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%'e present results of calculations of the electrical and thermal conductivity and the phonon-drag

thermopower in pure Al including a realistic Fermi surface and multiple-plane-wave electron-phonon matrix
elements. Scattering times to electrical and thermal conductivity are computed as a function of position on the

Fermi surface at various temperatures. Large anisotropies are observed, particularly at low temperatures.

Comparison of our results for the electrical resistivity and the phonon-drag thermopower with previous one-

plane-wave calculations show considerable diAerences and the agreement with experiment is significantly

improved.

I. INTRODUCTION

Transport properties are average properties in
that all the electrons at the Fermi surface partici-
pate. Since much of the Al Fermi surface is free-
electron-like we might expect that multiple-plane-
@rave effects may not be overly important. Indeed
one-plane-wave calculations with a spherical Fer-
mi surface do give a reasonable description of the
observed high-temperature resistivity of Al. '
However at low temperatures it is well known that
this is no longer the case. '

In polyvalent metals the electronic wave functions
near Bragg planes are very different from plane
&&aves. Ignoring this feature leads to an artificial
l/&u behavior for the square of the electron-phonon
coupling for umklapp processes with vanishingly
small reduced momentum' which means small pho-
non frequencies &u. Since at low temperature (T}
only these phonons will be present, the low-tem-
perature transport coefficients can be very seri-
ously overestimated in the free-electron model.

It is the main purpose of this paper to make a
quantitative study of the effects of band structure
on the transport properties of aluminum. Previous
work has been done by Pytte, 4 Lawrence and Wil-
kins, ' and Chan and Huntington. ' Our work is more
extensive since it covers several transport eoeffi-
eients and treats the Fermi surface, phonons and
electron-phonon matrix elements in greater de-
tail. For the Fermi surface we use the four-plane-
wave model of Asheroft' which is known to fit the
de Haas-van Alphen data well. For the electron-
phonon matrix element we use 15 plane waves to
describe the electronic states. The lattice dynam-
ics is calculated from a Born-von Karman force-
constant system fit to the measured phonon disper-
sion curves.

The microscopic information on the electronic
structure, the electron-phonon interaction and the
lattice dynamics are related to the transport coef-

ficients through the Boltzmann transport equation.
It is out of the question at the moment to try to
solve this equation exactly. We will consider two

approximate solutions which have frequently been
used in the past. The first is the one obtained from
a variational principle utilizing the simplest pos-
sible trial functions' and the second is the scatter-
ing time solution used by Robinson and Dow' and
Chan and Huntington' to study the high-temperature
res ls t, ivi ty.

The lowest-order trial function largely ignores
any anisotropy or energy. dependence in the scat-
tering. This is discussed by Lawrence and Wil-
kins' for Al and by Kus and Carbotte' for the elec-
trical resistivity of the alkalis. On the other hand,
the anisotropy in the scattering can easily and quite
naturally be accounted for in an approximate scat-
tering time solution for the Boltzmann equation.
We assume the existence of an anisotropie scatter-
ing time r(k, T}and the Boltzmann transport equa-
tion becomes an integral equation for 7(k, T}. Sor
bello' has recently given a clear discussion of the
concepts associated with r(k, T). If we limit the
discussion to a first iteration of the equation for
r(k, T) we get a simple closed expression for the
scattering times at any temperature from which we
can calculate the transport coefficients.

In Sec. II we discuss the approximate solution to
the Boltzmann equation appropriate to the various
transport coefficients. We introduce a scattering
time r~(k, T) appropriate to the electrical conduc-
tivity and another r~(k, T) for the thermal conduc-
tivity. Their relation to the microscopic interac-
tions is described. Two spectral weight functions
nT2„~E~(ru) and o.-„F-„(to) will be introduced. The
first one is for the electrical resistivity while both
are required for the thermal resistivity. In addi-
tion two more, n~~-„E~(&u) and +2~~-„F„-(u) are needed
to discuss the phonon-drag contribution to the ther-
mopower and the electrical resistivity. These dis-
tributions apply to each state k on the Fermi sur-
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fa,ce and contain all of the details of the Fermi sur-
face, the electronic structure and the electron-
phonon interaction as well as the lattice dynamics.
The same distributions, n»~„-»F»((d) and n-„F«((d),
are used in both the variational and the scattering-
time approximations for the electrical and thermal
resistivities. In Sec. III we give the results of the
calculations and compare with one-plane-wave re-
sults and with experiment. In Sec. IV we draw con-
clus ions.

II. TRANSPORT COEFFICIENTS

cc v ~ Ek k (2)

where v-„ is the velocity of the electron in state k.
This gives an expression for the resistivity

64m'5'
p„(T)=, d(dR((d)n~»F((d)e'k~T

(3a)

where e is the electronic charge, k~ is the Boltz-
mann cons tant, k is P lanck's cons tant divided by
2m, and R((d) is a thermal factor for the phonon
frequency &

R ((d) = ff(df(e"" "B 1)(1 e "" "B ) (4)

nr„F((d) is the Fermi surface average of
nr„»F-»((d) which is defined below.

In our second approximate solution of the Boltz-
mann equation, scattering-time approximation, one
makes the ansatz

4;ccrB(k, T)v; ~ E

In the presence of an external field the occupation
of the state k is given by

0

f»=f « C'»- (1)
96k

0
where f-„ is the Fermi-Dirac function a.nd e» is the
energy of the electron in the state k. For the elec-
trical resistivity 4-„ is proportional to the electric
field E and the usual lowest order trial variational
function is'

(7)

where (d„(k' —k) is the phonon with wave vector (k'
—k) reduced to the first Brillouin zone, with X the
branch index. g»~ is the electron-phonon coupling
constant describing the scattering of an electron in
a state k to state k' via the emission or absorption
of a, phonon with frequency (d»(k' —k)

-i«»(k' —k)
Z '~~»(("'- +G~ —Gi)

[2 MN(d»( k' —k)] i j

x(»'+~, lwl»+c, .&),

(8)

with M the ionic mass, N the number of ions per
unit volume, and «»(k' —k) the phonon polarization
vector. The coefficients C-„; are the mixing co-
efficients in the plane-wave expansion of the elec-
tron state, G; are the reciprocal-lattice vectors,
and (k'

I
W lk) is the pseudopotential form factor. "

The isotropic distribution nraF((d) needed in Eq.
(3a.) is given by

nrRF(~) = lvil nra iFi(~) .4ra
( v-„ t

In the scattering-time approximation the resis-
t.ivity is given by

i„(i'&=(i .» f 'I;I'& (», i'&)
1277

(10)

We note that p~(T) can be rewritten in terms of the
7B(k, T). We find

and obtains an integral equation for 7B(k, T) when

4„ is substituted in the Boltzmann equation. ' Keep-
ing only the first iteration we get an explicit ex-
pression for r„(k, T)

d(d R((d) nra iFi((d) .4n

rB k, T B (&

nra -»F»((d) is given exPlicitly by

1 dS gr Vy vgg
nra iFi(~) =3 sm iV jii Ivgl

x g Ig I
t% ((d —(d,(k' —k)),

(3b)

For the thermal resistivity, the usual lowest-order variation trial wave function is

C'i [(«1 —er)l"BT)vk' T i

where Ez is the Fermi energy and &T is the temperature gradient. This gives the following expression for
the thermal resistivity:
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ZoT kBT . e' 7T

Q F (d Vk (12)

where 20 is the Lorentz number. The distribution function n F(m) is familiar from the theory of strong-
coupling superconductivity, and is given by the same expression as nraF(&u) with the factor

[1—(vi ~ vi-, ,)/Iv„l ]
omitted.

In the scattering-time approximation one assumes

4~ cc r~(k, T) [(e„—E-~)/ksT]v-„&T,

and obtains for r~(k, T) the expression, in lowest order,

1 4w

7~(k, T) ksT 0

(13)

(14)

This gives, for the thermal resistivity,

(15)

q q, respectively.
Using the same approximations for 4g and g;„,

the phonon drag contribution to the thermopower
ls

4 &~~q'u (17)

where u is the unit vector of the electric field.
Using Eq. (2) for 4-„we obtain for the electrical re-
s istivity7

p (T) = p (T)(1 —P, /P„P ), (18)

where pv(T) is given in Eq. (3) and P», P,z, .and
P» are as follows:

and

1P» = d~R(~)nr2aF(&u),
B 0

P,z = d+R(m)n2zF(u),
1

B o

(19a)

(19b)

1Pzz-- d+R(&u)ni«F(cu).
B o

(19c)

&,z, F(&) and nzzF(cu} are the same as ar2„F(v)
except that (v-„—v-„,) is replaced by q ~ (vf —v-„,) a,nd

We could also rewrite Wv(T) in terms of r~(k„T) in
the same way p„(T) was. written in terms of
rs(k, T) in Eq. (3b).

To study the effect of phonon drag on the thermo-
power and resistivity, one must consider the cou-
pled Boltzmann equation for both the electron and
phonon occupation probabilities. ' In analogy with
the case for the electron trial function 4-„, one
writes the phonon occupation as

0

(16)
k s(u, (q)

where the simplest choice for 4,~ is'

gPD(T) B L( } 11.

en, 3NkB PI~ ' (20)

where n, is the number of free electrons per atom
and Cz(T) is the lattice specific heat.

We see that we can write the various transport
coefficients in terms of four similar distribution
functions. Our first problem is thus to calculate
these distributions. The transport coefficients at
any temperature may then be obtained by simply
doing the frequency integral over the appropriate
distribution. Some more details of, the method of

2
calculating the o.'"„F;(&u}may be found in the paper
by I,eung et al."

III. CALCULATIONS AND DISCUSSION

For the electrical resistivity, the results are
given in Figs. 1 and 2. In Fig. 1, we show the Fer-
mi-surface variations of r„(k, T) at three different
temperatures, namely 20, 50, and 100 K. Entries
correspond to three constant Q arcs, Q =1', 23',
and 45'. The anisotropy at 20 K is very large.
For example, the longest time between scatterings
entered is 1X 10 "sec while the shortest is about
3.5 x 10 "sec. For T = 50 K all of the entries are
of the order of 10 "sec and for T = 100 K of the or-
der of 10 "seC. ' In this last case there are num-
bers as small as -4 and as large as -9.5, showing
that there is still a significant amount of aniso-
tropy. Note that we have used a logarithmic scale
on the vertical axis. It is very important to realize
that the curves fully include the distortions of the
Fermi surface from a sphere and the multiple-
plane-wave character of the electronic states.
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Also, realistic phonons are used throughout.
Using these scattering times rs(k, T), we get the

values of the electrical resistivity in the two dif-
ferent approximations p~(T) and psT(T) from Eqs.
(3) and (10), respectively. Since in psT we average
7'„(k, T), while in pv(T) we average 1/Ta(k, T), we
expect these two quantities to differ most mhen the
anisotropy is greatest, i.e., at lom temperature.
If &~ is isotropi|:, both formulas mould give the
same result, namely

P~T~=(g2 g J~~ I~ll) (21)

These expectations are borne out in the calculations
which are given in Fig. 2, where pv(T) is compared
with paT(T) in the range 20-300 K. Above 80 K the
values of pv(T) and pBT(T) agree almost exactly,
indicating that the anisotropy in ~s(k, T} does not
matter much when the Fermi-surface average has
been performed. As the temperature decreases
below 80 K however, the two results start to di-
verge, and at 20 K they differ by a factor of nearly
5. This shows that the tmo approximate solutions
to the Boltzmann equation used here are not really
adequate at these lom temperatures.

The variational solution can be improved by in-
cluding a more complicated trial wave function C-„

than Eq. (2). For potassium, this has recently
been done by Ekin and Bringer" who employ a Ku-
bic harmonic expansion and conclude that correc-

FIG. 2. Electrical resistivity of pure aluminum as a
function of temperature. The dotted line denotes psT(T)
using 15 plane waves, the dashed line denotes ~(T) using
15 plane waves, the dash-dot line is p~(T) using one
plane wave and a spherical Fermi surface, and the solid
line is the experimental data.

tions to Eq. (3} are important when the scattering
is very anisotropic.

As the temperature is lowered, Eq. (3) certainly
becomes less reliable while Eq. (10) gives reason-
able agreement with the experimental data~4 (Fig.
2). However the problem is that a.t such tempera-
ture the anisotropy in rs(k, T) becomes very large
and the one iteration procedure that we have fol-
lowed becomes unrealiable so that the agreement
may be fortuitous. For T&80 K the theoretical
curve lies slightly below experiment. For T less
than 80 K it agrees mell until about 20 K. On the
whole our ca,lculations are very satisfactory.

Finally in Fig. 2 me have also shown for com-
parison results obtained in a one-plane-wave theo-
ry with spherical Fermi surface. At high tem-
perature the agreement with our sophisticated mul-
tiple-plane-wave results is very good as me anti-
cipated in the introduction. As the temperature is
lowered the agreement rapidly deteriorates indica-
ting clearly that to obtain meaningful results it is
necessary to do a mnultill--lian-wmve calculation.

Turning nom to the thermal resistivity, we give
some results for r~(k, T) in Fig. 3 for several
points on the Fermi surface. By comparing with
the results for va(k, T) in Fig. 1 we see that while
the amount of anisotropy is smaller in r~(k, T) it is
still significant. Results for Wv(T) and WST(T) are
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TABLE I. Ratio of the resistivity including phonon
drag to the resistivity without phonon drag. The results
of the single-plane-wavewalculation are compared with
the multiple-plane-wave results.

p'D(r)/p, (v )
(Single plane wave)

p (T)lp&(T)
(Multiple plane wave)

20
30
40
50
60
80

i00

0.972 44
0.97i 39
0 ~ 976 00
0 ~ 97948
0.98 i 44
0.982 8i
0.982 88

0.8359
0.9238
0.96i i
0.975 i
0.9807
0.9840
0.9847

IV. CONCLUSION

In a polyvalent metal like Al it is essential to in-
clude multiple-plane-wave effects in the electronic
structure in order to get a quantitative description
of the transport properties at low temperature.

to the energy dependence in 4 ~ is the important
factor. It would be quite difficult to calculate such
corrections while at the same time including band
structure and realistic phonons. Yet it is essential
to have multiple plane wave at 20 K since the one-
plane-wave approximation for the electron-phonon
interaction breaks down completely.

We come now to the results for the phonon-drag
contributions to the thermopower and the electrical
resistivity. For the thermopower, the results of
the single-plane-wave calculation S,'P"(T) are com-
pared with the multiple-plane-wave result and with
the experimental results of Gripshover et a/. in
Fig. 5. Both calculations agree with experiment
qualitatively in sign. However, Sap"(T) differs by
an order of magnitude from the experimental val-
ues while the multiple-plane-wave result shows
good agreement up to about 80'K.

The behavior of S (T) depends on the fact that
a2~-„F„-(e) can give negative as well as positive val-
ues since g ~ (v; —v-„,) will be positive for normal
processes and negative for umklapp processes. As
the temperature is changed, different portions of
o.',~-„F„-(e)are sampled by the thermal factors R(&u}.
That the umklapp processes are responsible for the
positive thermopowers was suggested by Ziman'
and Bailyn. "

We conclude this section with some results for
the effect of phonon drag on the electrical resist-
ivity. The ratio p~D(T)/p~(T) is given in Table I.
We see that the effect of phonon drag is small at
high temperature and that the band structure is on-
ly significant below about 40 'K.

For Al a single-plane-wave model with spherical
Fermi surface is only reasonable above about 80 K.
Below 50 K an additional complication arises which
is connected with the solution of the Boltzmann
equation. In that temperature region the scattering
due to the electron-phonon interaction is very an-
isotropic so that the usual formula for the resist-
ivity based on the variational principle with sim-
plest possible trial function becomes inadequate.
It is necessary to consider higher trial functions in
addition to including properly the electronic band
structure and real lattice dynamics. Alternatively,
one can use a scattering-time formalism in which
the Boltzmann equation is solved directly without
reference to a variational principle. If only the
lowest iteration of the equation for the scattering
time is retained, a manageable closed expression
for the electrical and thermal resistivity results
which includes some effects of the anisotropy in a
very natural way. It gives electrical resistivities
considerably lower than the variational formula
and in quite good agreement with experiment. A
complete iteration of the equation for rs(k, T} is
desirable and will be attempted in the near future.

For the thermal resistivity, the anisotropy in the
scattering time is found to be less important than it
is for the electrical resistivity. This is largely
due to the fact that, at low temperature W(T) is
largely determined by the n„'F~(&u) term, not the
o2rs „-F-„(v) term. There is however the more im-
portant complication of the energy dependence of
the trial wave function. Here we have used only the
simplest possible choice for it. Clearly a proper
solution to this problem involves the necessity of
solving the Boltzmann integral equation for both the
energy as well as the angular dependence of
4-„.

For the phonon-drag contributions to the thermo-
power and the electrical resistivity, obtaining an
adequate solution to the coupled electron and pho-
non Boltzmann equations is a very difficult task.
It has recently received much attention in the cal-
culations of p(T) for potassium, particularly by
Leavens and Laubitz. " They show the inadequacy
of the usual lowest-order variational solution. For
the phonon drag contribution to the thermopower,
the effects of the band structure are very signifi-
cant, but for p~D(T)/pr(T), much less so. For the
electrical resistivity, it is the contribution ex-
cluding phonon drag, i.e. , p~(T) or paY(T), that is
very sensitive to the details of the band structure.

In conclusion we can state that we have made de-
tailed calculations of the following transport prop-
erties: the electrical and thermal resistivities,
the phonon-drag contributions to the thermopower,
and the electrical resistivity. The calculations in-
volve no adjustable parameters and include in a
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realistic fashion the details of the nonspherical
Fermi surface, the electronic states, the electron-
phonon interaction, and the lattice dynamics. A
comparison of the single-plane-wave results with

those obtained in a multiple-plane-wave calculation
show the great importance of including such effects
if one is to achieve reliable quantitative agreement
with experiment.
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