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Schottky effect in Ag:Dy
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Heat-capacity méasurements on dilute dysprosium in silver yield a separation of 12 K between the ground and

first crystal-field states of Dy**.

INTRODUCTION

Rare-earth metals diluted into cubic noble metals
provide an interesting example for a violation of
the simple rare-earth point-charge cfystal-field
model. The experimental findings of fourth-order
terms with signs at variance with existing theory
have been explained! via the hypothesis of a non-
magnetic 5d virtual bound state. The determination
of the two crystal-field parameters for a given
earth is rather difficult since the extreme dilutions
required for complete homogeneity of the rare
earth in the noble-metal matrix preclude the use
of spectroscopic inelastic-neutron-scattering tech-
niques. In the present paper, results are pre-
sented of heat-capacity measurements made on a
silver-dysprosium alloy. From these measure-
ments a determination of the splitting between the
ground state and first-excited crystal-field state is
obtained.

EXPERIMENTAL

The heat capacity was measured using an ac
technique.? The sample was a single crystal chip®
of silver weighing 13.2 mg, with about 325 ppm, or
40 nanomole, of ‘Dy. The output of a He-Ne laser
was chopped at 10, 21, and 55 Hz and used to pro-
vide an ac heat input to the sample and to a Cu ref-
erence. ac and dc temperatures were measured
with Cu-Au:0.07-at.%-Fe differential thermocouples
relative to‘a Cu block heat sink with a calibrated
Ge thermometer.

RESULTS

The measured specific heat after addenda cor-

rections is shown in Fig. 1(a), plotted as C/T vs
T2, for temperatures from 1.6 K to about 10 K.
The solid line corresponds to pure Ag, as mea-
sured in a separate experiment. Other data to 15
K, not presented here, are consistent with the pure
Ag values within experimental error.

The data were least-squares fit from 1.6 to 10 K
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to a theoretical curve. The equation for the spe-
cific heat is

C/T=y+BT?*+aT+C4/T,
with Cg the Schottky term
Cs=(Nk/T*)(E?) -(E)?),

where N is the number of Dy* ions and the angular
brackets denote thermal averages over the de-
generate crystal-field energy levels expressed in
temperature units. The crystal-field levels, are
distributed according to the Hamiltonian

H=B,(09+50%) +B4(0?-210)),

where the quantities in parentheses are the stan-
dard operators, and B,=V,0,, where 6, is the re-
duced-matrix elements. The quantities v and B are
the conduction electron and first-order lattice co-
efficients. The term in « involves a correction for
higher-order lattice contributions. Assuming «a is
10 mJ/mole K8, the correction for pure Ag
amounts? to about 5% at 10 K and essentially zero
at 5 K. The previous measurements on Ag then
agree with the simple formulation to within a few
tenths of a percent over the range 1.6-10 K. Since
the present raw data exhibit about 3% scatter, the
parameter o was fixed in the fits.

Previous ESR and magnetic susceptibility da-
ta’%¢ had indicated a I', ground state with a Ty
first excited state lying fairly close. Thus the pre-
sent calculations involved searching the region of
crystal-field parameters, V, and Vy, which would
satisfy these requirements. An original work® in-
dicated a ground state isolation of only 1 K; the
later ESR work indicated® 11.5 (1.0) K. The cur-
rent data provide a good indication of the initial
(low-temperature) slope of the Schottky peak. Cal-
culations indicate that the second excited Dy** level
does not contribute substantially to this slope for
any value of the ratio of sixth- to fourth-order pa-
rameters x (in the terminology of Lea, Leask, and
Wolf) for x satisfying 0<x < 0.6. Thus, the posi-
tion of the first-excited state can be uniquely de-
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FIG. 1. (a) Heat capacity
of Ag:Dy (325 ppm) from
1.6 to 10 K plotted as C/T
(open symbols) per mole
Ag. The solid line corre-
sponds to the separately
measured heat capacity of

0 2o 5 50 & Ag (filled symbols). (o)
12 (KZ) Ionic heat capacity Cg of
Dy®* in Ag:Dy per mole
Ag after subtraction of the
fitted lattice and conduc-
I I T T tion-electron contributions
(open symbols). The solid
° line corresponds to a
ground-state isolation of
11.7 K.
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termined. separation between ground and first excited states)
The parameters obtained from the fit are given by 0.1 K, a change much less than the 1-K statisti-
in Table I. The Schottky specific heat is shown in cal error. Diagonalization of the Hamiltonian in-
Fig. 1(b). This fit assumes a three level sequence, dicates the smallest relative separation of the lev-
doublet-quartet-quartet, with relative energies els at x=0.36 with a sequence spacing 0:1:1.9. Fit-

0:1:3. A two level sequence increases A (energy ting with this constraint, A decreases by 0.9 K.
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TABLE I. Specific-heat parameters in Ag:Dy. A is
the separation between ground state and first-excited
state. Units are per mole Ag. Errors in parentheses
are statistical errors only.

Schottky height A

Y . B
(mJ/mole K) (K) (mJ/moleK?) (mJ/moleK®

2.5(4) 11.7(1.0) 0.74(5) 0.161(4)

The change is, again, less than the error and the
quality of the fit is slightly worse.

The Schottky height parameter is 2.5 (4) mJ/
mole K (moles Ag) or 0.9 (2) times the expected
2.70 mJ/mole K. The electronic coefficient is 0.74
(5) mJ/mole K%, Other reported values range®®
from 0.61 to 0.68. Experiments® indicate y should
increase by an amount proportional to the incre-
mental electron per atom ratio, an immeasurably
small change in this case. Agreement with the re-
ported values is fairly good, considering the un-
explainable variations. The lattice term 8=0.161
(4) (or a Debye temperature of 229 K), agrees well

with the tabulated 0.167 (4) and should be little af-
fected by the small amount of Dy in the sample.

The ground-state isolation of 11.7 K obtained in
this work agrees with the 11.5 K determined in the
ESR measurements.® Unfortunately, it is impossi-
ble to singularly determine the fourth- and sixth-
order crystal-field parameters from the isolated
Schottky peak. At temperatures higher than about
10 K, theoretical specific-heat curves differ sig-
nificantly for various values of x. Data in this re-
gion of temperature would, therefore, be sufficient
to determine both V, and V,. On the assumption of
a first excited level at 12 K, calculations show a
linear relationship between V, and V, over a wide
range of V,:

V,=-0.18V,+0.3 (meV).

Taking V,=~-6.0 meV as estimated in Ag:Er,' then
V,=1.4 meV for Ag:Dy. This compares with 1.1
meV in Ag:Er. An overall crystal-field splitting
is estimated at a reasonable 150 K, and x =0.52;
this compares well with x =0.54 obtained in the
previous study.®
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