field has been determined from scans
along the [20l] direction in reciprocal space. The
phase diagrams determined with increasing and
decreasing fields are reported, respectively, in
Figs. 3 and 4. These phase diagrams can be di-
vided into two zones: a low-temperature zone
which contains the phases S, S', and Il; a high-
temperature zone which concerns the ferro-para-
magnetic (FP) phases (four phases have been ob-
served). The existence of these phases gives a,

quite original character to the phase diagram
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which do not correspond to that of an usual meta-
magnet.

A. Low-temperature zone

At 4.2 K, when the magnetic field increases, the
phase S, (k=0.572=47) remains stable up to a field
of 21 kQe. At higher field a new phase S' appears
characterized by a propagation vector k = —,'. At
20.9 koe the coexistence of the phases S and S' in-

dicates a first-order transition. The phase S' dis-
appears at II=39 koe and in higher field the sys-
tem becomes completely saturated. Figure 5 gives
the field dependence of the intensity maximum of
the [20k] superlattice reflections together with the
[111]integrated intensity. The critical fields show
only a weak temperature dependence, however they
are affected by hysteresis effects which are quite
important for the S-S' phase change (about 9 kOe).
These results are in good agreement with magne-
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FIG. 4. Magnetic phase
diagram of CeSb for a de-
creasing field applied
along a [001] direction. An
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along the g-axis of a (001)
plane.
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tization results. "
Phase S,. This phase corresponds to the phase

S, observed in zero field, i.e., a square-wave
structure with a propagation vector k=~7. It cor-
responds to ferromagnetic (001) planes in a
++ ——++ —stacking sequence.

Phase E. It corresponds to the induced ferro-
magnetic state (k=0). The intensity measurement
of the weak nuclear (111)and (311) reflections lead
to a magnetic moment value of p, ~
= (2.08 +0.05)p, a/Ce atom. This value is very close
to the free-ion value 2.14',~.

Phase S'. The value of the ferromagnetic com-
ponent determined from the (111) and (311) reflec-
tion intensities is (0.71 +0.05)p,a/Ce atom. In
agreement with magnetization measurements this
value is one third of the saturated magnetic mo-
ment value in the induced ferromagnetic state.
Moreover, superlattice reflections corresponding
to a propagation vector k= —', are observed and from
the intensities of the [20k], [22k], and [111—k] a
Fourier component amplitude A, = (2.87
+0.05)p, a/Ce atom is deduced '(Table II). The
experimental ratio of 4.04 between this ampli-
tude and the ferromagnetic component leads to the
conclusion that the magnetic structure can be de-
scribed by a square wave with a propagation vec-
tor k= 3 and an amplitude p, . Indeed, as shown in
the Appendix, such a structure gives rise to two
Fourier components: a fundamental term k = 3

with an amplitude A.~=~~ p, and a third-order har-
monic which corresponds in fact to the ferromag-
netic component (k ='0) with a value of 3 p, . In these
conditions the moment value is p. = —,'A~=(2. 15
+0.05)p, a/Ce atom. So the magnetic struc-
ture of the phase S' consists in ferromagnetically
aligned (00I) layers of moments p, in a++ —stack-
ing sequence with the moment oriented along the
[001]axis (Fig. 3).

B. High-temperature zone

,
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FIG. 6. Typical scans along the [20$] direction in the
(200) Brillouin zone for the Fp phases.

At high temperature, four FP phases are ob-
served: FP„FP„FP„FP4. In Fig. 6 are reported
scans along the [20l] direction in all the (200) Bril-
louin zone for each phases. The most intense
superlattice reflection corresponds to a Fourier
component k which have the following value:
k=0.55 for FP„k=0.50 for FP„k=0.45 for FP3,
and k = 0.40 for FP, .

These values have been obtained by scans along
vertical directions, so the measurements are less
accurate than those performed in the equatorial
plane. According to an estimated error 6k = 0.005
these values can be written as fractional numbers,
i.e., respectively k yy 2 9 and —,. Moreover,
except for the phase FP, (k =-,') a weak superlattice
reflection has been observed which is associated
to the third-order harmonic. It corresponds to a
Fourier component k'= 2 —3k. To illustrate the
phase changes the variation of the (20k) superlat-
tice reflection intensities with an increasing mag-
netic field at T =11 K is reported in Fig. V. We
observe successively the multidomain and the
monodomain states of the phase S„ then the phase
S' and the phases FP, and FP4. In these two last
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phases the superlattice reflection intensity is four
times smaller than the intensity of the S' or S,
(monodomain) phases. On the other hand the FP
phases exhibit a large ferromagnetic component
with a value of about one half the saturated mag-
netization. The observed values of the ferromag-
netic component are reported in Table II. There-
fore these structures exhibit a ferromagnetic and
a modulated component. The ferromagnetic com-
ponent is confined along the magnetic field, i.e.,
the [001] axis.

For the modulated component two hypotheses are
possible:

Mode/A. The modulated component is parallel
to the propagation vector and therefore is collinear
with the ferromagnetic component. In this model
every moment has the same direction but may
have different magnitude.

Model B. The modulated component is located in
a plane perpendicular:o the propagation vector.
This modulated component associated to the ferro-
magnetic component leads to a noncollinear struc-
ture. This model is plausible for k= —,', indeed the

magnetic moment directions, which are obtained
by —,'m rotation around the z axis, could take the di-
rection of the (111)axis. However, for the other
phases (FP„FP„FP,), the magnetic moment di-
rections would be far from any crystallographic
axis, and this is in disagreement with the strong
magnetic anisotropy observed at low temperatures.
By magnetic measurements, moreover, with such
a model, it is difficult to understand why the prop-
agation vector takes only discrete value. In order
to choose between these two models we shall exam-
ine in detail the case of the most simple phase,
i.e., the FP, phase.

FP, phase (k = —,). In the B model the modulated
component gives rise either to a sine-wave or a
spiral structure. The sine-wave structure can be
eliminated because it leads to incorrect intensi-
ties.

For the conical structure, the measured value of
the spiral component is A~= (1.38+0.05)ps (Table
II) which, taking into account of the ferromagnetic
component p, ~= (1.08+0.05)p, s, gives a moment
value of (1.74+0.08)p, s. This value is smaller than
the measured values in zero field: 2.1p,~ at 4.2 K.
Moreover, the spiral component value deduced
from the [11-,'] reflection intensity has a low value
which cannot be explained by the experimental ac-
curacy.

A rnodeL For the A model the amplitude of the
modulated component is A~= (1.47 +0.05)ps (Table
II). Combined with the ferromagnetic component
p, ~ =1.08 ',s it leads to a stacking sequence of (001)
ferromagnetic planes for which the moment value
varies according to the following relation:

p, c,= 1.08+ 1.47 sin (n-,'m+ y) .
If the phase y takes any value, a plane n con-

taining moments with a value of (2.55 +0.1)p, s will
exist. This situation is impossible because the
maximum value of a cerium moment is 2.14',~.
To satisfy thi.s condition the phase must be equal

TABLE II. Moment values associated to each phase. pz is the net ferromagnetic compo-
nent, AI, is the amplitude of the most intense Fourier component, JLf, s~ is the value of the
square-wave amplitude, and pce is the moment of a cerium ion in a ferromagnetic plane.

Phases H (kOe) A& (V~) ~8~ (I a) ~ce (I a)

k=0
8: k=—

FPg'. k =—
11

FPp. k =—

FP, : k=',

FP4. k =—

43
30

10

43

40

4.2

4.2

15.5

16.0

13.0

11.0

2.08
0.71

0 ~ 76

1.08

1.24

2.87

1.26

A: 1.47
B: 1.38

1.33

2.15

0.99

1.03

1.03

2.08+0.05
2.15 +0.05

1.84 +O. i

2.11 +0.1

1.74 ~0.1

2.16 +0.1
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to 4m, thus the modulated component corresponds
to a++ ——square-wave structure with an ampli-
tude p, ,„=(1.03+0.05)p~ (Table II). We must note
that this value is pratically equal to the ferromag-
netic component (1.08 p, ~}. Therefore, the combi-
nation of these two components gives an original
magnetic order consisting in two (001) ferromag-
netic planes with p. c,=2.11+0.1p.~ followed by two
(001) planes with a zero average magnetization
[p, c,= (0.05 +0.1)p, ~] which we call "paramagnetic. "
We must note that the moment value in the ferro-
magnetic plane (2.11',s) is in good agreement with
the value determined in the ferromagnetic region
or in the magnetic states observed in zero field.
This type of structure is quite original and for con-
venience we call it ferro-paramagnetic (FP). This
A model is compatible with the experimental ac-
curacy and is better than the 8 model. However,
it is possible to consider another model. The val-
ue of the ferromagnetic component, one half of the
saturated moment, couldbe explained, as in CeBi,"
by a structure with a+++ —stacking sequence.
Nevertheless, this structure gives rise to three
Fourier components with wave vectors k=0, k= —,',
and k=1 with the amplitude —,'p, , p. , and 2p, re-
spectively. As no superlattice reflections associ-
ated to k =1 havebeenobserved thismodelmustbe
eliminated. Finally the A model is the most ade-
quate model and the structure corresponds to a
periodic arrangement of two ferromagnetic planes
followed by two paramagnetic planes (++00).

FP» phase (k =-,'). As for the FP, phase, the con-
ical model must be eliminated on account of the
low-intensity values. Moreover, for the FP~ phase
additional arguments eliminate this model. First,
the propagation vector value k =-, is not compatible
with the large cubic anisotropy and secondly the
presence of the third-order harmonic can be in-
terpreted only as a squaring up of a sine-wave
structure. In these conditions only the A model
must be retained and from the observed reflection
intensities an amplitude value A, = (1.33+0.05)p, ~
is deduced for the Fourier component k=-, (Table
II). The reflection intensity due to the third-order
harmonic indicates that the modulated component
is a square wave with an amplitude p,,„. In the
case of a total squaring p,, is related to A, by the
relation A~ =1.294 ',,„(see Appendix), so p,,„
= (1.03 +0.05)p, ~. This square-wave component
gives a ferromagnetic contribution of —,

'
p, ,„

=0.2 ps/Ce atom (fifth-order harmonic) and in fact
the net ferromagnetic component (1.33 +0.005)p, ~
is the sum of this contribution 0.2p, ~ and a ferro-
magnetic contribution of (1.13 +0.05)p, s.

The magnetic structure is given by the combina-
tion of this ferromagnetic component and the
square wave with an amplitude p, ,„which corre-

sponds to a+++ ——stacking sequence of ferro-
magnetic (001) planes. So the magnetic structure
can be described by a periodic arrangement of
three ferromagnetic planes with a moment value
p = (2.16+0.1)p. ~/Ce atom followed by two planes
which can be considered as paramagnetic
[p=(0.1+0.1}p,~]. As for the FP, phase the mo-
ment value of the ferromagnetic plane corresponds
to the saturation value.

Therefore, the two phases FP, and FP4 are rep-
resented, respectively, by the following arrange-
ment ++ 00++ 00 and +++00+++00. Each FP
phase can be described with this model which con-
sists of the superposition of a ferromagnetic com-
ponent and a square wave with about the same am-
plitude.

FP, phase. The FP, phase, characterized by a
propagation vector k =~-, corresponds to a
+++00++00 stacking sequence of (001) planes. If
p, is the moment value in a ferromagnetic plane,
the total ferromagnetic component is equal to 9 p, ,
i.e., 1.17'.~ by taking p, =2.1p,~. This value is in
good agreement with the experimental one of
(1.23 + 0.05)p, ~.

FP~ phase. The FP, phase can be classified in
the same type of structure, but in this case the
propagation vector k = —,', has a value higher than —,

'
and the net ferromagnetic contribution [p,~= (0.76
+0.05)p, s] is lower than —,', times the saturated val-
ue (0.95',s). In order to clarify this fact, super-
lattice reflections have been measured at H=10
kOe and T = 15.7 K. The amplitude value of the
first-order harmonic is A, = (1.26 +0.05)p, s (Table
II). The squaring up of the modulation is evidenced
by the presence of the third-order harmonic which
has an amplitude value A»=(0.46+0.03)p, ~. For a
complete squaring up the ratio of the first- to the
third-order harmonic is theoretically 2.92 (see
Appendix). In this case, taking A„=1.26p, ~, the
value A3~=0.43/. ~ Xs deduced, which ls 1Q good ag-
agreement with the experimental one, (0.46
+0.03)p~. So this structure results in the combi-
nation of a ferromagnetic component p,, and a
square wave characterized by a propagation vector
k = —,', and an amplitude p, ,„=Ak/1. 278 = (0.99
+0.05)p,~. This modulation gives a ferromagnetic
contribution of p, ,„/11=0.09',s, which can be par-
allel or antiparallel to the ferromagnetic compo-
nent po.

If we add the square wave (p, ,„=0.99) to the fer-
romagnetic component (po = 0.76 —0.09 = 0.67 p ~),
the structure would contain ferromagnetic (001)
planes with magnetic-moment values equal to
+1.66&,~ and -0.32&,~. The value of 1.66', ~ is low
compared to the value observed in zero field, and
the magnetic moment value in the so-called para-
magnetic planes is larger than those for the high-
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field FP phases. These reasons lead us to suppose
that the net magnetization results in the subtraction
of the two contributions. In this case, the ferro-
magnetic component p,, is equal to (0.85+0.05)p~,
and the moment value associated to the ferromag-
netic and to the paramagnetic plane is, respective-
ly, (1.84 +0.1)p, s and (0.14 +0.1)p, s. These values
are consistent with the zero- and high-field ones.
So the magnetic structure is described by a peri-
odic arrangement of ferromagnetic and paramag-
netic (001) planes with the stacking sequence
(++00++00+00). In this case the number of
paramagnetic planes is higher than the number of
ferromagnetic planes, in contrast with the high-
field FP phases. The magnetic moments are not
saturated and compensation is not complete in the
paramagnetic planes.

Finally the conical model is definitively elimi-
nated because this type of FP structures alone are
able to describe both the magnetization steps and
the fractional value of the propagation vector. The
existence of these different FP phases can be
understood by a decrease in the number of para-
magnetic planes when the field increases.

C. Detailed analysis of the high-temperature
and low-field phase diagram

In order to define more precisely the transition
between the FP, phase and the S phases a more
accurate phase diagram has been determined from

measurements at constant field and variable tem-
perature. In Figs. 8 and 9 are reported the phase
diagrams obtained in increasing and decreasing
temperature. In low field (0&4 kOe), the zero-
field phases are observed: S, -S,-P, when T in-
creases, and P-S, -S, -S„when T decreases.
For higher-field values the FP phases are ob-
served; for II&10 kOe there is only the FP, phase
whereas for II&10 kOe the FP, and FP, phases are
successively observed.

It must be noted that a ferromagnetic component
appears at II=4.2 kpe and 7=16.3 K and that the
FP, phase terminates in a point in the S, phase.

Important hysteresis effects are associated with
the phase change. We must note that the hysteresis
observed at constant field and variable temperature
corresponds to the hysteresis observed at constant
temperature and variable field. So from the phase
diagram at constant field it is possible to deter-
mine those at constant temperature. To do this we
must consider that the critical fields are deter-
mined by the transition line which gives the high-
est-field value when the field increases and the
lowest value when the field decreases, so the hys-
teresis value is maximum.

In decreasing temperature from the paramag-
netic state, a mixed phase with an order which is
not well established is observed before the FP,
phase (Fig. 10). This mixed-phase zone iends to
disappear when the field increases and moreover
the hysteresis observed between this phase and the
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FIG. 8. Low-field and high-temperature phase dia-
gram of CeSb in increasing temperature with field
applied along the [001] direction.

FIG. 9. Low-field and high-temperature phase dia-
gram of CeSb in decreasing temperature with field ap-
plied along the [001] direction.
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paramagnetic state decreases and disappears com-
pletely above 15 koe, which may indicate a change
of the transition order. It must be noted that the
ordering temperature increases linearly with the
applied field.

D. Domain motion study

In Sec. III we have shown that in zero field the
three types of domain K„,K„K,exist in about the
same proportion. In an applied magnetic fieM the
domain motion behavior (Fig. 11) must be consid-
ered in three temperature ranges.

At low temperatures (T & 8 K) when the field in-
creases an abrupt change from a multidomain state
o a monodomain state is observed which corre-

sponds to the domain K, (the z direction is parallel
to the field) with the same propagation vector 0 =4,.
The critical field line is indicated as dashed line
in Fig. 3. In decreasing field the monodomain
state remains down to H=O.

At high temperature (T» 11.5 K) in increasing
field, the multidomain distribution remains un-
changed up to the transition towards the FP
phases, whereas in decreasing field from the FP
phases a higher proportion of K„and K, domains
is observed. This result indicates that the perpen-
dicular susceptibility is higher than the parallel
one in this temperature range.

Between 8 and 11.5 K, when the field increases
the initial multidomain state remains up to a field
H, (Fig. 11); above this field the X, domain pro
portion increases progressively up to a monodo-
main state S2 or S'. In decreasing temperature a
multidomain state is observed but with a higher
proportion of the K, domain.

I

10 20 g~etj0 field (kOe) V. MAGNETIZATION MEASUREMENT RESULTS

Flo. 11. Field dependence of the intensity maximum
of the (20k) superlattice reflections at several tempera-
tures in increasing and decreasing fields.

The first magnetic phase diagram of CeSb ob-
tained from magnetization measurements has been
given by Tsuchida et al. ' using their own results
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and those of Busch et al.'" Recently, a detailed
phase diagram has been published by Bartholin
et al." The phase diagram reported in this paper
has been obtained from magnetization versus de-
creasing field curves, so it must be compared with
the neutron phase diagram obtained in the same
conditions (Fig. 4). The main transition lines are
in good agreement except at low field and low tem-
peratures, close to the Noel temperature and in
the FP zone. However some of these disagree-
ments are. quite understandable. For example, in
the FP zone the values of the magnetization of each
FP phase determined by neutrons are very close
(p, ,„,/p, „t„,= 0.46, 0.5, 0.58, 0.6, respectively, for
the FP„FP„FPS, and FP4 phases). In order to
compare the magnetization and the neutron-diffrac-
tion measurements in the FP zone a detailed mag-
netization curve used by Bartholin et al. to deter-
mine their phase diagram" is reported in Fig. 12.
This magnetization curve has been obtained at
13 K in increasing field. Two small magnetization
steps can be detected between 15 and 61 kOe which
correspond to the FP phase changes: FP, - FP3
and FP, -FP~, respectively, at 29 and 52 kOe in
agreement with neutron-diffraction measurements.
It was difficult before the neutron-diffraction re-
sults to associate these small steps with phase
changes. The authors" report in the FP zone a
magnetization value of one half the saturation one
in agreement with the average value obtained by
neutron-diffraction results.

Likewise, the phase S, (k =-', ), close to the Neel
temperature, cannot be observed with magnetiza-
tion measurements. At low temperature and low
field a transition line which intercepts the temper-
ature axis at 7.5 K has been reported. We think
that it corresponds to a phase change (AFF-AFP)
as discussed in Sec. VI. Below this temperature
a remanent magnetization was observed which dis-

appears below 4.2 K. Below this temperature, in
zero field the magnetic structure may be that ob-
served by Lebech et al."and Fischer et al.'4
(++ ——++ ——). The hysteresis effects are of the
same magnitude as those observed by neutron-dif-
fraction measurements.

In order to compare directly the neutron-diffrac-
tion and the magnetic measurements we have made
magnetic measurements with the single crystal
used for neutron-diffraction experiments.

The magnetization curves at 4.2 K (Fig. 13) have
been obtained in increasing fieM from the virgin
state and in decreasing field from the saturated
state. In increasing field the first transition at
7.8 kOe corresponds to the change from the multi-
domain structure of the phase S, (k=e7). The mea-
sured magnetic moment in this phase is practically
'-, the saturated moment in agreement with neutron-
diffraction results. The transition between the
phase S, (k=~7) and S' (k = —',) occurs at 21 kQe. The
magnetization in the latter phase is one third the
saturated moment as shown by neutron diffraction.
Then, at 38.5 kOe, the ferromagnetic state is
reached. In decreasing field, the same transitions
are observed but with large hysteresis effects.
Moreover, the monodomain state in the phase
S, (k = e7) remains down to II =0, in agreement with
neutron results. It must be noted, that at low field
and low temperature, the various crystals show
different behavior 3 ~ In thjs range of
temperature the magnetic structure must be very
sensitive to the crystal quality.

The thermal variation of the remanent magneti-
zation in zero field is given in Fig. 14. When the
temperature is decreased from the paramagnetic
state no magnetization is detected. However, at
low temperature, an applied field induces a net
magnetization which disappears at about 7.5 K
when the temperature increases. These results
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FIG. 12, Magnetization versus field at T=13 K. In-
creasing field was applied along a [001] direction.
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FIG. 13. Magnetization versus field at T=4.2 K. The
field was increased from the virgin state and decreased
from the saturated state.
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will be discussed in Sec. VI.
So magnetization measurements agree quite well

with neutron results; the differences mentioned at
low temperature may be attributed to the crystal
purity. Nevertheless, whatever the purity a tran-
sition occurs between 7 and 8 K.

VI. DISCUSSION

The (H, T) phase diagram of CeSb seems, at
first sight quite complicated owing to the number
and the nature of the magnetic structures which
have been observed. However, these magnetic
structures can be described in a simple manner.
They are characterized by a propagation vector
which is always parallel to a fourfold axis [001]
and by a strong magnetic anisotropy which confines
the moment direction along the propagation vector.
They consist of a periodic packing of zero magne-
tization planes P and ferromagnetic planes with
magnetization parallel M4 or antiparallel M 0 to the
magnetic field. In these conditions three types of
magnetic structure can be distinguished: First,
the low-temperature phases with magnetic struc-
tures containing only M4 and Mk planes. %e call
this type of ordering antiferro-ferromagnetic
(AFF). Second, at high-temperature and low field,
M4, M 4, and P planes coexist in the magnetic
structures. This arrangement is called antiferro-
paramagnetic type (AFP). Third, the magnetic
structures of the high-temperature and high-field
phases which contain M4 and P planes. The order
in these structures is called "ferro-paramagnetic"
(FP).

Lozv-ternPexatu~e sA uctmes. For the low-tem-
perature range, when the field increases the num-
ber of M0 planes increases discontinuously. In in-
creasing field we observed successively the phase
S, (++ ——++ —++ ——++ —), the phase S'

(++ —++ —), and the induced ferromagnetic phase.
This behavior is characteristic of a metamagnet
with a high anisotropy. It corresponds to an Ising
model, and the critical-field values depend on the
magnetic interactions and are therefore practically
temperature independent as shown from the experi-
mental results.

Lose field-and high tem-perature structures.
have shown that the phase S„observed in weak
field just below T„, gives rise to only one Fourier
component k = -'„so this structure corresponds to
a stacking of ferromagnetic (001) planes with a
moment sequence along the c axis described by the
general expression

p, ,(z„)=A, sin(2vkz„+ y),
where

z„=—,'n (n is the plane label),

so

p, ,(n) =A» sin(-', vn+ y) .
If P takes an arbitrary value, the structure is a
pure sine wave one, and the moment can have any
value between -A~ and +A~, so the amplitude A~
must be smaller than the maximum moment value
P, c~= 2.1P,~.

However, a special choice of the phase Q gives
two types of structures corresponding to

/=0 (+tJ, p, O, +-ls,, V, O)— ,

with p, =2~3A»

2+ (+ 2 Py+ 2 l yi 'p t2+yt+2PPP)'' (2)

with p, =A». The structure (2) must be eliminated
because it is possible to change continuously this
structure into the structure S' (k = —',;++ -) without
changing the phase and thus it is hardly compatible
with the fact that the phases Sy and S' are quite
separated in the phase diagram (Figs. 3 and 4).
The structure (1), which corresponds to an AFP
ordering, cannot be distinguished experimentally
from a pure sine wave one because at this temper-
ature the amplitude value A~= 1.9p.~ is smaller
than pc, =2.les. However the structure (1)
(+ —0+ —0) is the most probable because we shall
show that the lower-temperature phase S, (k =~7)

corresponds also to an AFP ordering.
For the phase S, (k =~7) at high temperature (T

&8 K) the magnetic order consists of a square-
wave structure with a zero remanent magnetiza-
tion, whereas below 8 K the same structure exhibits
a remanent magnetization as proved by magnetization
measurements (Sec.V). The cancellation of theferro-
magnetic component without a change of the propa-
gation vector corresponds to a phase change of the
square wave in order to transform a, ferromagnetic
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plane into a paramagnetic plane (see Appendix). This
type of structure AFP (k=4) is also supported by
the fact that it permits the understanding of the dif-
ference in the domain behavior at low and high tem-
perature. At low temperature (T &8 K) a noncom-
pensated ferromagnetic plane exists which involves
a strong parallel susceptibility. However at high
temperature the zero net magnetization implies
that the perpendicular susceptibility is higher than
the parallel susceptibility and so, as has been ob-
served, the population of K„and K, domains is
greater than that of K, domains, Figs. 10 and 11.
Therefore we can say that;, in zero field, a transi-
tion exists at about 8 K between a AFP phase S2

(++ ——+0 —++ ——+0-) and a, AFF phase S,
(++ ——++ —++ ——++ -). At this transition an en-
tropy variation must occur which has been in fact
observed by Hulliger et al."by specific-heat mea-
surernents. We must note that this variation will
be smaller as the propagation vector is nearer —,'.
These authors detect also a small lattice param-
eter variation at this temperature. This analysis
is compatible with the results of Lebech et al."
and Fischer et al. ,

~ who also indicate such a tran-
sition at about 8 K. We think that this transition is
a AFP -AFF transition though some differences
exist in the results which can be attributed to the
crystal quality. This conclusion is supported by
the fact that in the low-temperature phase k = —,

' all
planes have a magnetization whereas the high-tem-
perature structures permit the presence of some
paramagnetic planes. Moreover, the successive
fractional values, observed for the propagation
vector when the temperature decreases, corre-
spond to a decrease of the number of paramagnetic
planes. For our crystal the structure remains
quenched with the propagation vector k =4, . Though
at low temperature the propagation vector is not
k = —,', as the other authors, the transition tempera-
ture has about the same value (-8 K) which corre-
sponds to about 2TN. This behavior is to be com-
pared with that of CeBi which exhibits at 2T~ a
first-order transition between the low-temperature
pha, se (++ ——++ ——;k= —,') and the high-tempera-
ture phase (+ —+ —;k=1)."

High-temperature and high-field structures. In
the high-temperature and high-field range, the
neutron experiments have shown clearly at least
four phases of FP type which exhibit a resulting
magnetization close to one half the saturated mag-
netic moment. These results explain the difficulty
of observing these different phases by magnetiza-
tion measurements. " However, a detailed analy-
sis of the magnetization curves permits us to de-
tect small magnetization steps associated with
transitions between phases FP. When the magnetic
field increases the phases FP„FP„FP„FP4,

and F occur successively. These successive phase
changes correspond to a decrease in the number of
paramagnetic planes when the field increases.
Calling x the proportion of paramagnetic planes P.
Thus, for the phase FP„x=—,', whereas for the
phase FP, x& &, and x& 2 for the phases FP, and

FP4. In fact, these magnetic structures corre-
spond to sequences which can be deduced from one
to each others. Consider the intermediate phase
FP, (k =-,) which is described by a periodic ar-
rangement of two ferromagnetic planes followed by
two paramagnetic planes (++00++00). At high
field the observed phases FP, and FP4 can be de-
scribed always with a sequence ++00 but after
each n cells (2n planes) appears an additional fer-
romagnetic plane which creates a "fault" com-
posed of three successive ferromagnetic planes.
The FP, phase (k=4) corresponds to the sequence
(+++00++ 00+++ 00++ 00). Thus, the propagation
vector is given by the following relation, k=n/(2n
+1) and the alone possible values of k correspond
to even n. Therefore, the successive possible val-
ues of the propagation vector k are

2 4 6
5p 9& 13& ' ' '

& 2 p

in agreement with the experiment. It is not ex-
cluded that close to the phase FP, (k = —,') additional
phases exist with propagation vectors k =,» —,'„etc.
However, highest values of n are limited by the
interaction ranges. This point has not been mea-
sured in detail.

In low field the magnetic structures are obtained
from FP, in removing a ferromagnetic plane after
n cells. Thus, the propagation vector is given by
the relation k = n/(2n —1), where k take only even
n values. Therefore the possible values of k are:

2 yy 7 3 For example, the phase FPy cor-
responds to k= —,', . The structures with k=-', and 3

have not been detected, but they may be localized
close to T„where a mixture of phases is observed
(Fig. 10). As previously, it is not excluded that
there are, close to the phase FP, (k= —,'), phases
with a propagation vector higher than —,',. The
structures of the pha, ses FP with k=n/(2n —1) are
nearly identical to those observed in zero field.
The difference is only a transformation of M 0

planes in paramagnetic planes when the field is ap-
plied.

This phase diagram is quite unusual and we must
remark that on one hand the boundary between the
phases FP are practically parallel straight lines
and on the other hand the magnetization processes
can be described by a simple "all or nothing"
mechanism which consists either to a flip of M 4

planes or to an ordering of paramagnetic planes.
In order to understand the features of the phase
diagram we will present a simple thermodynamic



16 PHASE DIAGRAM AND MAGNETIC STRUCTURES. . ~

analysis.
Simple thermodynamic analysis of the phase

diagram. We assume that the magnetic states of
the crystal ean be described by two types of (001)
planes: First, we consider ferromagnetic planes
with magnetic moments parallel M 0 or antiparallel
M 0 to the applied field. Their magnetic energy per
Ce" ion will be &= +p.H -E~. In this relation, p
is the magnetic moment of the Ce" ion, II is the
applied magnetic field, and E~ the interaction en-
ergy inside a plane. The entropy of these ordered
planes is assumed to be zero. Second, we consider
paramagnetic planes (P) which have a zero ex-
change energy and a given entropy S, per Ce" ion.

If x is the proportion of paramagnetic planes in
the structure, y is the proportion of M 4 planes
with respect to the magnetized planes, and N is the
total number of planes, the structure can be des-
cribed by the number of paramagnetic planes Nx,
the number of Mi planes N(1 —x)y and the number
of M 0 planes N(1 —x)(1 —y).

The free energy per Ce" ion is given by

F = -xSOT —p, (1 —x)(2y —1)H —A~(x, y),
where A„(x,y) corresponds to the total exchange
energy associated with the structure of propagation
vector k. The free energy of the paramagnetic
state P( x = 1,y = 0) is

Ep= -SOT,

the free energy of the ferromagnetic state E{x
=O, y=l) is

Ep = —PH —A(0, 1),
and the free energy of the antiferromagnetic state
AF(x=0, y= —,') is

E~p= —A(0, —,') .

As discussed previously, at high temperature and
at high field, the magnetic structures of CeSb can
be described by ferroparamagnetic arrangements
FP corresponding to y=1 and x can take interme-
diate values between 0 and 1. First, consider the
theoretical ease where only the FP, phase (h= —,')
exists. It corresponds to x= 2 and y =1. The free
energy of this phase is

Epp (2& 1)= —,'SOT ——,pH -A, &,(—,, 1)

This phase is stable with respect to the P, I', and
AF states if

Epp &Ep: pH+2A{~, 1)&SOT,

Epp &Fp: SOT+2A( —,', 1)&pH+2A(0, 1),
2

Fpp &EAp'. SOT+ pH+2A(2, l)&2A(0, 2) . ,

The first two relations are possible if 2A( —,', 1)
&A(0, 1) (this condition is not very restrictive for

PH

C)

I

v-IC4

0
AF

x=O

FIG. 15. Theoretical phase diagram obtained from the
simple thermodynamic analysis given in Sec. VI.

an antiferromagnetic system). The stability range
of the different phases are reported in Fig. 15
where it can be seen that it is possible to have a
FP structure stable at high temperature and high
field. This result is in agreement with the ob-
served experimental behavior. On the other hand,
at low temperature all planes are ordered, x=0,
thus the free energy does not depend on T and the
transition fields between the phases AF and F are
temperature independent. The transition fields are
characteristic of the different exchange energies
between the planes. Whereas between the phases
P, FP and F we note an entropy variation and a
strong variation of the transition field with tem-
perature. The calculation shows that in the (H, T)
phase diagram the transition lines between the
phases P and FP as FP andI" are parallel straight
lines with a slope dH/dT = S,/p, , in agreement with
the experimental phase diagram. The transition
line between the phases AF and FP has a slope
dH/dt = S,/p. —

In reality the phase diagram is more complex
perhaps due to the nature of the interactions. How-
ever, our simple model can be used to define the
different transitions lines observed in CeSb. The
energy of each phase can be written as a function
of x and y and compared with the energy of each
neighboring phases in order to obtain a theoretical
expression of the transition lines in the (H, T)
space. With each value of the propagation vector
are associated specific values of x and y which
are reported in Table III. The lack of knowledge
of the interactions permits one to interpret the
slopes of the transition lines which depend only on

S,/p, in our simple model. The calculated values
are reported in Table IV, together with the experi-
mental ones determined in increasing field. These
values are indicative because they depend on the
definition of the critical field and the value was
not determined with a high aecuraey. The critical
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TABLE III. Relation between the propagation vector and the proportion of P planes and
M& planes.

Phases FP: A. =n/(2n~i) AFP: A,' =n/(2n —1) AFF: 0 =n/(2n —1) k=0

fields between AFF phases are practically temper-
ature independent because as all the planes are
magnetized there is no entropy variation. Between
the phases FP all the transition lines are parallel
with a, slope S,/p, . The experimental values S,/p,
= 6 + 1 kOe/K and p, = 2.1 p, ~ give S,jp, = 0.84 +0.15.
Thus the entropy of a Ce" ion in a paramagnetic
plane can be taken as k ln2 within the experimental
accuracy. Using this value the calculated slopes,
given in Table IV, account for the experimental re-
sults. So for the transitions FP, -AFP(S„k=-',) the
slopes are negative with an absolute value lower
than So/p. ; wherea. s for the transitions FP, -AF F
(S', 0 = &) and FP, -AFF, the slopes are negative
but with a magnitude larger than So/p, . Moreover,
for the transition line between AFP and AFF
phase, the model gives a slope S,/p, = 5 kOe/K, in
good agreement with these of the transition line
corresponding to an increase of K, domain. Thus
this transition line may be considered as the bound-
ary between AFF and AFP phases, in addition this
line intersects the temperature axis at 7= 7 K,

temperature which corresponds to the AFF —AFP
transition determined by magnetic measurements.

Nevertheless, the slope of the transition line be-
tween FP phases and the paramagnetic state has a
value (16+ 2 kOe/K) three times larger than So/p, .
This difference can be explained if we assume that
the entropy of nonmagnetized planes is not the
same in the FP phase (S,) and the paramagnetic
state (S,'). If the FP phase is characterized by a
propagation vector k, the calculated slope is given
by

So using So/p, = 5 kOe/K (S, = k ln2) and k = —,', we de-
duce S,'/p, =10 kOe/K, i.e., S,'/@=1.4+0.2=1n4.
This result suggests that the crystal-field level
splitting is quite different for a Ce" ion in the
paramagnetic state and in I' planes for FP or AFP
phases. In the paramagnetic state, the value of the
entropy (-1.4 at 18 K) indicates that the ground
state is the doublet I'„ this value is consistent
with the I', —I', splitting (88 K at 20 K) given by

TABLE IV. Comparison between experimental and calculated slopes of phase boundary lines.

Change
of phase

I—II Phase I Phase II Calc.

Slope (dH/dT)
Calculated

Expt. from So =k ln2
(kOe/K) (kOe/K)

FP FP

FP AFF

FPi
FP,
FP3
FP4

FP2
FP3
FP4 So/p,

——sp /p,
2

-6 +2

—2$0/p, -i1.5 +1

4.9

-9.8
-7.3

FP AFP
FP ——sp/p

7

——So /p

—3.5 + 1

-5 +i

-3.5
4 4

AFP —AFF S2 (high T) S2 (low T)

Fpi

Sp/p,

s, /p,

4.9

See text
1

AFF-AFF
sl

S'
E
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Heer." This level scheme is the same as for di-
luted compounds ' and gives an easy magnetization
axis along [111]. This result is in contrast with
the strong anisotropy along a fourfold axis ob-
served below T„. To take into account for this fact
Cooper et al."have proposed strong anisotropic
interactions. But an alternative proposal is to con-
sider that the tetragonal distortion may induce a
modification of the crystal-field levels in order to
give a ground-state doublet allowing a large mo-
ment value and a strong anisotropy along the te-
tragonal axis. This doublet may be quite different
from the I, doublet which is considered by Wang
et al." to interpret the susceptibility anomaly be-
low T„. In fact in very low field no anomaly has
been observed by Hulliger et al." The phase dia-
gram (Fig. 8) indicates that an abnormal behavior
of the susceptibility occurs in field higher than
4 koe, where FP phases appear; this value may
depend on the crystal quality.

The susceptibility and specific-heat anomalies"
near —,'T~ are well explained by a AFP-AFF phase
transition. Considering only bilinear exchange in-
teractions this temperature (7-8 K) corresponds to
the exchange energy of a ferromagnetic (001) plane.

The existence of a weak crystal-field splitting
allows higher-order interaction terms. Cooper
et al."have proposed an anisotropic exchange in-
teractions of the form J,,J;, to explain the mag-
netic behavior of CeBi which exhibits a phase tran-
sition at ~T~ between a phase k= 1(+ -+ -) and a
phase k= ~(++ ——++ ——). On the other hand Levy
et al.4~ suggest that anisotropic interactions would
be rather biquadratic J,', J,'., reflecting quadrupolar
interactions. However, it is also possible to ex-
plain the existence of an AFP or FP order bybi-
linear interactions assuming an Ising model.

Nevertheless, whatever the nature of the inter-
actions they must be of very long range in the di-
rection of the tetragonal axis to account for the
large and numerous magnetic cells which have
been observed. In these conditions, it is most
likely that, in addition to isotropic or anisotropic
exchange interactions, long range interactions via
phonons may exist. This type of interaction
implies a strong spin-lattice coupling which mixes
the magnetic order with a Jahn-Teller effect. This
coupling has been proposed in U0, .4"~' It must be
noted that uranium compounds4' exhibit a magnetic
behavior similar to CeSb and CeBi.

CONCLUSION

Neutron-diffraction experiments have provided
very new and important results about the magnetic
structures and the phase diagram of the quite com-
plicated rare-earth compound CeSb. The unusual

phase diagram has been justified by simple ther-
modynamic considerations. The most important
result is the observation of magnetic structures
consisting of ordered sequences of ferromagnetic
and "paramagnetic" planes. From these results
it is possible to describe in an homogenous way
the magnetic behavior of CeSb. Nevertheless, they
rise some theoretical questions, in particular the
nature of the so-called paramagnetic planes in the
ordered state.

To explain this unusual order it is necessary to
introduce long-range interactions which may be due
to a strong spin-lattice coupling. More extensive
experimental investigations must be done in order
to give a definitive answer to this question. In par-
ticular, magnetic anisotropy studies, a phase-dia-
gram determination for an applied field along a
[111]direction, and a dynamical study of the spin-
lattice coupling would'provide fruitful informations.
We hope that these results will stimulate theoreti-
cal developments.
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APPENDIX

This appendix deals with the neutron scattering
by magnetic structures consisting of a periodic
stacking of (001) planes for a fcc lattice. In a
plane, the moments are assumed to be ferromag-
netically aligned along a direction perpendicular to
the plane (along z). The magnitude p, of a Ce"
magnetic moment changes from plane to plane ac-
cording to a periodic function f (z) characterized
by a wave vector q= (0, 0, q) with q=2m/Z [q
= (2m/a)k]. This periodic function can be expanded
in Fourier series

f (z) = Q a e'"". (A1)

Equation (A1) does not represent the Fourier com-
ponents of the magnetic moment because the dis-
tribution is not continuous. For a magnetic mo-
ment distribution p,;=(0, 0, p, (z,.)) the Fourier com-
ponents p, z of p(z, ) ean be deduced from (A1).

p, , =+A 5(mq —q' —L). (A2)

Equation (A2) means that neutron diffraction will
occur only for scattering vectors H„+q' [H„ is a
reciprocal-lattice vector (k, k, l)], with q'=- (0, 0, q')
such as

(As)

For each value of m, L is defined in order to get
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the wave vector q' in the first Brillouin zone. For
a fee lattice L is given by L = 2I2((/a and q' is lim-
ited to -2)(/a &q'&2))/a. So the fundamental
Fourier component corresponds to q'=q, the sec-
ond-order harmonic to q'= 2q —L, etc. But two
vectors q' will be equivalent if q,

' —q,
' is a recipro-

cal vector, i.e., (m, —m, )q =L. This condition
cannot be satisfied if q is incommensurate with the
lattice, thus all q' are different and p, . is given by
the Fourier expansion of f(z):

~q =my-I. =
m ~=a

Whereas if q is commensurate with the lattice q
= (2((/a)n, /n2 (n, and n, are integer numbers), q'
will take a finite number of values because m, . —I,
=2ln2/n, . If n, is odd, there are 2n, values; where-
as if n, is even, only n, values exist. The Fourier
components p, , are given by (A2), where the sum-
mation must be done only for m =p+ nl,

l n~ g p+n2+2n l '
l=~

(A9)

Equation (A9) is equivalent to (A8) if p is replaced
by p'=p+n„. therefore p' can take only odd values
between 1 and 2~ as for the first case. So for a
square-wave function only the Fourier components
associated to odd p values between 1 and n = 2n2
must be taken into account. Whereas for a non-
square-wave function the Fourier components cor-
responding to even p values can have a large am-
plitude because the coefficients a» are different
from zero.

As in CeSb the strongest harmonics corresponds
to p =1 and 3 we can conclude that the structures
are square-wave ones.

So the calculation of the harmonic amplitudes
will be limited to only square-wave functions. ,
Within this condition (A4) becomes

42~=2 ap+n»l-~ (A4)

+~ ei(p+2n2 l )go
(A10)

0& z& zo

0 if z=zo,

f(z)= ( & if z, &z&z, +z, ,

0 xf z=zo+z

(A5)

where n= 2n2 or n2 according to the parity of n, and
p=123 . . g.

To go further we consider the function f (z) de-
fined by

F(yl) e iPP~ (A11)

with a period 2((/n. Such a function can be ex-
panded in Fourier series

with p =1,3, 5, . . . , 2n2 —1 (n, values). (t)p repre-
sents the phase of f (z) in respect to the lattice [the
(001)planes are located at z = 0, —,'a, a, . . . , 2.—,'a, . . . ]
and can take any value between 0 and 2m.

In (A10) the sum S~((j)p) can be evaluated by con-
sidering the periodic function defined, in the range
-)(/n& y'&((/n, by

q-B if z + z & z & Z = 2)(/q .
For such a function a is given by

a = (i/2((m)(A+B)e'"op(e' pl —1),
a = (I/2)))[A(t), —B(2((—(t) )],

with

(A6)

+()0

e-iPo g ( 1)l n slnP(l'/n
m p+nl

By defining

y = (b'+ ()(/n)(2j+ 1),
(A12) gives

(A12)

(Ais)

ljbp qZp alld (tl) qZl

Equation (A6) shows that a,„=0 if ()I), =)(, i.e., if
f(z) is a square-wave function. Therefore, if n is
even (n=2n2 for n, odd), only Fourier components

associated to odd p values exist because in (A4)
al terms have the same parity. Whereas if n=n2
is odd (n, =even), p ean take an odd or even value
and all the harmonics exist. By writing (A4) as

(y) SmP&/ne(P(n/n)(2 i+1)
n sin (A14)

+ ) (P(.&2n )(2&+i)
P r= 2

2n2 sinp((/2n2
(A15)

Equation (A14) is valid only for 2j)(/n&p 2(&J+I) /))
n. If j takes the value 0, 1, . . . , n —1, g runs from
0 to 2)( except the values g =2j((/n. Therefore

I q& P+2n2l P+n2+2n l &' g-~oo
(A7) yp t 2j((/2n2 . (A16)

for p odd

p,, = ap.l-~
and for p even

(A8)

Equation (A15) shows that the amplitude of the har-
monic p does not depend on (t)p since only the phase
is gp dependent. If (j)p= 2j)(/2n„(A10) becomes

(A17)
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It can be shown that

r P+ 2n2E 2n 2~

From (A25) the value of the harmonics can be cal-
culated. In particular, for the fundamental term
(q,'=q) (A25) gives

Thus

i(A+B)
2n, tanpv/2n,

(A18)

2&ce
n, sinn/2n,

'

Thus for n =2-A, =@2 p, c„

(A26)

if $0=2jv/2n2. Equation (A18) indicates also that
the amplitude of p; is independent of g, . Thus the
Fourier components p,,~ can take only two values
according to Q, is equaI or not to 2jm/2n, . We
shall see now what means that

y, = 2j~/2n, .
Using (A6), (A19) gives

~ /
80 = 2Q j/'Pl~ ~

(A19)

(A20)

with j= 0, 1, 2, . . . , 2n, —1. By definition f(z) = 0 if
z = so+ &2Z, i.e.,

z = ,'a(j + Xn,—)/n, , (A21)

P, g =A. g lf qp = 2H~ .
In the text the reduced wave vector k' is used in-
stead of: q' = (2v/a)k'.

A. Magnetic structures of type AFF

In ttus case all the planes are magnetic, thus f~
4 2jv/2n2 and A =B= p, c,:

with X=O, 1, . . . , 2n, —1. If x labels the 2n, (001)
planes of a magnetic cell, (A21) means that some
planes will be nonmagnetic if

e„=x—,'a= —,'a(j+ Xn,)/n, .

So for a j value (A22) gives the labels of the
planes which are paramagnetic; it can be seen eas-
ily that such planes exist every ~2 planes. For ex-
ample, if j= 0, the planes x= 0, ~„2n» etc. , are
paramagnetics. Therefore the choice of j corre-
sponds to select two paramagnetics planes in the
magnetic cell, and (A18) shows that this choice
gives a phase shift for p.&. We shall summarize
now the results by considering the magnetic struc-
tures observed for t"esb.

The amplitude of a Fourier component p, z deter-
mined by neutron experiments is defined as

p, , =-,'A, , e'g, ~ if g~W-,'H„ (A28)

B. Magnetic structures of type AFP

They correspond to A = B = pc, and $, = 2jv/2n, .
So

2p.
't n, tan pm/2n,

(A2V)

and A,.~, =O. For example, if n, =8 (k=-', ), the
presence of paramagnetic planes reduces the am-
plitude of the fundamental term from ~3 p, c, to (2/

)i'cl ~

C. Magnetic structures of type FP

These structures can be obtained by doing A
cB=0, and $042j v/2n2, thus

~ce
n, sinpw/2n,

' (A28)

In this case it exists always a component q'=0 with
an amplitude which is given by adding the contri-
bution of the harmonic P =~2 and a term —,'p, c, which
represents the mean value

A.. .= —,'p „(1+1/n, )

a=3 A = —'Pe ~2 q 3 e'

For large values of n„si nm/ 2n20 n/2n2, and A,
8(4/v) p, c„ i.e., (A26) gives the values which cor-
respond to the Fourier expansion of a continuous
function. In this case the amplitude of the harmon-
ics decreases as 1/I', whereas in fact it decreases
only as (sin pm/2n, ) '.

The harmonics associated to q~= &H„, i.e., q'
=0 or 2V/a (k'=0 or 1), correspond to P=n„and
then exist only if n2 is odd. Two cases must be
considered: (i)n, = odd: Only the component k = 1
exists and A, , = p, c,/n, . (ii)n, =even: Only the
component k=0 exists and A,~= p, c,/n, . Thus a
ferromagnetic component p, c,/n, can exist only if
n, is even. If ~, is odd, the structure is antiferro-
magnetic.

~ Ce +4p(ff/2n2)(2j+1 )
"~p n, sinp~/2~'

If qp ~ 2Hgp

~ee2

n, sinp v/2n,

(A24)

(A25)

c,(n, + 1)/,2n, . (A29)

In Table V are reported the numerical values of
the harmonic amplitudes corresponding to the var-
ious square-wave structures which have been ob-
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TABLE V. Amplitudes of the harmonics for AFF, AFP, and FP phases.

k =nj/n2

k=4
7

k'

A~ ir ce

k'

A~ iI ce

2 0 2

3 3

AFF 4 1 4

3 3 3

AFP 2/v 3 0 2/v 3

2

7 7 7

AFF 1.284 0.458 0 3i7

AFP i.252

1

7

6 2 4
7 7 7

0.317 0.458 1.284

0.i 37 0.358 i.252

i5 17 19 2i

k='
A~ iree

5 3 7

9 8 9

AFF 1 280 0 444 0 290 0.236

AF P 1.260 0.385 O. i 86 0.081 0

0.236 0.290 0.444 i .280

0.08 i 0.186 0.385 1 .260

k=—

FP

Ap ~ lP ce
k'

AFF
~2

2

5

1.294

2

W2

4

5

0.494 1

5

2

8

4

5

0.494
5

1.294

k=4
9

k='

1
Ap il —p ce2

1

2

i 280 0444 0290 0236
4

11
8

ji
2

11

1

8

10
11

i.277 0.437 0.277 0.2i6 O. i89

jo
11

0.i89

2

11

0.2 i 6

8

11

0.277

0.236 0.290 0.444 i .280

4
11

0.437 i .277

served for Cesb. In the case of a non-square-wave
structure the same procedure can be'done by using
(A6). For example, the structure+++ —,observed
for CeBi, corresponds to k= —,'. Thus all the har-

monies are present: p = 1-k = —,', p = 2- 0 = 1, p
j.=3-k=-2, andp=4-0=0. Whereas for a square-

wave structure with k = —,
'

only the harmonics p
=l(k'= —,') audp=3(k'= ——,') exist.
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