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The energy required to create a vacancy in a simple metal is written, apart from the lattice relaxation

energy, as the sum of two terms. One is the binding energy Eb of an atom in the perfect solid; the other

represents the diA'erence between the energies of the defected and perfect crystals in the same volume. This

second term is estimated, using the spherical-solid model, as the difference of two self-consistent calculations

of total energies within the local-density formalism. The ions surrounding the defect' are simulated by

pseudopotentials. The spherical approximation of the perfect lattice is obtained by adding the "exact" ionic

potential at the center of the defected lattice. This exact potential results from a self-consistent augmented-

plane-wave calculation of the perfect solid, which also gives the binding energy Fb. The magnitude of the

nonspherical ionic potential contribution to the vacancy energy is then investigated, using different linear-

response functions for the perfect and defected systems. Satisfying agreement with experiment is obtained for

the alkali metals Li, Na, and K, but the model fails for high-electron-density metals as Al.

I. INTRODUCTION

Large attention has been paid recently to the en-
ergetics of defects in metals. The standard theory
of pseudopotentials, with expansion of the binding

energy up to second or third order in electron-ion
interaction, has been applied to vacaney-forma-
tion-energy calculations in simple metals. ' ' The
weakness of this approach lies in the use of the
free-electron linear -response function for both
of the perfect and defected lattices. In fact, the
depletion of the density arourid the vacancy induces
in that region a decrease of the electron polariz-
ability which should be taken into account. A sec-
ond class of schemes for vacancies includes the
jellium model and all its improvements dealing
with the perturbative treatment of the ionic po-
tential, written as a superposition of pseudopo-
tentials. ' " Neither zero-order nor first-order
jellium results, as obtained by Manninen et al. ,
give quantitative agreement with experiment. ' In-
cluding the second-order corrections, as done by
Evans and Finnis, does not lead to satisfying val-
ues. '"" But they were calculated with the inade-
quate free-electron-gas susceptibility for the de-
fected lattice, so that they may be suspected.

In a previous paper, "we have proposed to adapt
the spherical-solid model (SSM) of Almbladh and

von Barth" to the self-consistent density calcula-
tion for vacancies in simple metals. In that mod-
el, potential and electron density are spherically
averaged. around the defect; the total energy is
calculated using the density-functional formalism
of Hohenberg and Kohn. '~'" .The vacancy-forma-
tion-energy is written

+f @bSCF+

Egg Ecr(X 1
&

Q) Ep(1V~ 0)

E»cF is the energy required to remove one atom
from the so11d at constant volume Q. @~scF ls
thus the difference between the energies of the de-
fected lattice (without atom at origin, K —l atoms
in the solid) and the perfect lattice (one atom at
origin, A' atoms in the solid) in the volume Q. The
binding energy E~ of an atom in the perfect lattice
must be added to E»cF in order to obtain Ef.. F~
is the energy needed to add the removed atom in

the bulk of the solid. The approximation proposed
in Ref. 12 was to estimate &»~F as the difference
of two SSM calculations, one for the defected lat-
tice and the other for the perfect lattice. In both
cases, an empty-core Ashcroft model potential
represented the bare ion. The binding energy E~
was calculated up to third order in electron-ion
interaction. The results improved significantly
the semilinear-screening values of Evans and

Finnis, "but good agreement with experiment was
not obtained.

In this paper we report several refinements of
the calculations based on the SSM applied to the
description of vaeaneies, leading to a more ac-
curate treatment of the problem. In Sec. II, we

give a detailed description of the model, where
the true ion, instead of a pseudoion, is placed at
the center of the perfect lattice. %e comment the
corresponding expression of E»cF and the calcu-
lation of F-,. Section III is concerned with the spe-
cification of the model potential for the noncentral
ions. The effect of the nonspherical component of
the ionic potential is investigated in Sec. IV where
an approximate linear-response function for the
perturbed lattic e is derived, us ing the Thomas—
Fermi semiclassical theory. Numerical results
for the alkali metals Li, Na, and K, and for
aluminum are reported and discussed in Sec.
V.
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The accurate calculation of defects in solids is
very difficult because lattice periodicity is broken.
Simplified models must be worked out in order to
avoid considerable computational effort. The SSM,
applxed by Almbladh and von Barth to the calcu-
lation of highly localized excitations inmetals, is
very appealing in that sense. SSM is expected to
be relevant when the effect of the impurity vanishes
within a distance less than the Wigner-Seitz (WS)
radius. This is not the case for vacancies in
solids which extend as far as two ox' thx'ee %8 x'adll

(the Friedel oscillations extend even further).
Nevertheless, we assume that there is an import-
ant cancellation of the errors when the difference
in energy F~s cz of the two spherical systems is
calculated. The xeason is that the nonspherical
component of the potential is negligible in the re-

'

gion where the displaced density is very large (in-
side the WS sphere); and conversely, the screen-
ing of the defect is important where the nonspheri-
cal potential is strong. %'e shall go further into
detail on this point and give an estimate of the non-
spherical contribution in See. IV.

The noncentral ions in the two systems of inter-
est (defected and perfect solids) are described by
means of a local pseudopotential s() (r). The total
ionic potential for the defected case is Z,w(r —R,).
The spherical average of this potential is easily
expressed using the Fourier transform of the lat-
tice sum

1= U(r) —w(r) + U, ——~ n„

U( )
1 g f (~), s1nKr

ing text, we shall label the quantities relative to
the defected lattice by the index d and those rela-
tive to the perfect lattice by the index P.

The ionic potential of the perfect lattice is ob-
tained by adding to E(1. (2) the potential of the ion

located at x'= G. As an accurate description of the
central WS sphere is essential, we chose to use
at r = 0 the true potential of the ion, resulting from
a self-consistent augmented-plane-waves (APW)
calculation of the pexfect solid, instead of the
pseudopotential w(r). This choice has also the ad-
vantage to remove uncertainties in the calculation
of the binding energy: E~ is obtained fx'om the
APW calculation of the potential, correct to all
oxders in electron-ion interaction, instead of or-
der two or three when a perturbative expansion of

E~ is used. The Hartree potential'of the ion is

v(r) = —Z, /r+ ((1/r)*n,),
where Z& is the atomic number of the metal and

n, (r) the self-consistent APW density of the core
electrons in the ion.

The valence-valence exchange and correlation
potelltlal 1) (n) (n is tile valellce dellslty) is given,
according to the density-functional formalism, "
by the relation

&~ is the exchange and correlation energy func-
tional. We have used the %'igner interpolation for-
mula [with r,(n) defined by ~4vr,'(n) =n ')

(n) = e„s(n) 0 44/-[r, (. ) nl.+80],

where &Ks is the Kohn-Sham functional'6

The angular brackets on the left-hand side of
E(1. (2) indicate spherical averaging around the
center r= 0. The asterisk has been used for the
convolution product

f, g= ff(r-r )(;(F)& '. '

The volume of the%'S sphere is Q, and K is a re-
ciprocal-lattice vector; so(q) is the standa'x'd Four-
ier transform

(f()= Jw( le"'dr.

Uo is a constant defined by

4mZ
U, =—lim n)((1)+0, q-0

where Z is the valence of the metal in which the
mean elec'troll density ls 'n() = Z/0(). fn 'tile follow-

In our model for the perfect lattice, there exists
also an exchange and correlation interaction be-
tween the core electrons of the central ion and the
valence electrons. This contribution is written

&Ks(nc +ns) —&Ks(np).
Finally, apart from a constant term U, + ll (n,),

the total potentials are, in the defected and per-
fect lattices, respectively,

+g (n, ) —1). (n,), (S)

V~(r) = U(r) -n)(r)+ v(r)+(1/r) +(n&-n, )+ ilxs(n, +ns)

—vKs(n, )+if (n,) -u (n.).
Each of these potentials decreases to zero faster

than r"~ for large x, so that each problem may be
handled as an impurity problem. The technique
of solving self-consistently the corresponding
Schrodinger equations is now well known"'"" and
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+ & (n }-E (n ) -M (n }+ M (n ), (10)
ky

G(n) = —— kdkQ (2l+1)&,(k)
o

l, l 3. Z
i

(n+n, ) —*(n -n, )+ n —dr, (11)
2 &g

R~{n)— I, [ng~(n) nsq~(ns)
~n

+ pn~~Ks(nt) p"~—Ks(n))d r, (12)

M {n)= ~ [np, (n) -n, p (n, )
~n

+ Pn Ji„s(n,) —Pnp„s(n) )d r . (13)

&~ is the Madelung energy of the perfect crystal;
kz is the Fermi momentum. The parameter 0. has
the value n& = 0 in the perfect solid and +~ = 1 in the
defected solid; the parameter P is 1 —u. The total
(core plus valence density in the perfect spherical
SOlid 1S tlt = s~+ s~.

As indicated above, the density n, (r) of the core
electrons in the ion and the binding energy E~ of
an atom in the perfect solid were calculated by the
self-consistent AP% method, in the muffin-tin
form of density and potential. In this calculation,
the exchange and correlation energy was treated
in an exactly similar way, using the expression

piggy ply + sc + ply ~Ks sc + By FlrpKs 8 d r

for the total energy. The APW valence density is
n„(r). The contribution of the isolated ion

n, ~Ks n, dr
"00

must be subtracted from the total energy to obtain
the exchange and correlation contribution to the
binding energy.

III. SPECIFICATION OF THE PSEUDOPOTENTIAL

FOR SURROUNDING IONS

A local pseudopotential was used in Ref. 12 for
the central ion in the perfect lattice. But it is a
well-known result that local pseudopotentials are

will not be detailed here. %hen the self-consis-
tent wave functions and phase shifts 5,(}t) for all
the angular momenta l and wave vectors k of the
occupied states have been calculated in the perfect
and defected cases, respectively, the computa-
tion of E~scp can be achieved, accox'ding to the
following formulas

+sacr =

—
2

k~+ —
~

—(n, -n, )dr+ G(n, ) —G(n~)
Z 2 1

I

Z

inadequate to describe the band structure of lith-
ium. The question of using a nonlocal pseudopo-
tential thus rises naturally. According to the phi-
losophy of SSM, which is that the impurity is not
very sensitive to the details of the potential due to
neighboring atoms, it was assumed that only the
central ion for the perfect-lattice calculation
should be treated with a high degree of accuracy.
Consequently, we thought that the simulation of
suxrounding sites by a local potential was coher-
ent with the model. The great advantage of local-
ity is to allow the easy computation of the super-
posed potential U(r) [Eq. (4)]. For the ion at r=0,
the use of the true potential u(r) was obviously the
best solution.

The simplest choice for a local potential is the
empty core potential; its smoothed form, as sug-
gested by Cohen and Heine, "

w(q) = -{4vZ/q') cosqR, e "~'&' (14)

has considerable practical intex'est for the compu-
tation of U(r), since the good convergence of Eq.
(14) avoids the use of the Ewald-Fuehs technique
of double summation in real and reciprocal spaces.
%e have fixed the value of qo to 5.5k~ for all the
metals. It will be shown in Sec. V that the results
are not sensitive to this particular choice. The
only parameter in Eq. (14) to be carefully adjusted
is R,. The criterion is that w(q) reproduces the
APW binding energy E~ of an atom in the perfect
solid. The binding energy is very easily calcu-
lated up to second order in w(q); its expression
E»(w) can be found in Ref. 19. Exchange and cor-
relation as defined in Eq. (6) has been used both
in the zero-order term and in the function 9(q) ap-
pearing in the interacting response function. The
radius R, is determined by the relation

E»(w) + 6 = Es,
where E~ is the APW binding energy and b a cor-
rective term taking into account the contribution
of all the orders w"(q}(n ~ 3) not included in E»(w}.
b has been computed once in the case of )he Ash-
croft model potential av„, with the parameter given
by Shyu and Gaspari, '0 as the difference between
the binding energy resulting from an AP% calcu-
lation with the frozen ionic potential so„and
E»(w„) Then, for a., given metal, 4 has been con-
sidered as a constant when applying. Eq. (15).

In order to test the influence of the pseudopoten-
tial on our calculations, we have also defined a
two-parameters model potential, corresponding
to a smoothed well

w(q}= — D . '+(1 D) cosqR, e "~-'s' .4n Z sinqR 2

q qR
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The following condition was added to Eq. (15):
it was required to fit the APW valence density
.n„(w) as best as possible with the muffin-tin com-
ponent n, ~ of the density n, induced by so in the
perfect solid and ea,lculated by linear-response
theory. %'e defined the quantity

s'(u)) = — (n„n-, ,)'d r
Qo ~Q

(17)

and determined the parameters D and A, by simul-
taneously solving Eq. (15) and minimizing Eq. (17).
In lithium and sodium, this procedure gives a val-
ue of D nearly equal to zero. In potassium and
aluminium, the difference between the two poten-
tials (14) and (16) is more important, as the nu-
merical results will show in Sec. V.

IV. NONSPHERICAL CONTRIBUTION TO THE VACANCY

FORMATION ENERGY

A semiqua. ntitative study of the contribution of
the ionic potential nonspherical component was
undertaken with the only object to check its small-
ness. But we had to conclude from our calcula-
tions that this contribution is not negligible and
depends rather strongly on the parameters of the
model potential. It must be taken into account for
a correct numerical estimate of ~& in the alka. li
metals. In aluminium, it is even much larger than

E& a,s defined by Eq. (1). We shall now use the
notations

~~=~~+~~

f 63CF

(18)

(19}

E& is the energy needed to create a vacancy with-
out any lattice relaxation. E& is the sum of two
terms; the first one is E& which is calculated in
the SSM model, the second, E& is due to the non-
spherieal ionic potential. The full vacancy forma-
tion energy to compare with experiment also in-
cludes a relaxation energy E~,'

-g~+g (2O)

The term E&' will be estimated as a second-or-
der perturbation, the perturbative potential being

V (r) P 'gv(K) elk. r (21)

As a consequence of its spherical symmetry, the
potential centered at r=0 does not appear in the
perturbation (21), which is the same for the per-
fect and defected lattices. The first-order per-
turbation energy vanishes since both n„(r) and
n~(x), the SSM electron densities, are spherical.
&&' reduces to the second-order term

&n, and |)n~ are the densities induced by &V,(r) in
the defected and perfect lattice, respectively.
They must be calculated with the appropriate lin-
ear-response functions of the two systems, which
are different. The modification of the wave func-
tions from a system to the other affects the ma-
trix elements in the expression of the polarizabil-
ity. Furthermore, terms O(iV ') (fV is the number
of atoms in the solid) in the response function of
the defected lattice contribute to the vacancy en-
ergy, so that the variation of the Fermi momen-
tum and the one-electron levels, proportional to
@ ', should be taken into account. Such a task
clearly requires a too important computational ef-
fort. %e restricted ourself to a much less sophis-
ticated treatment, using the linearized Thomas-
Fermi (TF) theory. The change in density &n is
related to the change in potentials by

w'&n= -[2(Er —V)]'~'(&V, + |)V) . (23)

G (r ri) &-))l)lr r'I/
(
r (27)

The solution of Eq. (26) for the defected case is
obtained as an expansion in G&&

G,{1,2) = G~(1, 2)+ &G,(1, 2)+ &G,(1,2)+

(-4w) &G,(1,2) =
J G~(1, 3)f(3)G~(3, 2) d(3),

( —4w) (lG,((, 2) = fG~((, 8)f(8)()G,(S2)d(8), ,

f(w) =&,'(w) -&,'. (29)

The obvious notation of Hedin ' has been used in
the expansion of 6G. The solution of Eq. (24} is

—4w6V, (1)= '( G(1, 2)Xr(2)6V, (2) d(2)

V is the total potential (ion plus electrons) in the
ground state and its change is ~t/', + &V,. The Fer-
mi energy is E~, identical in the perfect and de-
fected systems since the density n, {~Er'~') at large
distances is identical. The electronic potential
&V, is related to &n by the Poisson equation so that
Eq. (23) becomes

(6 —X ) & V, = A. '& V),

X'(w) =(4/w)(2[E, V(r)]]"'
= 4[{3/ )n ]'~'

Equation (24) can be solved in &V, if the Green's
function G(r, r') satisfying the equation

[a —X'(r)]G(r, r') = 4w&(r —-r')

is known. In the perfect crystal, X' is a constant
[&~= 4(2Er)'~'/w] and G~(r, r') is

EP = — '

(&n~ —&nr)& V, dr."0 (22)
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(42)'5 (l)=l'(1) J G(1, 2)2'(2)5V(2)d(2)

—4vX'(1) 5 V,(1) . (30)

We are now in position to write the non-
spherical contribution E&', up to first order in f,

TABLE I. Wigner-Seitz radius Rzs and average elec-
tron density np (atomic units) for the present calculations.
The binding energy E~ used in the vacancy energy calcu-
lations is E~(APW); Eb(ANA) results from the auxiliary-
neutral-atom method and is given for comparison. The
experimental values are shown in the last column. All
are in rydbergs.

32"=(42) *2; J 5V(1) Roars Eg(A PW) E~(ANA) Eg(exp)

x [f(l)Gq(1, 2)+ 3kq5G, (1,2) ]

x 5V, (2)d(1, 2)

I.i 3.25
Na 3.93
K 4.86
Al 2.985

0 ~ 006 95
0.003 93
0.002 08
0.026 93

—0.5393
-0.4907
-0.4111
—4.2346

-0.5394
-0.4882
-0.4090

—0.5202
—0.4616
-0.3890
-4.168

(31)—2w f(1)5Vi3(l)d(1) .
The transformation of Eq. (31) in reciprocal

space is straightforward and the following very
compact result is derived:

E&'-, gg K gg K'
K

x 5V,(q') dqdq',

where 5V, (q) is the Fourier component of the
screened potential, i.e. , 5V, (q) divided by the TF
dielectric constant

5 V(q) = [q'/(q'+ &,') ]5 V(q) . (33)

The Fourier transform of the perturbation 5V, (r)
defined by Eq. (21) is

2v 3
5V (5)= Q'vdK)[5(K —4) —,5(K —5)).

K

(34)

5(K q) is a one-dimensional 5 distribution which is
nonzero when the vectors K and q have the same
length. Combining Eqs. (32) and (34) leads to the
final result

In this section, we have established an expres-
sion of the nonspherical contribution to the vacan-
cy formation energy. The approximations involved
in this formula, are: (i) use of the TF linear-re-
sponse function; (ii) calculation to first order in
the difference f=X,'-X~ 3(iii) analytical fitting of
the TF density. As shown by Eq. (37), E& is very
sensitive to the exponent P, which depends on the
relative importance attributed to the long ranges
r&R„3 in the fitting of Xi(3'). A large uncertainty
is inherent to this description which must be con-
sidered as a phenomenological model only.

V. NUMERICAL RESULTS AND DISCUSSION

In this section are reported the numerical re-
sults of the p'resent work. Our model has been ap-
plied to the alkali metals Li, Na, and K and to al-
uminum.

A. Binding energy

As explained in Sec. II, the binding energy &, of
an atom in the perfect solid has been calculated
for each one of the metals using the standard APW
method. For the bcc lattice, Brillouin-zone inte-
gration has been done on a 1024 points mesh, and
for the fcc lattice, on a 256 points mesh. The nu-
merical errors are estimated to be less than 0.001
Ry on E,. The values of the binding energy, to-
gether with some quantities of interest, as the WS

(35)

(36)

Plots of the TF density for defects are reported
in the paper by Manninen et al. ' We have used
their curves to generate the analytical forms

X'(r) =X3[1 A ,'(Pfv)3~3e ev ], -— Rc qp
——5.5k' 6 (Ry)

TABLE II. Parameters defining the first pseudopoten-
tial (PP1), or smoothed empty core (Eq. 14). Q is an
approximate correction added to the second-order bind-
ing energy to get the exact binding energy.

requiring the most accurate fitting in the region
x- R~. Such a representation is very convenient
for the calculation of Eq. (35) since it gives

Li
Na
K
Al

1.29
1.53
2.10
1.09

3.2478
2.6858
2.1720

,5.1000

0.0076
0.0046
0.0044
0 ~ 0765

f (q) = ~(3Q,)Ate
"~'3. — (37)
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TABLE III. Minimization of the mean error s(zo) be-
tween APKV and linear-response theory (LRT) valence
densities for lithium. The pseudopotential used in LRT
is the smoothed well pseudopotential, with core radius
R~ and depth —ZD/R~, which fits the binding energy. The
value of qp in the damping function is qp

——5.5k&.

TABLE IV. Parameters for the smoothed well pseu-
dopotentials (PP2), with core radius R~ and depth -ZD/
R~ (qp= 5.5k~, see Table II).

Rc

Rc

1.00
1.20
1.30
1.40
1.60

-1.30
-0.257

0.033
0.252
0.555

s(zo)

2.231 x 10 ~

2.091 x 10 3

2.081 x 10~
2.087 x 10-'
2.119x 10 3

Li

Na

K
Al

1.26
1.32
1.50
1.56
2.30
1.23

-0.070
0.081

-0.075
0.063
0.300
0.398

radius and the mean electron density n„are given
in Table I. The theoretical values of &, obtained
by Dagens" in the auxiliary neutral-atom model
(with Nozieres-Pines instead of Wigner correla-
tion) and the experimental values of &, are shown
for comparison.

B. Pseudopotentials

Two choices have been done for the pseudopoten-
tials simulating the ions not located at the center
of the spherical model. In the first one, the bind-
ing energy calculated with the pseudoion is adjusted
on the APW binding energy, according to Eg. (15).
The values of d used in Eq. (15) and the core ra-
dius R, determined in such a way are shown in
Table II. This pseudopotential will be referred to
as PP1 in the following discussion. %e checked
with PP1 the small influence of the damping factor
q, : in Na, the change in E«c~ is 6 x 10 '-eV when

qo varies from 5 to 6k~.

For the second (smoothed-well) pseudopotential
PP2, the variations of s(w) as a, function of R, at
constant binding energy have been studied. In lith-
ium and sodium, the corresponding curves are
very flat near their minimum, approximately ob-
tained for the parameter R, of PP1. As an exam-
ple, the variations of s(w) in Li are shown in Table
III. Nevertheless, in order to appreciate the ef-
fect of varying the pseudopotential, we have de-
fined in I i and Na two pseudopotentials PP2 cor-
responding to arbitrary changes bR, = +0.3 with
respect to PP1. In K, the minimization procedure
gives a core radius R, = 2.30 for PP2, to compare
with R, = 2.10 for PP1. In aluminum, a rather ac-
curate minimum is obtained for R, = 1.23. The re-
sults for the PP2 potentials are summarized in
Table IV.

C. SSM calculations

With these numerical values of the pseudopoten-
tial parameters, the SSM calculation of &«c~ has
been performed. The potential U(r) [Eq. (3)] has

TABLE V. Vacancy-formation energies in Li, Na, K, and Al. Ez~F is calculated in the spherical solid model for
various pseudopotentials simulating the surrounding ions. E~ is obtained by adding the binding energy to E&scF. The
sum of the spherical and nonspherical terms, E~ and E~, respectively, gives the vacancy energy at constant volume

Adding the relaxation energy E& gives the total vacancy-formation energy to compare with experiment.

Pseudopotential Eases (Ry) E~ (Ry) EI (eV) E& (eV) Ef (eV) Ez (eV) Ef (eV) Expt.

Li
PP1 Rc ——1.29
PP2 Rc=1 26
PP2 Rc = 1.32

PP1 R~ =1.53
Rc = 1.50

PP2 Rc -—1.56

0.5641
0.5643
0.5639

0.5229
0.5231
0.5227

0.0248
0.0250
0.0246

0.0322
0.0324
0.0320

0.338
0.340
0.335

0.439
0.441
0.436

0.064
0.073
0.057

0.052
0.058
0.040

0.402
0.413
0.392

0.491
0.499
0.476

-0.09
-0 ~ 09
-0.09

Q. 11
-Q.11

0.11

0.31
0.32
0.30

0.38
0.39
0.37

0 34~0 04'

0.42 +0 03

PP1 R0 ——2.10
Rc=2 30

0.4445
0.4434

0.0334
0 ~ 0323

0.455
0.439

0.074
0.037

0.529
0.476

0.12
Q. 12

0.41 p 0.39
0.36

Al
PP Rc=
PP2 R = 1.23

4.2470
4.2328

0.0124
-0.0018

0.169
-0.024

1.180
0.517

1.349
0.493

-0.04
-0.04

1.31
0.45

0.66+0 04
0.69 + 0 ~ 03

Reference 24.
Reference 25.
Reference 26.

~Reference 27.
'Reference 28.
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TABLE VI. Parameters, as estimated from the cal-
culations by Manninen et a$. , for Thomas-Fermi linear-
response function of the defected lattice.

Li

Na

Al

0.100

0.074

0.047

0.128

1.411

1.371

1.645

1.505

been obtained by a straightforward summation in
reciprocal space, for K vectors up to a length of
12 x 2w/a (a is the lattice parameter). The spheri-
cal solid was confined in a box of radius R, = 8R~.
The mesh of points for numerical integration was
divided into an exponential region (step of approxi-
mately 0.03) for small r and an arithmetic region
(step of approximately v/30k+) for large r. In or-
der to obtain a good convergence in the angular
momentum expansion (I —I„), U(r) was truncated
at a radius R~ and replaced by 0 for r larger than
R„, where its effect was then treated as a pertur-
bation. In lithium for instance, the difference be-
tween the values of E~sc~ for a calculation with
l = 7 and R„=6.92 a.u. , and a calculation with l
= 10 a.nd R„=10.22 a.u. [I (I + 1)/R„' = const] is
2.10 ' Ry, showing that the perturbative treatment
of U(r) in the region r & R„ is perfectly accurate.
A step bk= 0.025 has been used for integration in
k space. For a description of the numerical tech-
nique applied to the iterative process, the reader
will refer to the paper by Manninen et al. '

The improvement due to the use of the exact ion at
the center of the perfect lattice has been tested.
In the case of lithium, where the effect is large,
the substitution of the pseudopotential PP1 to the
exact ion at the center causes a 0.003 Ry decrease
in E~~cz (12/o of E&). In Al, it causes an increase
in E~scF as large as 0.047 Ry (95/0 of Ez).

In Table V are shown the numerical values of
E& [Eq. (18)] for the various pseudopotentials PPI
and PP2. Although these numbers do not repre-
sent the measured vacancy formation energy, we
notice that their magnitude is comparable with ex-
perimental data in the alkali metals. On the other
hand, E& is much smaller than experiment for al-
uminum, and even negative with potential PP2.
The nonspherical contribution E&' is thus expected
to be very large in Al.

D. Nonspherical contribution

The simple model described in Sec. 1V [Eq. (35)]
has been applied to the calculation of the non-
spherical contributions to the vacancy energy. In
Table VI we show the values of the parameters P
and A in the analytical form of f (q) [Eq. (37)]. The
results for E&' are given in Table V. For the al-
kali metals, E&' typically amounts to 10/o or 20Vo

of E&, with important changes when the radius R,
is varied. Nevertheless, this term remains small
enough to justify our approximate treatment. The
situation is entirely different in Al, where E&' is
much larger than E&. This fact is not surprising
indeed, since 5V, is proportional to Z, f to Z'~',
so that E&' is proportional to Z' ', the mean value
being about 0.06 eV in the alkalis, a contribution
of the order of 0.80 eV may be expected in Al. We
find 1.180 eV for PP1 and 0.517 eV for PP2. We
conclude that the treatment of E&' as a corrective
term is not founded in Al, and that the nonspheri-
cal ionic potential should be treated on the same
basis as the spherical one. The SSM approach to
defects is probably irrelevant for metals with a
valence greater than one.

E. Comparison with experiment and conclusion

According to Eq. (20), the relaxation energy Ez
must be added to E&= E&+E&' before comparison
with experiment. For the alkali metals we have
used the values of E~ calculated by Ho' in local
pseudopotentials, and for Al the value of Finnis
and Sachdev. " Qf course, these numbers do not
exactly correspond to our pseudopotentials PP1
and PP2, but they allow an estimate of the total
vacancy-formation energy. In the alkali metals,
the full E& are in satisfying agreement with experi-
ment. The spherical model is well suited for va-
cancies in monovalent metals and accurate vacan-
cy-formation energies will be calculated provided
that a more careful linear-response theory will be
applied to the nonspherical term. The recent work
by Kahn and Rasolt" seems to be very promising
in that %ay. For divalent or trivalent metals, the
model is hopeless and cluster calculations are
likely the relevant approach to the problem.
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