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Homogeneous strain response of the Fermi surface of molybdenum*
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The response of the Fermi surface of a cubic transition metal to homogeneous uniaxial deformation of the
lattice is investigated in detail both experimentally and theoretically for the first time. The uniaxial stress
dependence of several cross sections of the Fermi surface of moly'bdenum is measured by the combined
oscillatory magnetostriction and torque method, and the results are analyzed to yield separately the
dependence on tetragonal shear and isotropic dilation. The Korringa-Kohn-Rostoker method of band-structure
calculation is extended to include the effects of uniaxial strain. The experimental results are compared with
those calculated from a phase-shift model derived from measured Fermi-surface cross sections, and the volume
dependence of the phase shifts is determined from the dilation data. Quantitative predictions of the angular
shear dependence of the areas of principal orbits on the Fermi surface of molybdenum are made on the basis
of the phase-shift model.

I. INTRODUCTION

The shape of the Fermi surface of molybdenum
has been established in great detail by experi-
mental investigations of magnetoresistance, "
magnetoacoustic effect, ' radio-frequency size ef-
fect,"and de Haas-van Alphen effect." The re-
cent de Haas-van Alphen measurements of
Hoekstra and Stanford' established the de Haas-van
Alphen frequencies of various extremal orbits
with an experimental uncertainty of typically 0.5'.
These authors also developed inversion proce-
dures to estimate certain caliper dimensions of
the Fermi surface. Ketterson, Koelling, Shaw,
and Windmiller succeeded in fitting the experi-
mental data to within experimental uncertainty by
a model constant-energy surface derived from the
relativistic Korringa-Kohn-Rostoker (KKR) meth-
od of band-structure calculation, ' adapted to al-
low for departures from sphericity in the poten-
tial within the muffin-tin spheres. They found
that the Fermi-surface area data can be accurately
parametrized in terms of the phase shifts
~l 6 0 j /2& ~l 6 1 1/2& ~l 8 1 3/2& II'+ 2 3/2& lI'7 2 5/2&
and gI+,2,/„ associated With the irreducible rep-
resentations of the cubic group, together with a
parameter a which represents the coupling be-
tween the two I", representations that is brought
about by the cubic crystal field. The limit n = 0
corresponds to a parametrization that is diagonal

j'

in the angular momentum representation. Ketter-
son et al. obtained the best fit to the molybdenum
data with a value of n that differs significantly

from zero. This implies that departure from the
spherical form of the potential in the muffin-tin
spheres is an important physical effect, which
must be taken into account if precise agreement
with the experimental areas (especially of the neck
and ball orbits) is to be obtained. From their
model surface they were able to determine the best
values of the cubic phase shifts and n, and also
to extract the radii of various sheets of the Fermi
surface of molybdenum with high precision.

On the basis of this work, a picture emerges
of the shape- of the Fermi surface of molybdenum
that is entirely consistent with the magnetoacous-
tic effect, radio-frequency size effect, and de
Haas-van Alphen effect data. The phase-shift
parameters determined from the Fermi-surface
data completely characterize the scattering of
conduction electrons at the Fermi surface of
molybdenum. Thus the geometrical shape of the
Fermi surface of molybdenum is now completely
understood, both in geometrical terms and in
microscopic terms.

The purpose of the present work is to explore
further the electronic structure of molybdenum
at the Fermi energy by determining the way the
Fermi surface is deformed when a homogeneous
strain is applied to a single crystal„of the metal,
and to interpret the experimental data in micro-
scopic terms. The first measurement of the uni-
axial stress dependence of the Fermi surface of
the transition metal was carried out by Posternak
et al." Molybdenum was selected for this investi-
gation because its Fermi surface is relatively

16 4385



4386 R. GRIESSEN, NI. J. G. LEE, AND D. J. STAN LE Y

simple, and typical of several important transi-
tion metals. Only the electron lenses were in-
vestigated, however, because the available mag-
netic field was restricted to 2.2 T.

In this paper we shall consider the response of
the Fermi surface to uniaxial stress along the
[001]direction of the crystal lattice, and investi-
gate especially effects which are related to
changes of crystal symmetry. The present mea-
surements are carried out in fields up to 10.7 T,
which makes it possible to extend the measure-
ments to principal orbits on all sheets of the Fer-
mi surface. From separate measuremergs of the
uniaxial stress dependence dlnA/do of extremal
cross sections of the Fermi surfaces for magnetic
fields along the [100], [010], and [001]directions,
the strain response dlnA/de can be determined
using the elastic constants. This information de-
termines completely the response of the orbit to
any orthorhombic deformation.

The strain responses dlnA/de can be discussed
most transparently by defining three volume-con-
serving tetragonal shears y,. along the cube axes
of the conventional unit cell of volume Q. Then
the response to any orthorhombic deformation can
be expressed in terms of the three shear responses
dlnA/dy, , together with the dilation response dlnA/

dlnQ. The tetragonal shears involve no volume
change. Therefore, no change in scalar param-
eters such as the Fermi energy or the phase shifts
of the lattice potential can be associated with an
infinitesimal tetragonal shear. In our model, the
quantities dlnA/dy, . are fully determined by the
geometrical form of the lattice distortion. So if
the phase shifts can be determined from an analy-
sis of the cross-sectional areas of the undistorted
Fermi surface, an appropriate calculation involv-
ing no additional parameters will yield the tetra-
gonal shear response. In practice, fits to Fermi-
surface areas are sometimes rather insensitive
to a particular phase shift or spin-orbit param-'
eter. In such cases, the tetragonal shear re-
sponse may yield information complementary to
that which can be deduced from the shape of the
Fermi surface of the unstrained metal.

Consider now the dilation response. From the
experimental point of view, the data complement
those that have been obtained by direct measure-
ment of response to hydrostatic pressure. " That
good agreement is found between the two sets of
experimental data attests to the accuracy of the
data. In our model a hydrostatic strain will be
accompanied by changes in both the Fermi energy
and the phase shifts. So interpretation of the ex-
perimental data can yield estimates of the volume
derivatives of the phase shifts and of the Fermi
energy. Because these otherwise unknown param-

eters are involved, however, hydrostatic strain
response proves to be of little help in improving
the band structure of the unstrained metal at the
Fermi energy.

The class of strains discussed above, corre-
sponding to extensions along the cube axes of the
conventional unit cell, does not include all pos-
sible deformations to which a crystal can be sub-
jected. A further class of strains, relative rota-
tions of the cube axes, completes the set. These
volume-conserving strains will be termed "angu-
lar shears. " Although no measurements of angu-
lar-shear response of extremal orbits on the Fer-
mi surface of molybdenum are reported in this
paper, we present results of calculations based on

a model similar to the one employed to calcu'ate
the tetragonal shear response. In our model the
response to angular shear is Mly determined by
the geometrical nature of the deformation. As in
the case of tetragonal shear, experimental mea-
surements of angular shear will provide a test of
our calculation, and may contribute to an im-
proved characterization of the band structure at
the Fermi energy.

The tetragonal- and angular-shear responses
are, however, more than a means of verifying or
improving Fermi-surface models. They are close-
ly related to the deformation parameters that
govern such physical properties of a metal as the
electron-phonon interaction and the attenuation of
acoustic waves. " Thus, to construct a model of
tetragonal- and angular-shear response and dila-
tion response based on the band structure of the
unstrained metal is to take an important step
towards a quantitative theory of acoustic-wave
propagation in metals. For this reason we shall
be concerned not only to understand the experi-
mental data in microscopic terms, but also to
develop a model by which the experimental data
can be interpolated to yield the response to a given
deformation point by point over the Fermi
surface.

Subsequent sections of this paper are arranged as
follows. In Sec. II, the experimental technique is
described and the measurements of the uniaxial
stress responses for various symmetry orbits
on the Fermi surface of molybdenum are pre-
sented. In Sec. III, the method of calculation of
the uniaxial strain responses is described. The
results for tetragonal-shear response are com-
pared with the experimental data, and the volume
dependences of the phase shifts are determined
from the hydrostatic strain response. In Sec. IV,
our calculation of the response of the Fermi
surface of molybdenum to angular shear is pre-
sented. Finally, in Sec. V, the results and con-
clusions of this work are discussed.
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II. MEASUREMENT OF STRAIN RESPONSE

The uniaxial stress dependence of Fermi-surface
cross sections can be measured by the combined
oscillatox'y magnetostriction" and torque method
as discussed in detail by Qriessen and Sorbello. '4

For an extremal orbit of area A, the stress de-
rivative 0 lnA/do is determined from the equation

dlnA aL/L d lnA
0' 7 d4

where sL/L is the amplitude of the oscillatory
length changes in a given magnetic field, and r is
the amplitude of the de Haas-van Alphen torque
per unit volume. The factor dlnA/drain Eq. (1) is
determined by measuring the angular dependence
of the de Haas —van Alphen frequency of the extre-
mal orbit. The sign of d lnA/da is determined by
the relative phase between the magnetostriction
oscillations and the torque oscillations, and there-
fore both quantities nL/L and 7 must be measured
simultaneously. The measurements were carried
out with the dilatorquemeter shown in Fig. 1, which
is similar to that descxibed by Posternak et al."
It consists of three main parts: an armature (A,.)
mounted on the cryostat, a torquemeter (T;), and
a. dilatometer (D,.).

The torquemeter is a modified version of that
described in Ref. 10, and fits into the bore of a
10.7 T superconducting solenoid. The spherical
part T, can be rotated about an axis perpendicular
to the field by means of the gears A, and the rod

The moveable part T, is supported by a double
crossed-springs system T3 which allows rotation
to occur without friction. The capacitance mea-
sured between the two capacitox plates T, is used
to detect any xelative movement of the moveable
part r,. The torque generated by passing a known
current through the coil T, is used for an absolute
calibration of the capacitance changes. No feed-
back system is required in our torquemeter be-
cause the great sensitivity of the capacitance tech-
nique makes it possible to detect very small dis-
placements and thus to use rather rigid suspension
springs.

A cross section of the dilatometer also is shown
in Fig. 1. The sample D, is glued on a slightly
conical piece of polycrystalline molybdenum to
avoid any thermal stress during cooling down to
liquid-helium temperatures. The conical piece D,
is insulated from the body of the cell D,. The up-
per face of the sample acts as one of the capacitor
plates. The other capacitor plate D, is insulated
and glued into the end piece D„which is bolted to
the dilatometer with a spacer of thickness such
that, at low temperatures, the gap between the ca-
pacitor plate and the sample is typically 0.01 mm.

A)

Cg
-C)

giK::

~ yLL

K

FIG. 1. Schematic diagram of the dilatorquemeter.
The parts of the armature are A&—housing, A2 —rota-
tion drive, A.3—rotation shaft. The parts of the torque-
meter are T&—body, T2—Inoveable part, &~cross
springs, 74—capacitor plates, g5—calibration coil. The
dilatometer (which is drawn on a magnified scale com-
pared with the torquemeter) fits in the cylindrical hole
in the moveable part T2 of the torquemeter". The parts
of the dilatometer are D&—sample (used as a lower
capacitor plate), D&—conical sample support, D3—ceQ
body, D4—upper capacitor plate, D5—spaeer. Ds and D4
together constitute a guard ring for three-terminal ca-
pacitance measurement. The parts of the calibration
drive are C~—torquemeter, C2—copper sample.

The dilatometer fits into the cylindrical hole in the
moveable part T, of the torquemeter.

With this dilatorquemeter, simultaneous mea-
surements can be made of relative length changes
with a sensitivity of 2 x 10 ", and of torques of the
ox'der of 0.1 dyncm with a compliance of 2 x 10 '
rad/dyncm. The quality of a de Haas-van Alphen
torquemeter depends on the product of sensitivity
and compliance, which for this instrument is
2 & 10 ', and is comparable with that of more con-
ventional torsion balances.

The magnetic field of the solenoid was accurately
calibrated using a simple torquemeter C„which
detects the neck orbit oscillations of an oriented
copper crystal. This provides an accurate scale
ln I/H.

The combined oscillatory magnetostriction and
torque method has been used to measure the uni-
axial stress dependences of the Fermi surfaces of
several other metals: Al, In, Mg, Zn, '~ Qa,"Pb, '
and recently Qr,". " The group-VI transition
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metals are among the hardest transition metals,
and the oscillatory magnetostrictive length changes
are typically two orders of magnitude smaller than
in simple metals. '4 The torque amplitudes, are,
however, comparable to those found in simple met-
als.

A major difficulty in the present experiments was
to avoid any spurious length changes induced by the
de Haas-van Alphen torque. Torque-induced length
changes can be easily detected by measuring the
amplitude r L/L of the oscillatory magnetostriction
for magnetic field orientations near to a symmetry
plane or direction of the lattice. If the frequency
branch under consideration has a minimum or max-
imum at the chosen symmetry direction, and if 4
is the angle between the magnetic field and this
symmetry direction, then (i} EL(@) must be a sym-
metrical function of 4 if there are no torque-in-
duced length changes; (ii) bL(4) must be an anti-
symmetrical function of @if the observed length
changes are entirely produced by torque effects.
This technique proved to be very effective in test-
ing various dilatometers, and showed that torque-
induced effects can be minimized by using a rela-
tively short sample whose length is approximately
equal to its thickness, and by designing the dila-
tometer cell to have maximum rigidity. The sin-
gle crystal used in this work was 7 mm long and
6 mm in diameter.

The oscillatory magnetostriction amplitude and
the de Haas-van Alphen torque per unit volume v',

were measured at 1.2 K in fields up to 10.7 T.
Since we wish to measure the response to tetra-
gonal distortion, nL/L was measured along the

[001]direction of the crystal lattice. The torque
was measured about the [010'] direction, which is
also the axis about which the dilatorquemeter can
be rotated. The angular dependence dlnA/dC was
determined from the measured de Haas-van Alphen
frequency branches shown in Fig. 2. The labelling
of the branches is the same as that used by Hoek-
stra and Stanford. ' The frequencies shown in Fig.
2 are average values of the torque and magneto-
striction frequencies, and are in excellent agree-
ment with the measurements of Hoekstra and Stan-
ford. The amplitude factor 7/(d lnA/d4}, which for
our experimental configuration is equal to the pro-
duct of magnetization and magnetic field, is shown
in Fig. 3 as a function of the magnetic field orienta-
tion, and n. L/L is shown in Fig. 4. The torque am-
plitudes have cubic symmetry as all the measure-
ments are made at zero stress. The length
changes, however, have tetragonal symmetry rela-
tive to [001]. A comparison between Figs. 3 and 4
shows that for a given orbit both the torque ampli-
tude factor and the oscillatory magnetostriction
have similar angular dependences. The stress de-
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FIG. 2. de Haas-van Alphen frequencies in the (010)
plane of molybdenum, determined in the course of the
present experiments.
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FIG. 3. Absolute amplitude of the de Haas-van Alphen
torque per unit volume in molybdenum obtained by
Fourier analysis of field sweeps in the range 4.6-10.7
T.

pendence 0 lnA/da, where cr is a stress parallel to
the [001]direction, calculated according to Eq. (1),
is plotted in Fig. 5. Data for the octahedron orbit
were taken over a reduced field range, and cor-
respondingly the scatters in r and nl/i were large,
although the scatter in (al/f)/r was less. For this
reason, data for the octahedron have been omitted
from Figs. 3 and 4, but its stress dependence is
included in Fig. 5.

In general, the stress dependence is weakly de-
pendent on orientation. The only exception is found
for the octahedron centered at point H of the Brillouin
zone. This is a large Fermi-surface sheet and,
like the electron jack centered at l, there is only
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FIG. 4. Absolute amplitude of the oscillations of
magnetostriction measured simultaneously with the
torque data in Fig. 3.
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FIG. 5. Uniaxial stress dependence of extremal cross
sections of the Fermi surface of molybdenum as a func-
tion of field orientation in the (010) plane. The nomen-
clature is that of Hoekstra and Stanford: P—lenses, 0—
necks, ~—balls, p—ellipsoids, v—octahedron.

one such sheet in the first Brillouin zone. Under a
uniaxial stress it can only deform anisotropically,
whereas a small pocket on a multiple sheet can ex-
hibit an isotropic deformation which is associated
with the transfer of electrons or holes to similar
pockets that are inequivalent under the applied
stress.

In view of the almost isotropic stress dependence
observed for most of the Fermi surface of moly-
bdenum, we shall, in Secs. III-V, analyze the ex-

perimental stress dependences for magnetic fields
only in the [001]and [100]directions; that is, pa-
rallel and perpendicular to the stress. These re-
sults are summarized in Table I.

From the stress derivatives d lnA/do given in

Table I the hydrostatic pressure dependence dink/
dP can be calculated using the relation

dlnA p d inA
(2)

dP . do,

where o, (i =x, y, z) represents uniaxial stresses
along the [100], [010], a.nd [001]directions. The
pressure dependences in Table II obtained in this
way for the lenses and the ellipsoids are in good
agreement with the direct hydrostatic pressure
measurements of Svechkarev and Pluzhnikov. " It
has been suggested by Griessen and Sorbello' in
the context of similar investigations of the Fermi
surfaces of simple metals that (1/m*)(dA/d in') has
approximately the same value for corresponding
orbits in differ'ent metals. It is therefore interest-
ing to compare our volume derivatives for moly-
bdenum with estimates obtained by scaling the
pressure data of Schirber" in tungsten. The com-
parison in Table II shows good agreement between
the two. The uniaxial strain dependences of the
Fermi surface of chromium" and tungsten are also
found to scale in a similar way, suggesting that
this scaling property can be applied to d-band met-
als also.

In Table III the stress dependences are compared
with values measured by Posternak et aI.' for the
smallest cross section of the lenses. The stress
dependences have also been calculated from strain
dependences determined by measuring simultan-
eously the oscillations of sound velocity and de
Haas-van Alphen torque. " The results, also in
Table III, are not in disagreement with the mag-
netostriction and torque data when allowance is
made for the large experimental uncertainties as-
sociated with this technique.

III. STRAIN RESPONSES OF FERMI SURFACE

Calculations based on phase-shift parametriza-
'tion have proved very successful in analyzing and
correlating Fermi surface anisotropies with Fer-
mi velocity anisotropies, " scattering of conduction
electrons by phonons and impurities, "and conduc-
tion-electron spin relaxation. In this approach,
phase shifts at the Fermi energy of the metal are
deduced by fitting the cross-sectional areas of the
Fermi surface as deduced in de Haas-van Alphen
experiments. In such an analysis the Fermi ener-
gy EF enters as a parameter whose value cannot
be determined from the fit to the data. " In prac-
tice, EF is conveniently taken from the results of
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TABLE I. Experimental stress derivatives of extremal cross sectional areas of the Fermi
surface of molybdenum.

Orbit A (a.u. )

dlnA

da&

(units of 10 bar ')

cr neck orbit& [001]

n ball orbit& [001]

8 lens circle & [001]

g lens along [001]
orbit & [010]

v octahedron
orbit & [001]

p ellipsoid at (1, 1, 0)x/a
orbit & [001]

p ellipsoid at (1, 1, 0)71/a
orbit & [100]

0.0314

0.0846

0.0219

0.0138

0.402

0.0607

0.0797

-0.20(5)
—0.20(5)
—0.20(5)

o.oo(4)
o.oo(4)
o.so(s)

o.oo(s)
0.00(s)
O.7(2)

o.os(1)
o.os(1)

—1.2(2)

o.oo(s)
o.oo(s)
o.4o(is)

o.9o(is)
o.9o(is)

+ o.9o(1o)

+ 0.90(25)
-0.90(20)
—0.70(20)

1
&g ='Y~~ &y= &g = -2'V„p (4)

and express the hydrostatic strain by the dilation
of the lattice

a first-principles band-structure calculation. Once
the value of E~ has been assigned, 'the correspond-
ing relativistic phase shifts q, ,(E~) canbe deduced.
In this section we show how the phase-shift method
can be extended to determine the deformation of
the Fermi surface of a cubic metal (in this case
bcc molybdenum) produced by arbitrary strains.

To introduce our notation for lattice deformation,
consider unit vectors x, y, and z, parallel to the
edges of the conventional unit cell. The basis vec-
tors of the direct lattice can be written in the
form x= ax. Under a uniaxial elongation the basis
vectors take the form

x' = ax(1+ e„).
The strains c,. (i =x, y, z) are accompanied by a

volume change, and for this reason are not the
most convenient way to represent our results. In-
stead we introduce three volume-conserving tetra-
gonal shears y,. whose associated strains are

x' = a(x+ c„,y), y' = a(y+ c,~), (6)

where e„, is the angle (in radians) through which the
x axis is rotated towards the direction y. Our re.—

sults will be expressed in terms of the more usual
angular shear components

&my= &xy+ &yx.

Thus, a positive angular shear y, , corresponds to
a reduction in the angle between the i and j axes of
the real space lattice.

In the KKR method of band-structure calculation,
the energy bands are determined by the implicit
equation

The three tetragonal shears are not independent—
their sum is, of course, zero.

In order to describe completely the state of strain
of a cubic metal, the elongations e,. must be com-
plemented by am„. ular shears e, , which represent
changes in the angles between the basis vectors of
the lattice. If, for example, the lattice is subjected
to an angular shear about the z axis the basis vec-
tors of the strained lattice can be written

bQ/0 = e„+e, + E, (5) X(k, E, q. ..c) = 0, (8)

where 0 is the volume of the conventional unit cell. where X is the eigenvalue of the set of linear equa-
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TABLE II. Hydrostatic pressure derivatives for moly-
bdenum determined from (a) uniaxial stress data; (b)
direct measurements by Svechkarev and Pluzhnikov

(Ref. 11); (c) scaled from tungsten (Ref. 19) according
to the expression

ding gM, Ag( M"M, dlnA

dP Mo g +Mo~ g P

where p is pressure and ff: is compressibility. For lack
of reliable band mass data for molybdenum and tungsten,
equal cyclotron masses m* were assumed. The com-
pressibilities were taken from Ref. 29.

Orbit A (a.u. ) (a)

dlnA

dp

(b) (c)

0. neck
m ball
P lens circle
P lens
v octahedron
p ellipsoid & [001]
p ellipsoid & [100]

0.0314
0 ~ 0846
0 ~ 0219
0.0138
0.402
0.0607
0.0797

o.6(1)
0.50(12)
0.6(2)
1.1(2)
0.4(2)
0.9(3)
o.7(4)

1.47(15)

0.9(1)

C.81
0.58

0 ~ 396
0.93

tions

X(k, E., q. , ..e)=0, (10)

where E~ and q, , are in general functions of the
strain &. Qur purpose is to determine directly the
strain derivatives of the Fermi wave vector lo-

TABLE III. Comparison of stress derivatives for
lenses in molybdenum obtained by different experimental
methods: (a) present work; (b) low-field measurements
of Posternak et al. (Ref. 10); (c) calculated from the
strain derivative data (Ref. 21).

The KKR matrix K, , depends parametrically
on the energy E, the phase shifts q, ,(E), and the
strain components E. It is with this last depen-
dence that we shall be especially concerned in the
present paper.

The shape of the Fermi surface in the presence
of an arbitrary strain can be determined by locating
the wave vectors k that satisfy the equation

cally on the Fermi surface. This can be done by
calculating analytically the appropriate derivative
of the KKR matrix.

The variation in X corresponding to an infinitesi-
mal variation of a single parameter q is given by"

y 0 -1 lml'm' yO

where V is the zero eigenvector of the KKR ma-
trix, and BX/Bq is the matrix whose elements are
the partial derivatives of X with respect to q. In
order to remain on the surface X= 0 IEq. (10)j, the
variation in q must be accompanied by a variation
in k~ whose component normal to the surface is
given by

BjzF BA.= ——(v-„x} '.
Bq Bq

For the purposes of the present work, partial de-
rivatives of the relativistic KKR matrix were eval-
uated with respect to the Fermi energy parameter
E» the phase shifts q. .. uniaxial elongations &, ,
and angular shears e,,. The calculation of the de-
rivatives of the KKR structure constants for a cu-
bic lattice subject to homogeneous strain will be
described in detail elsewhere. "

The accuracy of the derivatives was verified in
various ways. The energy and phase-shift depen-
dences were checked by comparison with direct
calculations in which small changes were made in
the relevant parameters. The hydrostatic strain
response was similarly checked by direct calcula-
tions with slightly different lattice parameters.
The tetragonal- and angular-shear responses were
checked by comparing with an augmented-plane-
wave calculation for a strained lattice. In each
case excellent agreement was obtained (typically
O. lo/o).

It is straightforward to determine the dependence
of the cross-sectional area of an orbit on the pa-
rameter q by integrating around the orbit the pro-
jection of the normal displacement- in the plane of
the orbit. The result is

(
21I'

BA.
(&, &f, &)-',

Orbit

8 lens along
[001]
Orbit L [010]
A = 0.0138 a.u.

dlnA
dfT

(units of j.o bar ')
(a) (b) (c)

0.05(1) —0.1(2) 0.10(15)
0.06(1) —0.2 (2) 0.10(15)

—1.2 (2) —1.1(3) —1.30(15)

where k, is the vector from the center to the peri-
meter of the orbit in the plane normal to the mag-
netic field, and g is the azimuthal angle. The de-
pendences of the areas of extremal orbits on the
various parameters were calculated by numerical
integration of Eq. (13). The accuracy of the inte-
gration technique was checked by making a nearly-
free-electron test in a body-centered-cubic lattice.
The Fermi energy was chosen to be such that lens-
like pockets of electrons are formed in the second
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~o, i/2 = ' 0.742 13,

~l 1/2 -0.31580, gl 3/2

g2 3/2 1 1072
& P2 5 /2

= 1~ 2922.

The phase-shift difference

~l ~lg l + 1/2 ~l~ l - 1/2

(14)

(15)

zone about the symmetry point N. In the usual form of
the KKR equations, the structure factors are singular
on the free-electron sphere. To avoid this difficulty,
a very weak lattice potential was assumed in our
calculation. When allowance is made for this, ex-
cellent agreement is found with the results of a di-
rect free-electron calculation.

The starting point of our strain response calcu-
lations is the parametrization of the Fermi surface
of molybdenum by Ketterson, Koelling, Shaw, and
Windmiller. ' In order to obtain full agreement with
the experimental Fermi surface areas, they found
it necessary to include parameters that represent
departures from spherical symmetry of the po-
tential within the muffin-tin sphere. In the present
work we have neglected all terms that arise from
nonspherical components of the potential. Such an
approximation greatly simplifies the arialysis, and
appears justifiable because we are primarily con-
cerned with derivatives of Fermi-surface areas
with respect to geometrical deformations of the
lattice. Such derivatives are known with experi-
mental accuracies of no better than about 200/g.

The five relativistic phase shifts of the spherical
muffin-tin potential in molybdenum were taken
from the parameters of the best fit to the Fermi
surface data by Ketterson et al. Because the phase
shifts of their best spherical fit to the Fermi sur-
face were unavailable, we estimated q2, /2 as an
appropriately weighted average of gz+ i and

p&+, , i, Following Ketterson et al. , the equilibrium
lattice parameter was assigned the room-tempera-
ture value ao= 5.9468 a.u. , and the Fermi energy
parameter was taken to be E„=0.754 Ry. This leads
to the following set of phase shifts (radians):

B77 B'g B6;
By . B&; By

Because g, is a scalar, the three coefficients

(16)

measures the strength of the spin-orbit interac-
tion for given l in the metal, The fit to the
Fermi-surface data shows that in molybdenum p-
wave spin-orbit interaction is weak, whereas d-
wave spin-orbit interaction is quite strong. How-

ever, it is important to note that the best fit to the
Fermi-surface areas is such that small variations
of the phase-shift parameters may still yield a
model surface that is consistent with the area data.

Molybdenum is an interesting subject for strain
studies because the various extremal orbits on the
Fermi surface pass through regions of widely dif-
ferent symmetry character. We may therefore ex-
pect that the strain responses of the various or-
bits will yield information about different partial-
wave components of the lattice potential. The, vary-
ing symmetry character from orbit to orbit is re-
flected in the phase-shift derivatives of orbital
areas calculated from our model Fermi surface,
which are given in Table IV. It will be seen that
the neck, ball, and lens orbits are predominantly
d-like, and that the lens orbits are strongly in-
fluenced by d-wave spin-orbit interaction. The
octahedron orbit v, is p- and d-like. The ellipsoid
orbits are predominantly p-like, and are the only
orbits having significant admixture of s-wave char-
acter.

The response of extremal cross-sectional areas
of the Fermi surface to elongations &,. in the g, y,
and z directions was calculated' by application of
Eqs. (11) and (13). The results were combined to
form a tetragonal-shear component and a dilation
component as in Eqs. (4) and (5). To see why it is
convenient to express our results in this form let
us show that a typical scalar parameter, the phase
shift q„ is unchanged to first order when a cubic
lattice is subjected to a volume-conserving elonga-
tional shear y. The strain dependence of q, can be
written

TABLE IV. Dependence of areas of some extremal orbits on the Fermi surface of molybdenum on dilation and on
phase shifts in angular momentum representation (in radians).

Orbit
Bing Blm Bi~ BlnA BlnA BlnA

Bno E 0 Bni, i/2 E 0 B~1,3/2 E 0 B72,3/2 E 0 B~2 5/2 E 0

cr neck
n' ball
P lens circle
P lens& [010]
v octahedron
p ellipsoid & [001]
Ell ipsoid & [100)

0.0314
0.0846
0.0219
0 ~ 0138
0.402
0.0607
0.0797

5.2585
3.7068
8.8768
9 ~ 3512

—2.1187
-8.1515
—7.8670

0.0157
0 ~ 0366
0.0128
0.0018

—0.0111
—0.7884
—0.2715

0.0645
0.5765
0.3838
0.1735

—0.4998
—3.4929
-3.7424

0.7157
1.1028
0.3697
0.2504

-0.3895
—6.7833
—7.1362

3.7140
1.6039
1.3826
2.4271

—0.6803
—0.5516
-0.5319

2.9165
2.4818
9.4299
9.0816

-0.5160
-0.6137
-0.6189
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Bq, /Be, must be equal in a cubic lattice. So the
strain dependence of q, can be written

)I )l P i (17)
9+ 9& . Bp

which vanishes [Eq. (4)f for a volume-conserving
elongational shear. Therefore, the first-order
response of the Fermi surface of a cubic metal to
such a shear depends on the perturbation of the
electronic band structure by the lattice deforma-
tion at constant values of the scalar parameters
q, and E~. This means that the tetragonal-shear
response can be calculated directly from a phase-
shift fit to the Fermi-surface data, and no addi-
tional parameters are involved. A more general
treatment of shear dependence of q, and EF, in-
cluding angular shear and the extension to non-
cubic metals, has recently been presented by Gray
and Gray. '

A comparison between the tetragonal-shear re-
sponse of extremal orbits calculated from our mod-
el [Eq. (14)] and the experimental data is presented
in Table V. Complete agreement with the data is
not achieved, but the discrepancy is generally
smaller than twice the uncertainty in the experi-
mental data. The principal exception is for the

TABLE V. Tetragonal shear dependence of areas of
some extremal orbits on the Fermi surface of moly-
Menum.

dlnA

dVi

FIG. 6. Tetragonal shear response of the Fermi sur-
face of molybdenum (a) in the (100) plane containing the
shear axis, (b) in the plane perpendicular to the shear
axis, for a tetragonal shear y~ = 0.04. The direction of
the shear is vertical.

neck orbit (o), where no tetragonal-shear response
is observed experimentally, but where the calcu-
lation predicts a sizable effect. The calculated
tetragonal-shear response of the Fermi surface
of molybdenum in the (100j planes is illustrated in

Fig. 6. In order to investigate the remaining dis-
crepancy one would like to carry out an iterative
calculation to fit the phase shifts to both the area
and the tetragonal-shear data. Unfortunately, such
a calculation is greatly complicated by the fact that

Qrbit i A (a.u. ) Expt.

cr neck orbit & [001]

7t. ball orbit& [001]

g lens circle& [001]

Lens along [001]
orbit & [010]

x 0.0314 0.0(3)
0.0(3)

z 0.0(6)

x 0.0846 0.79(15)
0.79(15)

8 -1.58 (30)

x 0.0219 0.95 (35)
0.95(35)

z -1..89(70)

x 0;0138 1.98 (35)
2.00(35)

8 -3 ~ 98 (70)

v octahedron orbit& [001] x 0.402

2

0.63(30)
0.63(30)

-1.26 (60)

p ellipsoid at (1, 1, 0)7t/a x 0.0607 —2.83(45)
orbit & [ 001] y -2.83 (45)

8 5.67 (90)

Calc.

-1.32
—1.32

2.65

0.50
0.50

-1.00

1.44
1.44

-2 ~ 88

1.75
2.99

-4.74

1.22
1.22

-2.44

—4.63
-4.63

9.27

TABLE VI. Isotropic dilation dependence of areas of
some extremal orbits on the Fermi surface of moly
bdenum. ~

Orbit

dlnA
dlnQ

A (a.u. ) Uniaxial Pressure Calc.

0 neck
m ball
P lens circle
lens & [010]
v' octahedron
p ellipsoid & [001]

0 ~ 0314
0.0846
0.0219
0.0138
0.402
0.0607

-1 6(3)
—1.3(3)

1.6(5)
—2.9(6)

1.1(5)
2.4(s)

3.s(4)

2.4(4)

—1.77
—1.07
—2.50
-2.65
-0.59
-2.40

50. 1/2 1 1910 ~1, 1/2 ~1,3/2 0
din Q ' dlnQ din Q

The experimental results were calculated taking the
isothermal compressibility to be 0.38 & 10 bar '. The
calculated volume dependence is determined from the
following set of parameters (radians):

Ellipsoid at (1, 1, 0)7t/a
orbit & [100]

x 0.0797 —2.20(60)
-3.20(60)

8 5.40(120)

—2.27
—5.61

7.88

n2. 3/2 1 0107 n2. 5/2 1 0324
dlnQ

' din Q

Phase shifts correspond to E~=0-754 Ry.
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the centers of the neck, lens circle, and bail or-
bits are not determined by symmetry. They there-
fore move as the phase shifts are varied, and must
be recalculated at ea,ch iteration. In view of the
amount of computer time involved, we did not
attempt a systematic iterative calculation.

The dilation response of the Fermi surface of
molybdenum calculated from the pressure deriva-
tive data of Table I, using compressibility data
of Featherston and Neighbours, "is given in Table
VI. In our phase-shift model of the Fermi surface,
the dilation component of the strain response de-
pends not only on the phase-shifts of the unper-
turbed lattice, but also on the dilation dependence
of the phase shifts. This ean be brought about both
by the changing overlap between the crystal poten-
tials on nearby lattice sites as the lattice is com-
pressed, and also by dilation dependence of the
Fermi energy, of which the phase shifts are a
function. In discussing the effects of lattice dila, —

tion, variations of the Fermi energy must be care-
fully distinguished from variations of the Fermi
energy parameter. The Fermi energy parameter
is a free parameter in a phase-shift fit to Fermi-
surface data; that is, its value can be assigned ar-
bitrarily provided that the phase shifts are chosen
accordingly. " In particular, one is free to take
the dilation dependence of the Fermi energy param-
eter to be zero.

The experimental results for molybdenum have
been analyzed by making a least-squares fit to the
dilation data in the form

d lnA 8 in@ BlnA dE~
d lnQ 8 lnQ „~ BEF „„dlnQ

(18)

FIG. 7. Calculated deformation of the Fermi surface
of molybdenum in the (100) plane for a dilation 60/Q
= 0.10.

obtained from the fit to the data are

d'g o, a/a 1.19 ~1.25 rad,
dlnQ

"/'= -0 35~0 09 rad
dlnQ

d'g
0 35+0 09 rad

dlnQ

Yj"/'= -1.01~0.05 rad,
dlnQ

g"/'= -1.03 +0.02 rad.
dlnQ

These estimates all correspond to E~= 0.754 Ry.
Whilst no direct calculations have been carried
out to determine the volume derivatives of the
phase shifts from a crystal potential, the negative
signs are consistent with the view that the crystal
potential becomes weaker as the lattice expands.
Unfortunately the small number of orbits included
in the analysis made it necessary to constrain the
volume dependence of the p-wave spin-orbit pa-
rameter

The form of the dilation dependence of the (100)
plane of the Fermi surface of molybdenum is il-
lustrated in Fig. 7. The coefficients (BlnA/
sinful)„~ and (slnA/sq, „.)„~ were calculated
from the phase-shift model, and are given in Table
IV. As explained above, we have set the param-
eters dE~/dlno, equal to zero: any other choice
is admissible but yields different values for
dg, ,/dlnQ. The result of the least-squares fit
to the experimental data is presented in Table VI.
It will be seen that a generally satisfactory fit to
the data is achieved, which supports the adequacy
of our model. However, for reasons we do not
understand, the predicted strain dependence of
the octahedron orbit is low, with the consequence
that the calculated pressure derivatives of elec-
tron and hole volumes do not show exact compen-
sation. The best values of the total derivatives

to be equal to zero. However, the validity of this
assumption is supported by our result that the
volume dependence of the d-wave spin-orbit pa-
rameter

%,5/2 4, 3/2

does not differ significantly from zero. That the
spin-orbit phase shifts should be essentially in-
dependent of volume is suggested by the following
physical considerations. The spin-orbit coupling
is determined by the potential gradient close to

, the nucleus. Although the changing overlap as-
sociated with lattice dilation will modify the po--
tential acting on the electron, it is unlikely to af-
fect the potential gxadi ent within the core, and
hence is not expected to lead to a significant vari-
ation in the spin-orbit phase shifts. The dilation
dependence of the spin-orbit energy is expected
to be dominated by the varying normalization of
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the conduction-electron wave functions within the
dilated unit cell. '

IV. RESPONSE OF FERMI SURFACE TO ANGULAR SHEAR

In order to describe completely the state of de-
formation of a cubic metal, strains &,. which rep-
resent extensions along the cube axes of the con-
ventional unit cell, must be complemented by
strains y, , which represent changes in the angles
between the basis vectors of the lattice. The KKR
matrix depends on the vectors of the real lattice
and on those of the reciprocal lattice, both of
which are changed by angular shear, and there-
fore the KKR matrix depends parametrically on

y, ,-. It follows that derivatives of the Fermi wave
vector with respect to a volume conserving angu-
lar shear can be calculated in the manner of Sec.
III. By an argument similar to that developed
above for tetragonal shear it can be shown that,
in first order, the distortions of the Fermi sur-
face of a cubic metal subjected to angular shear
depend only on the geometry of the deformation. "
Therefore, our phase shift model fully determines
the angular-shear dependence of the Fermi sur-
face of a cubic metal, without involving any ad-
ditional parameters.

In a cubic metal subjected to angular shear
about the [001]axis, states which belong to one-
dimensional irreducible representations and which
lie in the (100) and (010}planes through the center
of the Brillouin zone are unaffected by the strain.
In general, however, the magnitude of the Fermi
wave vector in an arbitrary direction depends on
angular shear. Nevertheless, by taking into ac-
count both the orbital symmetry and also the sym-
metry of the strain, it can be shown that the areas,
of many extremal orbits of high symmetry are un-
changed to first order in the angular shear. The
area derivative dlnA/dy„, vanishes for reasons of
symmetry for any extremal orbit: (a) whose cen-
ter lies on the [001] axis, and whose normal lies
in the (100}plane; (b) whose center lies at a, gen-
eral point on the [100]axis, and whose normal
lies in the (100) or (010) plane; (c) whose center
lies at a general point in the (010) plane, and
whose norma. l lies in the (010) plane. In each of
these conditions, references to [100] or (100}can,
of course, be replaced by [010] or (010), respec-
tively.

Applying these conditions to molybdenum, it
will be seen that the areas of the principal neck,
ball, and lens orbits, show no angular shear de-
pendence, in accordance with (a) and (b). Qn the
octahedra, a8 of the [100]orbits, and four of the
six [110]orbits, are independent of angular shear
in accordance with (a). The 12 ellipsoids split into

TABLE VII. Angular-shear dependence on some ex-
tremal orbits on the Fermi surface of molybdenum. yg J
is measured in radians.

Orbit

cr neck
x ball

P lens
lens along [001]

orbit & [010]

v octahedron at (2, 0,-0)n/a
orbit & [100]

xy, yz, zx 0.0314 0

xy, yz, zx 0.0846 0

xy, yz, zx 0.0219 0

xy, yz, zx 0.0138 0

xy, yz, zx 0.402 0

v octahedron at (2, 0, 0)m'/a

orbit & [110]
xy
yz, zx

0.302 1.83
0

v octahedron at (2, 0.0)m/a
orbit & [111]

xy, yz, zx 0.276 0.67

p ellipsoid at (1, 1., 0)7r/a
orbit & [001]

p ellipsoid at (1, 1, 0)7t/a
orbit & [110]

p ellipsoid at (1, 1, 0)x/a
orbit & f110]

xy
yz, zx

xy
yz, zx

xy
yz~ zx

0.0607 -3.55
0

0'. 0701 -4.93
0

0.0971 —6.69
0

two inequivalent sets: four ellipsoids centered in
the plane through l perpendicular to the axis of
shear, and eight centered elsewhere. The ellip-
soids of the first set show strong dependence on
angular shear. On ellipsoids of the second set,
the angular-shear dependence of all principal (and
certain nonprincipal) extrema1 orbits vanishes in
accordance with the symmetry considerations
above. Other extremal orbits on these ellipsoids
prove to be relatively weakly dependent on angular
shear: for example, we find that the angular-
shear response of the [111]orbits is in. the ratio
4.2 to 1 between the two sets of ellipsoids.

The angular-shear dependences of the areas of
some representative orbits on the Fermi surface
of molybdenum are shown in Table VII, and the
form of the angular-shear response in the (001)
plane perpendicular to the shear axis is shown in
Fig. 8. The response is zero in the (001) planes
containing the shear axis for reasons of symmetry.
Our calculations predict a significantly anisotropic
angular-shear dependence on the ellipsoid. Mea-
surements of the angular-shear response of the
Fermi surface of molybdenum by observing, for

I

example, the oscillatory velocity of transverse
sound waves, would provide a useful teSt of the
model on which our calculations are based. Be-
cause, however, the areas of few of the principal
orbits in molybdenum are sensitive to angular
shear, and because orbits on the ellipsoids show
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FIG. 8. Angular shear response of the Fermi surface
of molybdenum in the (001) plane perpendicular to the
sheal' axis. The curve cori'esponds to an angular shear

of 3 deg.

little variation of symmetry character (they have
mainly p character everywhere), measurements
of angular-shear dependence of orbital areas
yield rather incomplete information about the
global angular-shear response of the Fermi sur-
face. %e anticipate that only by means of a re-
liable calculation, supplemented by strain data,
mill it be possible to determine the angular-shear
deformation parameter at each point of the Fermi
surface.

V. DISCUSSION AND CONCLUSIONS

In this paper we have presented the first de-
tailed investigation of the response of a Fermi
surface to homogeneous uniaxial deformation of
the lattice. Even in molybdenum, which is one of
the hardest transition metals, the combined os-
cillatory magnetostriction and de Haas-van Alphen
torque method proved to be very effective. Al-
though the relative length changes associated with
the oscillatory magnetostriction are in general
much smaller than 10 ', the use of a capacitor
dilatorquemeter made it possible to determine ac-
curately the stress dependence of extremal cross
sections of the Fermi surface. In the case of the
lenses and the ellipsoids, where our results can
be compared with direct hydrostatic pressure
measurements, good agreement is found.

From our uniaxial stress data we determined
the tetragonal and hydrostatic strain dependences
of various orbits of high symmetry on the Fermi
surface. The strain derivative ding/de represents
an average about an orbit, and in order to deduce
the strain dependence at each point on the Fermi
surface it is essential to construct a model band
structure mhose parameters can be adjusted to
fit the experimental data. The model band struc-
ture must represent as closely as possible the
physical effects associated with lattice distortion
in order to make the most efficient use of the
rather small number of independent pieces of in-

formation that are contained in the data.
Qur calculation is based on the usual muffin-tin

approximation, where the potential is taken to be
spherica, lly symmetric within a sphere centered on
each lattice site, and constant elsewhere. Ketter-
son et al. ' found that this approximation leads to
small but significant errors in the cross-sectional
areas of the computed Fermi surface. However,
introducing a cubic component in the muffin-tin
potential involves two more parameters, one be-
ing an additional phase shift associated with the
crystal-field splitting of the I';, 2, 5/2 and I;,2, 5/2
representations, and the other being the coupling
between the 1";,2, 3/2 and I"„2,5/2 states caused
by the cubic field. As four adjustable parameters
have already been introduced in the spherical ap-
proximation to fit the hydrostatic strain data,
(Table VI), it is clear from an examination of the
data that sufficient additional information is not
available to determine parameters associated
with the volume dependence of the cubic crystal
field. Presumably such effects are to some ex-
tent folded into the volume dependences of the
spherical phase shifts determined in Sec. III.

Applying a tetragonal shear further lowers the
symmetry of the crystal field, splitting apart
states that are degenerate in an isotropically
dilated crystal. To parametrize the tetragonal
shear data, taking fully into account the tetragonal
distortion of the crystal field, mould require at
least four additional parameters. The additional
complexity of such a calculation will be justifiable
only when new and substantially more accurate
experimental data become available. It seems
likely that the effects of a tetragonal distortion of
the crystal field can be folded to some extent into
the spherical phase shifts, so there is no reason
to suppose that the best fit to the combined area
and tetragonal-shear data should necessarily co-
incide with the best fit to the area data alone.
However, we find reasonable agreement with the
tetragonal-shear response of the Fermi surface by
assuming spherical phase shifts that are derived
from Fermi-surface area data alone. This sug-
gests that strain-dependent tetragonal-shear dis-
tortions of the crystaL field are not the principal
factor in determining the tetragonal-shear re-
sponse, and that it depends mainly on purely geo-
metric effects of the distortion.

Angular shear leads to a pattern of distortion of
the crystal field which largely removes the de-
generacy of the d-like states. Again a full analysis
mould require that phase shifts be introduced which
correspond to each of the irreducible representa-
tions of the distorted lattice, and in view of the
limited information available, even in principle,
from angular-shear measurements, it seems un-
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~=(I/n"')f(~ n"')

for free electrons, and

~ =(I/n'~')f((Z, d,}n"')

(22)

(23)

in Heine's resonance model, 32 in which d, corre-
sponds approximately to the center of gravity of
the pure d band whose vridth varies as Q '~~. The
fact that the experimental ding/dlnA values are
significantly different irom ——,'shows clearly that
the strain dependence of the Fermi surface is in-
herently k dependent.

As the Fel ml sulface of molybdenum ls very
similar to that of paramagnetic chromium, we
shall conclude by attempting to gain some qualita-
tive information about the pressure dependence of
itinerant antiferromagnetism in chromium from
our knowledge of the strain dependence of the
Fermi surface of molybdenum. The antiferromag-
netism of chromium is due to a spin-density wave.
According to a model proposed by Lomer, "the
spin-density wave is stabilized by the occurrence
of large parallel regions on the paramagnetic
Fermi surface. In both chromium and InolyMenum,
a point on the electron jack ca,n be brought into
coincidence with a point on the hole octahedron by
translation through a wave vector in the z direc-

likely that the additional parameters could be de-
termined from oscillatory sound velocity data.
The success of oui sphel leal potential approacil
for tetragonal shear gives reason to hope that any
corrections can be absorbed in the spherical phase
shifts. In principle one might increase the infor-
mation available from angulal -sheax' measure-
ments by examining orbits which lie out of the
symmetry planes, but experimental and theoretical
complications make it unlikely that such an ap-
proach will be undertaken in the near future.

It is interesting to note that, although the uni-
axial stress derivatives of the third band monster
orbits in aluminium" are approximately two or-
ders of magnitude larger than those found in mo-
lybdenum, the scaled stra. in derivatives (I/m*)
& {dA/A) are of comparable magnitude in the two
metals. " This implies that strain derivatives
scaled by the factor 4/m*, i.e., expressions
(I/m*)(dA/d&), where e is a homogeneous strain,
are more significant quantities than ding/dk. The
physical significance of this observation is not
understood.

In the case of simple models, such as the free-
electron model or the pure d-band resonance mod-
el, dlnA/dlnA has a simple interpretation and is
equal to ——,'. In these models, the deformation of
the band structure can be described by scaling
laws such as

I/2

Z

FIG. 9. Relationship between the form of the electron
jack and the octahedron referred to a common center,
and definition of ™6(o,k~). k~, k~ are measured in units
of 2m/g.

(24)

S(o,ky)
O.OS

O. l 5
d ufo, k)t)

din 9

FIG. 10. Anisotropy of 6(o,k ) calculated from the
model Fermi surface based on the phase shifts of Eq.
(14). We also show the volume derivstive of 6 obtained
froin the fitted volume dependence of the phase shifts
given in Eq. (19).

tion

Q(k„, k,) = (2v/a)(0, 0, I + 6(k„,k,}),
where 5(k„,k„) is only weakly dependent on the
transverse wave vector (k„,k,) because these two
sheets of the Fermi surface have almost the same
shape. In Figs. 9 and IO we show 5{0,k,) as cal-'
culated from our model Fermi surface for molyb-
denum. Our results are very similar to those of
Rath and Callaway. " The discontinuities are a
consequence of the enex'gy gaps that sepax'ate the
lenses from the electron jack. Also in Fig. 10 we
show the volume derivative d5(0, k,)/dlnQ. This
derivative shows a marked anisotropy, which
arises because the electron jack and the octahed-
ron change their shapes in different ways undex'

hydrostatic pressure. The volume derivative is
positive everywhere, however, because the octa-
hedron shrinks relative to the jack undex hydro-
static px essure.
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The wave vector of the spin-density wave in
chromium is usually expressed in the form

Q = (2v/a)(0, 0, 1 —5), (25)

where 0= 0.0481. Qriessen et a/. "have made low-
temperature measurements of the pressure de-
rivative of 5 and find it to be

=+ 0.33 ~0.27.dln5
ding

From the volume dependence of the Fermi surface
of molybdenum (Fig. 10) we find

=+ 1.4 +0.7.dln6
dlnQ

A numerical discrepancy is to be expected because
our calculation underestimates the volume depen-
dence of the octahedra. 'The qualitative agreement
between these estimates seems to support I orner's
suggestion that 6 is simply related to a Fermi-
surface average of 5(k„,k,).

At higher temperatures, however, neutron-dif-
fraction experiments" show that the pressure de-
rivative of 5 is negative and two orders of magni-
tude larger than at 0 K. As the pressure deriva-
tive of 5(k„k,) is not expected to be strongly tem-
perature dependent, the probable explanation is
that the relationship between 5(k„,k,) and 5 is tem-
perature dependent. This conclusion is not sur-
prising, for 5(k„,k„) is a purely geometrical prop-
erty of the Fermi surface, whereas 6 is deter-
mined by minimizing the total energy in the anti-
ferromagnetic state. In fact, it is not at present
understood why the geometric Q calculated from
a pa'ramagnetic. Fermi surface is in such good
agreement with the antiferromagnetic Q at low
temperature. No model proposed to date explains
satisfactorily the observed temperature and pres-

sure dependence of the wave vector of the spin-
density wave.

In summary, we have shown that the relativistic
KKR-spherical potential model derived from the
shape of the Fermi surface of molybdenum, gives
a satisfactory account of the response of the Fer-
mi wave vector to homogeneous uniaxial strain.
We believe that this model will prove to be a real-
istic starting point for analyzing related electronic
properties such as the damping of acoustic waves
in metals by interaction with the conduction elec-
trons. An accurate description of strain effects
at the Fermi energy is a necessary first step
towards a better understanding of the stress de-
pendence of the Fermi-surface properties of
transition metals, such as the susceptibility and
specific heat, as well as those properties, such
as the cohesive energy and the elastic constants,
which depend more generally on the way the elec-
tronic structure is perturbed by elastic strain.

ACKNOWLEDGMENTS

We wish to express our gratitude to Dr. N. A. %.
Holzwarth for help in extending the KKH method to
deformed lattices. We are also indebted to Pro-
fessor E. Fawcett and Professor J. M. Perz, and
to Dr. M. Posternak, for their interest in this
work and for many helpful discussions. We would
also like to thank %. Joss for his assistance in
the early stages of this work, and D. Britton for
the high-precision machining of the dilatorque-
meter. The molybdenum crystal was generously
supplied by Professor J. L. Qlsen, and Dr. I. M.
Templeton kindly gave us the oriented copper crys-
tal used in field calibration. Vfe are grateful to
Dr. D. M. Gray for helpful comments on the man-
uscript.

*Work supported in part by the NBC of Canada. .
&Present address: Natuurkundig Laboratorium der

Vrije Universiteit, Amsterdam, The Netherlands.
)Present address: Materials Physics Division, AEHE

Harwell, Didcot, Oxfordshire, England OXll ORA.
~N. E. Alekseevskii, V. S. Ej orov, Q. E. Karstens, and
B. ¹ Kazak, Sov. Phys. JETP 16, 519 (1963).
E. Fawcett and W. A. Heed, Phys. Bev. 134, A723
(1964).

3C. K. Jones and J. A. Bayne, Phys. Lett. 8, 155 (1964).
V. V. Boiko, V. A. Gasparov, and I. G. Gverdtsiteli,
Zh. Eksp. Teor. Fiz. 56, 489 (1969) [Sov. Phys. -JETP
29, 267 (1969)].

5J. B. Cleveland and J. L. Stanford, Phys. Bev. 8 4, 311
(1971).

D. M. Sparlin and J. A. Marcus, Phys. Bev. 144, 848
(1966).

~J. A. Hoekstra and J. L. Stanford, Phys. Bev. B 8,

1416 (1973).
SJ. B. Ketterson, D. D. Koelling, J. C. Shaw, and L. B.

Windmiller, Phys. Bev. B 11, 1447 (1975).
Y. Onodera and M. Okazaki, J. Phys. Soc. Jpn. 21, 1273
(1966).

' N. Posternak, W. B. Waeber, B. Griessen, W. Joss,
W. van der Mark, and W. Wejgaard, J. Low. Temp.

Phys. 21, 47 (1975).
~'I. V. Svechkarev and V. B. Pluzhnikov, Phys. Status

Solidi B 55, 315 (1973}.
A. B. Pippard, The Dynamics of Conduction E/ectxons
(Gordon and Breach, New York, 1965), p. 110.

~38. S. Chandrasekhar, Phys. Lett. 6, 27 (1963).
'4B. Griessen and R. S. Sorbello, Phys. Bev. B 6, 2198

(1972}; B. Qriessen and B. S. Sorbello, J. Low Temp.
Phys. 16, 237 (1974}.

~5B. Griessen, H. Krugmann, and H. B.Ott, Phys. Bev.
8 10, 1160 (1974).



HOMOGENKOUS STRAIN RESPONSE OF THE 'FERMI SURFA&~

~W. Joss, H. Mak, and B. Griessen (unpublished).
VB. Griessen, D. J. Stanley, and E. Favmett (unpub-
lished).

~8D. J. Stanley, J. M. Perz, M. J. G. Lee, and B. Gries-
sen, Can. J.Phys. 55, 344 (1977).

~J. E. Schirber, Phys. Lett. A 35, 194 (1971).
20E. Fmvcett, B. Griessen, and D. J. Stanely (unpub-

lished).
2~B. Griessen and D. J. Stanley (unpublished).
2M. J. G. Lee, Phys. Bev. 8 2, 250 (1970).

2~P. T. Coleridge, ¹ A. W. Holzmarth, and M. J. G.
Lee, Phys. Bev. B 10, 1213 (1974).

2~¹A. %. Holzwarth and M. J. G. Lee (unpublished).
2~M. J. G. Lee and V. Heine, Phys. Bev. 8 5, 3839

(1972).
P. O. Lowdln~ J. Mol. Spectrosc. 13~ 326 (1964).

27M. J. G. Lee and ¹ A. %'. Holzwarth (unpublished).
28D. M. Gray and A. M. Gray, Phys. Bev. 8 14, 669

(1976).
2~F. H. Featherston and J. B. Neighbours, Phys. Bev.

130, 1324 (1963).
OD. Brust and L. Liu, Solid State Commun. 4, 193 (1966).

~~B. Griessen, D. J. Stanley, E, Fawcett, M. Posternak,
and %'. Joss, Europhysics Conference Proceedings,
Part I, Leuven, 1975 (unpublished).

~2V. Heine, in The Physics of Metals. I. E/ect~ons,
edited by J. M. Ziman (Cambridge O'. P., London, 1969),
p 1,

~W. M. Lomer, Proc. Phys. Soc. Lond. 80, 489 (1962).
~~J. Bath and J. Callamay, Phys. Bev. 8 8, 5398 (1973).
~~H. Umebayashi, G. Shirane, B.C. Frazer, and %'. B.

Daniels, J. Phys. Soc. Jpn. 24, 368 (1968).


