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%'e have studied theoretically the energy distribution of electrons generated in solid aluminum by

uniformly distributed electron sources of various energies. Inelastic cross sections for energy loss and

secondary electron creation are inferred from the electron-gas model for those electrons which are in the

conduction band. Inner-shell excitations are treated using atomic models. Slowing-down spectra are

computed for several monoenergetic sources and for P particles from the decay of radioactive ' Au.

Comparison with experimental data is made.

I. INTRODUCTION

The distribution in energy of electrons generated
in condensed matter by ionizing radiation is of
IQucll intel est 1n 1adlat1on physics. A theory of
electron slowing-down in matter was first formu-
lated and used for practical calculations by Spen-
cer and Pano. ' ' The Mgf lier cross section for
electron-electron scattering was employed to com-
pute the 5-ray flux generated by electrons interact-
ing with the medium. This flux when added to the
flux of electrons slowing down from higher ener-
gies gives the total flux in the medium at arbitrary
energy. The Spencer-Fano appx'oach as originally
employed is strictly valid only for energies large
compared with the binding energies of the most
tightly-bound electrons in the medium. At energies
of the order of tens of rydbergs, even in low-Z
materials such as aluminum 'and silicon, the Mg(l-

ier cross section is inadequate to describe 5-ray
distributions in single collisions. Following this
work, slowing-down spectra in gases were comput-
ed by Platzman and his collaborators~ ' and used
by them to determine, among other things, the
average enexgy required to produce an ion pair by
heavy charged particles. Although electron slow-
ing-down spectra in solids should be intrinsically
more difficult to measure than the corresponding
quantities in gases, extensive measurements have
been carried out on the former. Birkhoff and his
co-workers~'8 for some time have been making such
measurements using the Keplertron, a spherical
electrostatic electron spectrometer with unusually
high transmission characteristics, which they
designed and constructed.

In this work, we have solved the Boltzmann
tx'ansport equation to obtain numerical values of
the slowing-down flux for both monoenergetic
sources and for P particles from the decay of ra-
dioactive '"Au in the medium of Al IQetal. We
have employed the electron-gas model to obtain

differential inverse mean free paths for electrons
of various energies interacting with the valence
electrons in Al. Inner-shell exeitations are de-
sex ibed by atomic models and evaluated within the
Born approximation. The distribution in energy
of Auger electrons from the filling of inner-shell
vacancies is al'so estimated.

II. STATISTICAL BALANCE EQUATION FOR ELECTRONS

Energetic electrons with energies of the order of
rydbergs created throughout a medium will be
scattered into lower-energy states through inelas-
tic collisions with the electrons and ions constitut-
ing the mediurQ. At the same time, a gx'eat number
of secondary electrons with much smaller energies
will be generated. If the medium is isotropic and
uniform, and source electrons are born at a con-
stant rate, attention may be focused only on the
energy dependence of the slowing-down spectrum
regardless of its variation with space and time.
Electron slowing-down spectra are ordinarily
treated theoretically using the Monte-Carlo meth-
od or the Boltzmann transport equation method.
We will discuss the transport equation method
here.

Suppose there are N(E)dE electrons born per
unit voluIQe in the IQediunl 1n the infinitesiIQal
energy range between g and g +dg. The equation
that expresses the statistical balance between elec-
trons px'oduced in this range and electrons scat-
tered out through inelastic collision processes is
given by

((z)sz J ~(z, z')uz'

=)((z)uE+ 1 uz'(()")[ (z', z'-z)

+~,(z,z)]dz, (i)

where p(g) dg represents the electron flux at the
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energy range between E and E +dE. 7 (E,E') is the
differential inverse mean free path (DIMFP) and
describes the probability per unit path length for
an electron with energy E to lose energy g' per
unit energy through interactions with the medium.
v, {E',E) is the DIMFP for an electron with energy
F.' to generate a, secondary electron with energy E
per unit energy interval about E.

In the case of inkier shells, it is assumed that the
binding energies associated with each shell have
negligible widths and that the DIMFP for the pro-
duction of secondary electrons from a given ith
sheQ may be written as

~„(E',E) =~,. (E'„E+@&,'), (2)

where N&~ is the binding energy of the ith shell.
The contx'ibution of Auger electrons generated in

the filling of vacancies in inner shells may be in-
cluded as an additional source term in Eq. (1). The
details of this pxocedure are discussed below.

m. ELEn'RON INELASTIC CO& LISIONSrN ALUMINUM

METAL

A swift electron traveling in a solid may lose
energy to the medium through numerous types of
inelastic collision processes. For instance, radi-
ative losses may become important at relativistic
velocities. ' On the other hand, the most important
interactions for very-low-energy electrons (-1 eV)
may be the generation of phonons and electron-hole
pairs in the immediate vicinity of the Fermi level.
In the energy region considered here, from the
Fermi level to -1 MeV, the significant energy
losses by an enexgetic electron are assumed to be
due to electron-electron interactions which give
rise to the genex'Rtlon of electron-hole palrsy col-
lective oscillations, and inner-shell excitations
Rnd lon1zatlons,

In this work, we have treated electrons in the
conduction band using an electron-gas model.
Electrons belonging to inner shells are studied
using numerically specific/ atomic generalized
oscillator strength (GOS) functions obtained from
theory.

A. Differentia1 inverse mean free paths

g. Conduction band

Lindhard's pioneering wox'k on the electron gas'0
has had much impact on solid-state physics. His
dielectric function is known to represent in a rea-
soname way the x'esponse of electrons in the con-
duction band of free-electron-like metals to ex-
ternal perturbations. Even though it is derived
from a first-order, self-consistent, time-depen-
dent Hartree approach, it has been shown that

where z, =-,'[(a+I)'~'+(a+I-x}'~']. The step
function e(e -x} ensures that no electrons lose
enough enex'gy to fall below the Fermi level. Also
z =k/2k+, x =8'&u/Ez, Rk is the momentum trans-
fer, k{d is the energy transfer, go is the Bohr ra-
dius, e, „ is the Lindhard dielectric function of the
electron gas, and Skz and g~ are the Fermi mo-
mentum and energy, respectively. Note that all
energies here are measured from the Fermi level
and in units of the Fermi enex gy. The integration
over g ln Eg. (3) ls restricted 'to the region 1I1 which
energy Rnd momentum transfers by the incident
electron are compatible and in which the Pauli
exclusion principle is satisfied.

The function e~ „satisfies the basic sum rules

x Im(e~ „)dx =-,'n«~2 (4)

-j.
g-Im I dx = ppxp p

0 ez, x

where x~ = (4H'ne'/m)/E~ and n is the density of
electrons in the electron gas.

The I.indhard dielectric function may be written
explicitly as

c~ „=I+(y'/z') [j,(x,z) +iy', {«,x)],
where X'=(va, k~) ',

x ' z -x/4z +If,(x, z) = —,'+ —1 —z — ln1 0 3 ~ -«/4~ -1
x ' z +x/4s +1

S~
' 4~, x+«/4z - I '

and fg{«~z) =xx/Bg ln region Iq (v/Bz) [1—(2 -«/
4z)'] jn region G; 0 in region III. Region I is
bounded by the lines x =0 and x =4z(1-z). Hegion
II is bounded by x = 4@(I -z), x = 4g (z + 1), and
x =4z(z —1}. Hegion Ill consists of the remaining
part of the zx plane. Figure 1 shows these three
regions in the zx plane. The dot-dash line in Fig.
j. shows a representative energy-momentum com-
patibility curve for the incident electron, x =4@[(e
+ I)'~'-z], for a particular energy c =B. Energy
and momentum transfers are allowed for all val-

many-body corrections to Lindhard's dielectric
function do not affect in an important way calcula-
tions of the stopping podex' of an electron gas, ""
nor calculations of electron inelastic inverse mean
free path '~~ made with it.

IQ the Boxn approximation, the DIMFP for Rn

electron with energy ggg to transfer energy XE~
to the electron gas is given by'5

e(a-x) '+ dc -1
)g (e, x) = —Im

1I'00 (& + 1) g 8 eg
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in units of ao, containing on the average one elec-
tron in the electron gas and is defined by
n =[—,&(a Or, }'] ', where n is the electron gas den-
sity. In these terms )t'= (

', w—')'("r, .We take the
conduction band of aluminum to correspond to an
electron gas with r, =2.07. For very large values
of x, the DIMFP function follows a x ' law, a char-
acteristic behavior for the case of collisions with

completely free electrons.
In region III where f,(x, z) =0, the integration of

Eq. (3) gives a nonzero contribution only in the
neighborhood of the plasma dispersion line and
represents the contribution from plasma oscilla-
tions of the electron gas. One may expand the real
part of zz in the denominator of Eq. (3} as a power
series about the plasma line, assume that Im(zz)
is a positive infinitesimal, and then evaluate the z
integral in terms of the derivative of c~ at the
plasma resonance. One obtains in this way the
DIMFP for plasma excitations

e(e -x) zo
v, (e,x}—

( 1)
~ f )

e(x —x;„)
go

x e(x,„-x),
z= k/2k'

FIG. 1. Regions of the zx plane in which different
representations of the imaginary part of the electron
gas dielectric function &2(x,z) must be used.

ues of z and x lying below this curve.
Two distinct physical contributions arise from

integrations of Eq. (3} over different regions of the
zx plane. In regions I and II, where f,( ,xzg},Othe
contribution is due to excitations of single electron-
hole pairs. 'lhe DIMFP function for these excita-
tions 7„may be calculated immediately from the
relation

r„(e,x)

e(e -x}
za, (e +1)

l&+»'I'+»» zf, (x, z) dz

,„„p/2»~, ~z'+)t'f, (X,z)]'+lt'f 2(x, z} '

(7)

where the limits on the z integration correspond to
values lying in regions I and II.

Equation (7) shows that the function (c +1)T„(e,x)
is independent of the incident electron energy & ex-
cept for its presence in the argument of the step
function. Figure 2 shows a plot of this function
against x for several different electron gas den-
sities. The density corresponding to a given curve
in the figure is characterized by its r, value. This
useful quantity represents the radius of a sphere,

where F =z'+X'f, (x,z), and the plasma resonance
line zo(x) is defined by F(zo, x) =0. The additional
step functions introduced in Eq. (8) represent,
respectively, the minimum energy that an incident
electron can lose without violating the energy-mo-
mentum compatibility condition and the maximum

energy that plasmons can possess without decaying
into electron-hole pairs. It is readily seen from
Fig. 1 that x;„and x,, „are determined from the

0.3—

0.2
4

+
lM

0.1

FIG. 2. Plot of ao (a+1)1~~ (e, x) vs x in electron gases
of various densities. Here y«(e, x) is the differential
inverse mean free path for energy loss xEF to electron-
hole pair excitation in an electron gas by a primary
electron of energy «F.
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FIG. 3. Plot of x~& vs & for various electron gas

to
densities. Here xi&~ is the minimum energy loss ne d de

generate a plasmon in the gas by an electron
energy ~

relations x;„=4z,(x;„)[(~+1)'~'-z,(x;„)]and

xm~„—480(xm~„) [1+zo(xm~„)]. Flgul'e 3 allows a plot
of x,.„vs q for various electron gas densities.
These curves indicate that electrons wraith energy
smaller than x,.„E~ are unable to generate plas-
mons in the system. This is, of course, only true
vrhen the plasmon damping is neglected. For very
large values of q, the approximate relation x;„
=1.3558+0.413je for the case r, =3.0V is usefuL
The maximum energy transfer x ~ in this case
has the value -2.02.

Figure 4 shows a plot of go(e +1)I ~(e, x) vs x for
various electron gas densities. These curves
vrould seem to indicate that infinite y values ax'e

P

adm1ss1ble vrhen g =@~. In fact, no electron can
achieve this energy loss and at the same time sat-
isfy the energy-momentum compatibility condition.
The value g~ at each value of r, is designated by the
x intercept of the vertical dashed line.

The plasmon damping effect, which takes into
account the finite width of the plasma dispersion
curve 1n the zx plane 1s expected to be important
primarily in the lwv-energy region. Although me
do not expect any notable changes in the electron
slovring-down spectrum, the inc'lusion of plasmon
damping does make more efficient the numerical
evaluation of EIl. (1) to obtain p(E).

To include the plasmon damping effect in Al mey

have used a simple Drude approximation to (e~) '
in the neighborhood of the plasma resonance line,
mi. th coefficients taken from experiment. In this
approximation, the imaginary part of the inverse
dielectric function is given by

PXXp

[X2 X2( )]2 + 2 2 (8)

'where p 1s a damping constant~ xp 1S the" plasma
energy in units of ~~, and x~(z) represents the

(10)
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FIG. 4. Plot of go(p+ 1)v& (g, x) vs x in electron gases
of various densities. The differential inverse mean
free path 7& (c,x) describes the probability per unit
length that an electron with energy qE+ shaQ lose ener-
gy xE& in creating a plasmon in an electron gas.

x~(z) =xii+3.54''+4.8z4

from the experiment of Svanson and Powelll for
aluminum. Figure 5 shovrs results of the calcula-
tion of 7, for several values of e (dashed curves),
together with the result obtained previously from
the zero damping dielectric constant (the solid
cul've). Tile damping coefficie11't Ry ls taken fl'0111

the work of Bmanson. '7

The problem of obtaining numerical values for
the DIMFP for the creation of secondary electrons
1S stl aightfoFward 1n pl lnc1ple but 1nvolves a fair
aIIlou11t of coIIlpll'ta'tlol1 Tile DIMFP 7' (e 6~) fol'
production of a secondary electron having energ

I
nex'gy

& g~ per unit energy interval about &' by a primary
electron of energy &ED may be written '

Ale k~ 5(6 -Ey -f +El)

eq, (u

%'here g&gz and g&g~ are the energy of the primax'y
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electron after the encounter and the initial energy
of the struck electron, respectively. v is the vel-
ocity of the primary electron and dQ' is the element
of solid aggle about the direction of the wave vec-
tor k'. The integral over k,. is to be carried out
over Fermi sphere of radius k~, and k' must lie
outside of this region. cq ~ is the dielectric con-
stant of the electron gas at wave vector q and fre-
quency , where one must put q=k'-k, .=k-k& and
id = (e —e&) E~/8' = (e' —e, ) Ez/K. We neglect ex
change scattering here.

After carrying out several integrations with
changes of variable, the remaining integral for
Eq. (11) may be reduced to a double integral. The
sequence of operations leading to the final result
is indicated in the Appendix. One finds

0.3

0.2

h

+

O
o.l

&s *2.07

6 7

7'q(eq e )

where e, =
2 [(q' + 1)'~ + (q' + 1 -x) '~ j and min (a, b)

represents the smaller of the quantities a and 5.
Figure 6 shows a plot of ao(e +1)7.,(e, e') vs e'

for various values of & and forr, =2.07. For q ~1

No DAMPING

FIG. 6. Plot ofao(e+l)v (q, e') vs g' in an electron
gas (r, = 2.07). The differential inverse mean free path
~~ (~, ~') describes the probability per unit length that
an electron with energy &Ez shall create a secondary
electron with energy q' Ez in exciting electron-hole pairs
in the electron gas.

a triangular distribution in g' is found. ' As g'in-
creases a strong peak develops at g'=2. At still
larger values of &, the distribution in &' becomes
proportional to (e') ', again giving the expected
free-electron-like distribution.
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2. Inner shells

We assume that excitation of all inner shells may
be described in terms of atomic cross sections.
Thus the DIMFP for an incident electron having
energy E to lose energy @~ in ionizing the i th inner
shell is given in the Born approximation as

7, (E, id) =n, dog

2vnie~ dk de
Era k d(u

where d~, /die is the differential cross section per
atom for the corresponding process, n, is the num-
ber of electrons in the ith shell times the atomic
density of the medium, and e is the electron charge. .

The generalized oscillator strength, df;/die, as-
sociated with the ith shell of each atom is defined
by

I

hO-~ I

0 zp 2 3

FIG. 5. Plot of ao(a+1)q-& (e,x) vs x in an electron gas
(r, =2.07). The solid curve is the result obtained from
Lindhard dielectric functi. on with no plasmon damping.
Dashed curves are results obtained using the Drude di-
electric function with damping coefficients taken from
experiment.

Here m is the electron mass and

F, o ——(p, k(g -Serai' lp e'"''&[0),

where l0) and IQ, E) are, respectively, ei'genkets
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the generation of intershell Auger cascades. " For
low-Z materials, the emission of Auger electrons
is more likely than photon emission. ~' For present
purposes, we neglect details of the Auger process-
es and assume that Auger electrons are produced
by filling of a hole in a given shell by an electron
from the adjacent shell with smaller binding en-
ergy. The contribution to the electron slowing-
down spectrum from Auger electrons is thus ob-
tained by adding monoenergetic electron sources,
X(E,) 5(E -E&), at various characteristic Auger
energies, E„ to Eq. (1). Here the Auger source
density at energy E, is given by

0.02

0.0&
20 25 30

~/4

FIG. 7. Representation of (E/mo) do 2&/d~ as a func-
tion of e/R for several values of, electron energy E.
Here d02&/de is the differential cross section for ion-
ization of the Al 2p shell by an electron of energy E,
ao is the Bohr radius, and 8 is the rydberg energy
Pg=&3.6 e7).

When an inner-shell electron is removed from an

ion core, the vacancy it leaves is filled within 10 "
to 10 ' sec by an electron from an outer shell.
The energy liberated in this transition may be
taken up by the radiation field or it may be ab-
sorbed in the creation of an Auger electron, or in

of the ground state and the ionized state which is
specified by its energy E and a set Q of all the oth-
er requisite quantum numbers. The sum over r,.
runs over all coordinates of electrons in the ith
shell of the atom. " We consider here only tran-
sitions to the continuum. Sum rule considerations
given below indicate that transitions to discrete
states may be neglected in this work.

Model calculations have been employed in Eq.
(14) for the K and I, shell of aluminum. For the
K shell, we have used the hydrogenic model. " For
aluminum L,, and L~ z subshells, we have employed
the numerical results of Manson, "which were
based on a Hartree-Slater central field potential
model. Figure 7 shows some representative re-
sults of the model calculation for differential cross
sections for the ionization of aluminum L~ z sub-
shell. Note that the energy loss by the incident
electron in exciting this shell is given by 5+ = &

+5.959,, where 5.95@, is the binding energy of the

L~ ~ subshell of aluminum and@ =13.6 eV is the
rydberg energy.

3. Auger electrons

where M„. is the number of Auger electrons pro-
duced with energy E,. following the creation of a
vacancy in the jth shell, and g,. (E) is the electron
inverse mean free path at energy E for the ioniza-
tion of electrons from the jth shell. The matrix
M, &

is determined as follows. In this work, for
example, we have considered the filling of a vacan-
cy in the Al K shell by an electron from the Al L~ z
subshell. The filling will create an Auger electron
having energy E~=@co~ —2k~~~ ~ and will give rise
to two holes in the Al L~ ~ subshell. Then each of
the Al L~ z subshell vacancies will give rise to two
holes in the conduction band and an Auger electron
with energy El, =—h~~ ' -E~. Therefore, M«
=Mr, ~ ~, L, q ~ = 1 and ML, q ~, g =2. We thus account
for intershell Auger cascades in a schematic way
which should be accurate enough for our purposes.

We neglect Auger electrons from the filling of
holes in the conduction band since these will be-
come important primarily for energies very close
to the Fermi energy. Ritchie" has studied the
characteristics of electron-hole cascades in this
region. Gadzuk and Plummer" have found experi-
mental evidence for such cascades in field-
emission work.

B. Inverse mean free paths

Individual contributions to the electron inverse
mean free path (IMFP) from each inelastic col-
lision process are obtained by integration of the
corresponding DIMFP over the energy transfer.
Inelastic collisions resulting in excitation of inner-
shell electrons to discrete energy levels have not
been considered. These collisions contribute neg-
ligibly to the total oscillator strength as may be
demonstrated using the sum rule" Z, =f df;/d+ dv,
where g, is the number of electrons per atom in
the ith inner shell. If one integrates the GOS func-
tion for a given shell at a given momentum trans-
fer over a sufficiently wide energy transfer region,
one finds that the theoretically expected total oscil-
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FIG. 8. Inverse mean
free path (IMFP) of elec-
trons vs electron energy
in Al metal. The electron
gas model is used to com-
pute p„, the IMFP for
electron-hole pair creation,
and p&, the IMFP for plas-
mon creation, for conduc-
tion band electrons taking
r, =2.07. As described in
the text, p& is computed
both including damping and
neglecting it. The IMFP
for generation of a vacancy
in the Lz shell, pz, an
that for the Lzz, zzr shell,
PL, zz rzz, are computed from
atomic models. pToT is-
the total IMFP. Data from
experimental measurements
of the attenuation length of
electrons in Al, from vari-
ous sources (see text), are
included. Pz is so small
that it does not show on
this plot.

lator strength has already been used up by the ion-
ization process which leaves very little oscillator
strength for discrete excitations. In our model
calculations, we found that fr = 3.0 for the alumin-
um K shell and fz, ,

+fz, =8.0, where f, = J, de(df&/
d&d), essentially independent of momentum trans-
fer. Figure 8 shows the results of our calculations
of the IMFP versus electron energy using the mod-
els described above for the inelastic collision pro-
cesses in aluminum. Results for energies above
10 keV have been corrected for relativistic effects
in an approximate way by replacing the kinetic en-
ergy E in the denominator of EIIs. (13) and (3) by
(-,' mv'), which relates to E by —,

' mv' =-,' mc'[1 —(1
+E/mc') '], where c is the speed of light.

Some experimental values from a number of dif-
ferent experiments are also plotted in Fig. 8. The
points at large incident energy (~10» eV) are taken
from measurements of the mean free path for plas-
mon emission. "'~'" Those at intermediate energy
(50-1500 eV) were inferred from measured escape
depths for Auger electrons, "while the points at
energies less than -10 eV relative to the Fermi
level were inferred from transmission and photo-
emission measurements. ""

~. NUMERICAL METHODS AND RESULTS

Although Eci. (1) appears simple, the task of ob-
taining solutions from it is by no means straight-
forward because numerous inelastic DIMFP func-
tions over a wide energy region are employed and

their cumulative contributions to the slowing-down
fluxes require careful consideration. The standard
numerical method for solving the equation involves
approximating the integrals as sums and using a
suitable integration formula, e.g., the Simpson's
rule, for the integrals. However, it is impractical
to use this direct method for the computation of
electron slowing-down spectra over the wide range
of energies which the Keplertron data covers. The
work would require very large computing times due
to the small energy mesh size needed for accurate
evaluations.

Before describing solutions corresponding to
large source energies, it is inter~sting to discuss
electron slowing-down spectra fo'r low-energy
monoenergetic sources in which inner-shell ioniza-
tions are not important. In this case, N(E) is re-
placed by 5(E —EA) in EII. (1) and the direct numer-
ical method may be.employed. %e have used Simp-
son's rule to convert the integrals of EII. (1) to
sums at energies when &e summation runs over
odd energy points, and trapezoidal rule over the
first interval and Simpson's rule over the remain-
ing intervals at energies when even points are
summed. "

The solid curves of Fig. 9 show plots of the slow-
ing-down flux jh(e) against G for an electron gas with
r, =2.07 due to sources of monoenergetic electrons
with energies &, = 5, 10, &5, 20. ' The flux is nor-
malized to a source density of one electron per A'
emitted per unit time. The peaks just below the
source energy correspond to electrons that have



16 ELECTRON SLOWING-DOWN SPECTRA IN ALUMINUM METAL 4309

Al (r = 2.07)
IO'

102
10o

)0

cd
100—

tO

5
)p2 I I I I

0 2 4 6 8

io
I I

t5

10 12 )4 (6 18 20

20

10

5 10 15 20 25 30 35 Qp

FIG. 9. Electron slowing-down flux, P(q) in an elec-
tron gas of r~ = 2.07 due to sources of monoenergetic
electrons with energies ep-—5, 10, 15, 20. Solid curves
are results without plasmon damping included.

FIG. 11.Computed electron flux spectrum P(q )
divided by ep for monoenergetic sources with energies
E'

p
= 10, 20, 30, and 40 in Al metal. The contribution

from inner shells is included. Plasmon damping is taken
into consideration.
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FIG. 10. Electron slowing-down flux in Al metal due
to a monoenergetic electron source with energy qp

=40. Curves B andA represent, respectively, results
calculated with and without the contribution from inner
shells.
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generated one, two, three, etc. , plasmons in suc-
cession. After several fluctuations as g decreases,
the flux becomes fairly smooth. In the region of
energy close to the Fermi level, the flux shows a
strong divergence, due to the fact that secondary
electrons are generated copiously in this region.
In the same figure, the results of calculations of
p(e) with the inclusion of plasmon. damping are
shown as dashed curves corresponding to the same
source energies. The damping effect smooths the-
plasmon loss peaks to some extent and, in addition,
shows somewhat smaller fluxes at the lower-ener-
gy region, compared to the undamped results. The
latter effect may be attributed to the larger stop-
ping power obtained in that energy region for the
damped case."

Figure 10 is a plot of the slowing-down flux p(e)
against e for a monoenergetic electron source with

energy q, =40 in Al metal, where curves j9 and A.

represent, respectively, results calculated with
and without the contribution from excitation of' in-
ner shells. In both cases, we have employed the
DIMFP for plasmon generation with plasmon damp-
ing considered. For high energies, the slowing-
down flux p(e) is actually smaller when the con-
tribution from inner shells is included than when it
is neglected. As energy decreases, inner shells
begin to make positive contribution.

Figure 11 shows the result of computed electron
flux spectrum y(e) divided by eo for monoenergetic
sources with energies &, =10, 20, 30, and 40 in Al
metal. Here again we have used the DIMFP for
plasmon generation for the damped case, and the
contribution from excitation of inner shells is also
included.

To find electron slowing-down spectra accurately
and efficiently over the wide energy range covered
by the Keplertron measurement, modifications of
Eq. (1) and the numerical procedure are both nec-
essary. First, electron slowing-down spectra ob-
tained by Spencer and Fano,"who used the con-
tinuous slowing-down approximation and the MII(lier
scattering cross section, are valid for energies
greater than several times the binding energy of the
most tightly bound inner shell. For aluminum, the
binding energy of the K shell is -114 Ry. Thus, we
have assumed that electron slowing-down spectra
obtained by the Spencer-Fano method were correct
for energies above E,=10 keV. To solve for the
electron flux at energies below 10 keV, one adds
to the source flux N(E) in Eq. (1) an equivalent
source flux S~~(E) obtained from the calculation of
the integral on the right-hand side of this equation
integrated between Eo and infinity. Electron flux
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at energies below E, may then be calculated from
solving Eq. (1), starting with a solution at E» ac-
cording to the distribution of the new source flux,
S(E) =N(E) +SSF(E). Figure 12 shows a plot of the

function S~„(E)vs E computed from a Spencer-Fano
flux appropriate to electrons from '"Au P parti-
cles liberated in aluminum metal. This flux dis-
tribution was computed from the Spencer-Attix
equation, ' assuming an allowed P spectrum. Here
we have normalized the flux to one electron born
per unit volume. At high energies, most of the
contribution to the flux is from degraded "Spencer-
Fano" flux electrons above E,. As the electron
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FIG. 13. Plot of the integrated source Qux [described
in Eq. Q6)] as a function of electron energy. Auger
electron contributions are included.
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energy decreases immediately below Ep, the flux
also decreases and reaches a minimum value. It
then rises steeply as energy further decreases. A
detailed plot of the source flux for energies close
to E„shown on the bottom left corner of the figure,
is needed for close examination because the plas-
mon contribution only extends over a limited en-
ergy region below Ep. The curve drops sharply
for energies below E, -E~ and contains no plasmon
contribution when E is less than Ep 2 02 E~, where
2.02 is the cutoff value shown in Fig. 4 for x, =2.0V.

As mentioned at the beginning of this chapter, the
direct numerical solution of Eq. (1) is impractical
for the present calculation because of the discon-
tinuity of the plasmon contribution to the new source
flux. . TheSe difficulties may be resolved by trans-
forming both sides of Eq. (1) into integrated forms.
Integrating Eq. (1) over the energy between E and
E„one gets

Ep E' @I

7 E pEy dEl vs E &Ej dEj dE
g~-g g

Ep
S(E') dE'+P 6I(E;)6(E'-E;)dE',

E E
101 102 10 10

ELECTRON ENERGY MEASURED FROM BOTTONI OF

FERMI SEA (eV)

FIG. 12. First collision electron source density
ga&(E) in Al, calculated from differential inverse mean-
free-path functions derived in this work, and from
Spencer-Fano Qux for electron energy above 10 keV.

(16)

where the second term on the right-hand side is due
to Auger electron contributions.

Figure 13 shows a plot of the integrated source
flux, i.e., the right-hand side Eq. (16), as a func-
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FIG. 14. Electron slowing-down spectrum in Al metal
due to ~ Au P rays. Solid curve is the result of present
calculations. Histogram is the spectrum calculated
from a Monte-Carlo code. Experimental values are
shown as open circles. The Spencer-Fano flux at
higher energies is shown as a solid line.

tion of E. The curve increases almost linearly on
a logarithmic plot as the energy decreases. Auger
electron contributions occur at -1380 eV for the
transition from the L~ z subshell to the K shell,
-100 eV from the conduction band to the L, sub-
shell, and -65 eV from the conduction band to the

L~ ~ subshell.
We have employed Eg. (16) using a modified

numerical method, i.e., applied Simpson's and
trapezoidal rules to the function p(E') rather than
to the integrand itself. The procedure is as fol-
lows. After converting the integrals over E' in Eq.
(16) into sums, we let E =E& =E,-ja, where a is
an energy mesh size. To calculate the flux p(E)
at energy E, we have assumed a parabolic expres-
sion Q(E') =aE" +bE' +c for the fitting of the func-
tion p over the region between E' =E,. and E,. „
where a, b, and c are determined by applying
Simpson's rule to p over energies E' =E&, E&

and E~,. If the mesh size is greater than the cut-
off plasmon energy, the rest of the sum over E'
between E, , and Eo may be evaluated using con-
ventional Simpson's and trapezoidal rules for the
integral. The modification is necessary if one

uses a bigger mesh size for energies because
again the plasmon contribution to the integrand
extends only over a limited energy range. The
modified technique has been applied to compute
electron slowing-down spectra in aluminum down

to energies of several hundred eV. At still lower
energies, slowing-down spectrum is shown in Fig.
14 together with the theoretical result from a
Monte-Carlo calculation' and experimental data
on the slowing-down flux of electrons from '"Au
P rays in aluminum metal. The first Auger elec-
tron contribution to the theoretical curve at -1380
eV can be seen just barely from the figure. Other
Auger electrons contribute to the flux at -100 eV
and -65 eV. The vertical ticks at 110 eV and at 75
eV represent uncollided Auger electrons and cor-
respond to 1.24x10' and 3.0x10' electrons emitted
per cm', respectively. The first and second plas-
mon satellites of these electrons are plainly
seen. The two theoretical curves agree better
with each other than with the experiment. The
small differences between the theoretical results
for energies between 10' and 10 eV are due to the
different models and methods of solution employed.
The fairly good agreement between theories over
the wide energy range suggests that a re examin-
ation of the experimental data is necessary.

V. DISCUSSION

We have determined distributions in energy of
electrons slowing down in Al metal by employing
the Boltzmann transport equation. Various models
for different shells of electrons were used to ob-
tain theoretical inelastic differential inverse mean
free paths for this work. Energy flux spectra were
computed for both monoenergetic electron sources
and for P particles from the decay of radioactive
'"Au in Al metal. The agreement between our
model calculations and experimental measurements
using the Keplertron is fairly good, especially with
respect to the magnitudes of these two in the high-
energy region. The consistent discrepant'ies be-
tween theory and experiment in the low- and interm-
ediate-energy regions require further study.

In this work, we have neglected the quasicontin-
uous energy loss by electrons due to phonon gen-
eration in the metal. We expect these processes
to be quite unimportant compared with electronic
excitations until electrons have slowed to energies
close to the Fermi level. Similarly, contributions
from Auger electron-hole cascade processes in the
valence band should be negligible~ until energies
are quite small. We have neglected the generation
of surface plasmons and nonlinear effects due to
interaction among excited electrons and holes.
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(b)

FIG. 15. Feynman diagrams representing processes
by which a hot electron may lose energy to a free elec-
tron gas. (a) shows a direct process and (b) shows an
exchange scattering.

These omissions should have little effect upon the
computed slowing-down fluxes under conditions
existing in the experiments with which we com-
pare.
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APPENDIX: DERIVATION OF DIMFP FOR THE

GENERATION OF SECONDARY ELECTRONS

FROM AN ELECTRON GAS

The process which will be considered is shown
in the Feynman diagram of Fig. 15(a). An incident
electron with momentum h k interacts with elec-
trons in the Fermi sea. The polarization propa-
gator which describes the process is given by

1 (2, 1) = 2, p f dw

q Cq~ Qf

x exp [i (q r„—(pe„}],(17)

where r21 2 1P t21 t2 t1 and L' is the volume
used for normalizations.

We will neglect the exchange process shown in
Fig. 15(b). Kleinman" concludes that contributions

FIG. 16. Momentum diagram for the scattering pr' o-
cess shown in Fig. 15 (a).

from this process are canceled by higher-order
corrections to the IMFP.

The DIMFP g, (q, q') for production of a second-
ary electron having energy e'E~ by a primary elec-
tron of energy qE~ is given by Eq. (11). The inte-
gration region over k, and Q' may be represented
by the momentum diagram for the scattering pro-
cess as shown in Fig. 16. One may carry out one
of the k,. integrals immediately by utilizing the 5
function

k2
5(e -~z —~' +)a=5 g ~ (k' -k,.), (18)

rnE~

where Tc=k —k', the expression k =k-k'+k, and
the relations between energy and wave' vector for
a free electron have been used. If one erects a
system of Cartesian coordinates with origin 0 at
the center of the Fermi sphere, the z axis parallel
to the vector Tc, and k' and k lying in the yz plane,

'

Eq. (11) then becomes

(19)

(20}

T~(Eq E ) =
2 @3 ch, dy, sm8' d8' . +, 4 ~

m vh + &0 I~q (gl g.=a ~sa ~

where (x„y„z;)are the components of the vector k,. in this system
The integrals over x,. and y,. are to be carried out over the circular area enclosed on a plane parallel

with the xy plane and at a distance k'cosP from the origin formed by the intersection of the Fermi sphere
with that plane. One may convert from the variables (z„y,} to polar variables (p, p) and utilize the rela-
tion sin8' d8' = (z/k) sinP dP. Equation (19) then becomes

2m 2 4E ff —oos (0& lk') sos 8) l 2r ki"} ~( i. ~)MS p
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Here q' and w may be explicitly expressed in terms
of p, p, and P due to the relations q=k-k, and +
=k/2m(k"-k, ') as

ables from (w, p) to [g ={r'+v')'~', X=r/r] and
then from (f, P) to (x,z). After interchanging the
order of the X and z in.tegrals, one finds

q2 =Q' sin2p +p —2pk' SMP cosp, (21) X
8 min(q, e'+1)

,(, ')=
( )

(g = (k /2m)(k" sin'P —p') . (22)

~'= —,
' [x' —v'+r' —2r(x" —p')'~'cosy],

Changing variables to z = q/2k+, x =@'&u/Zz, e, e',
& =p /k, and p =(k'/kz) cosp, Eqs. (20)-(22) become

k'~e
'T~ 6~6 )=

Ba,(c +1) m'k

(y g2)l/2
d@X dp

x
t(~f+y)l/2 ( p+j )1/2] /2

[(~'+1) ~-(E''+i- )~/ ]/2 ~
~ &c,x~

(26)

Equation (26) has been used for numerical eval-
uation of the DIMFP for the creation of secondary
electrons in the electron gas.

It may be verified from Eqs. (2) and (26) that the
IMFP for scattering of a primary electron to all
allowed lower energies by electron-hole pair cre-
ation is identically equal to the IMFP for the pro-
duction of secondary electrons of all possible en-
ergies. That is

X =g P —'V ~ (26)

Equation (22) may be simplified by changing. vari- l e.(., ")a = l ...(., ")~" .
0 0

{27)
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