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The density-gradient expansion for the kinetic energy is studied by application of the expansion to an

inhomogeneous system of noninteracting fermions, and its convergence demonstrated. The inhomogeneity in

the density is created by assuming the electrons move in an effective potential which is linear in the positive

half space and constant elsewhere. It is shown that the original von Weisacker coefficient of the first density-

gradient correction is inappropriate for both rapidly and slowly varying densities. The coefficient reduced by

a factor of 9, however, is appropriate for all density profiles provided that the second density-gradient

correc'tion is included for the rapidly varying case. The applicability of the expansion to the metal-surface

problem is discussed, and the inclusion of the second density-gradient correction with its nonlinear response

contributions shown to be of major significance in such calculations. A semiempirically determined value of
1.336 for the coefficient of the second gradient correction which leads to results which are essentially exact

over a wide range of density profiles including the metallic range is proposed.

In the density-functional formalism of Hohenberg

and Kohn, ' the ground state of an interacting in-
homogeneous electron gas i6. a static external po-
tential is written as a functional of the density.
One of the difficulties of the Hohenberg-Kohn

theorem is the construction of an appropriate func-

tional representing the kinetic energy. Employing
the Hohenberg-Kohn formalism, Kohn and Sham'

have shown that it is possible to obtain the exact
ground-state energy of the system by solving self-
consistently a set of single-particle Schrodinger-
like equations, provided the exact exchange and

correlation energy functional of the density is
known. In essence they treat the kinetic energy
as a functional of the density of a noninteracting
electron gas. The set of single-particle equations

to be solved for the N-particle system is

[-—,' V + V(p(r)}]$,(r) = c;(I);(r),
N

p(r) =Q y*(r)q, (r),
i=1

where p(r) is the density and V(p(r)) is the effec-
tive potential in which the particles move, being
the sum of the electrostatic and exchange-correla-
tion contributions which are themselves dependent

on the density. The exact exchange-correlation
energy functional of the density is of course un-

known and must be approximated. However, the

kinetic energy E~(p(r)) within this self-consistent
formalism can be treated exactly and is given as

&(P( ))=g ~, —
/ &(P(~))P(~)& .

(=1

Thus within the density-functional formalism of
Kohn and Sham, the kinetic energy (and all other

properties) are dependent on a knowledge of the

single-particle wave functions t(()r)
There also exist variational formalisms ~

whereby the density of an inhomogeneous inter-
acting electron gas may be obtained accurately
without having to resort to the self-cons'stent so-
lution of Schrodinger-like equ'ations or the use of
correlated wave functions. Employing only crude
approximations to the exact wave function, these
variational principles lead to results for the den-

sity correct to second order as is the case for the

energy on application of the Rayleigh-Ritz varia-
tional principle. ' A generalization of these varia-
tional principles to the single-particle density
matrix' leads to accurate results not only for the

density but also the momentum density. ' Thus
within such a formalism one obtains directly the

density rather than single-particle wave functions
from which the density is obtained. In order to
determine the kinetic energy one therefore has to
resort' to the density gradient expansion for this
property. Of course, it is also possible to employ
this gradient expansion by using trial wave func-
tions or parametrized analytic forms for the densi-
ty. The latter approach has been employed for the
variational determination of metal surface ener-
gies' " in the jellium approximation and the re-
sults are observed to lie considerably below those
of the self-consistent calculations of Lang and

Kohn. " We have also recently applied' the varia-
tional principles mentioned above to the determin-
ation of the density at metallic surfaces correct
to second order. Thus we are interested in study-

ing the convergence properties of the kinetic-en-
ergy density-gradient expansion and in particular
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to arrive at conclusions regarding its accuracy
for the metal surface problem. In our study we

therefore restrict ourselves to density profiles
of the form that exist at metallic surfaces but
which can be made to vary either rapidly (corres-
ponding to low bulk densities) or very slowly (high

bulk densities} in comparision with the local Fermi
wavelength and screening length with the inter-
mediate densities corresponding to those existing
at metallic surfaces.

The density-gradient expansion for the kinetic-
energy contribution to the surface energy' of an

inhomogeneous electron gas may be written as"

Eos(p(r})=E~"'(p(r))+ E(~2)(p(r})+ E~"'(p(r)),

where

o"'(p(R) (oil =)"—f 'p(~)lp'"(o) p'"]&~-
a 10

(4)

E(2)(p(q~)
A. I Vp(r) I'

d
p(r)

(6)

g~pr 2 9 g pr gpr

1 Vpr 4

In the above equations E,"' is the Thomas-Fermi
(TF) contribution" to the surface kinetic energy
with p=k~z/Sv being the bulk density. In terms of

the Wigner-Seitz radius ~„ the Fermi momentum

k~= 1/nr „n '= (~ox)'~'. Withthe coefficient A. = 1,E~~'

is the first density-gradient correction originally
proposed by von Weisacker. " Subsequent rigorous
derivations"~' of this first gradient correction
valid for slowly varying densities have led to a
value of the coefficient X reduced by a factor of 9.
With the total kinetic-energy density written as the
sum of the TF plus first gradient correction, the
Euler equation for the density is

(3)T )' ') ~)2~, X Vp(r) ' X V'p(r) (~
(8)

where V(r) is the potential in which the noninter-
acting particles move and E the Lagrange multi-
plier ensuring the conservation of the total num-
ber of particles. For the example of a weakly
perturbed uniform system of noninteracting fer-
mions it has been shown"~ ' from the above equa-
tion that the original von Weisacker coefficient
gives asymptotically exact results for short wave-
length perturbations corresponding to rapidly
varying densities, whereas X=9 gives asymptotic-

ally exact results for the case of slowly varying
densities. The von Weisacker density does, how-

ever, lead to an upper bound for the energy. '4 For
atomic systems" the von Weisacker coefficient
leads to good densities for the outer part of atoms
as compared to those obtained quantum mechan-
ically whereas a coefficient of X=-,' appears to be
appropriate for interior densities. E,"' with the
coefficient & =1 is the second density-gradient cor-
rection valid for slowly varying densities as ob-
tained originally by Kirzhnits' and modified by
Hodges. " The first term of E~"' is the linear re-
sponse theory contribution to fourth order in the
gradient operator. The last two terms arise from
nonlinear response and their inclusion should shed
light on the importance of such contributions to
the metal surface problem.

The model-effective potential we use for the
study of the kinetic-energy density-gradient ex-
pansion is the linear potential model ' which
has also recently been employed" to study the
gradient expansion for the exchange-correlation
energy of the inhomogeneous electron gas. The
electron density is thus a function only of the co-
ordinates of the direction of the inhomogeneity.
The primary advantage of this model potential is
that by adjusting the field strength it is possible to
change the density from one which is extremely
rapidly varying to one which is very slowly varying
so that the gradient of the density can be physically
changed for each point in space. A second princi-
ple advantage of this potential is that it leads to
electronic densities in the metallic range (and
hence to all metal surface properties2'~} which

very closely approximate the self-consistently
obtained values of Lang and Kohn, "particularly
for medium- and high-density metals. Thus mean-
ingful conclusions regarding the density-gradient
expansion for the kinetic energy can be arrived at
for the metal surface problem. A calculation in
the step-potential model has recently been per-
formed ' but due to the limitations of this model ""
only trends with respect to the convergence of the
gradient expansion can be observed. In addition
this representation of the effective potential at a
metal surface does not lead to accurate densities.

We assume the potential which gives rise to the
inhomogeneous density profile to be

V(x) = Fxe(x),
where F is the field strength. In terms of the
slope parameter y~, E=—,

' k2~/xz, —,'k2~ is the Fermi
energy" and e(x) is the step function. The solution
of the Schrodinger equation for this potential is

—(2/L)'~' sin[kx+ 5(k)] for x ~ 0,x
C„Ai(K) for x~ 0,
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5(k, x„)= cot-'—1 Ai'( —L,)

vg, Ai(-l;)
(12)

where L, = (k2/k2~) (k~~)2/' and where Ai'(g) is the

where Ai(f) is the Airy function, L= (x -E/F)(2&)' '
and E is the energy. The normalization constant
C» and the phase shift 5(k) are determined by the
requirement of the continuity of the wave function
and its logarithmic derivative. Thus

C» = -(2/L)'/' sin5(k, xz)[Ai(- L,}]'

and

derivative of the Airy function.
The electronic density per unit surface area is

then

L
p(x) =

27r2

k~
k')l y»(x)l' dk (13)

and for purposes of overall charge neutrality we
assume a uniform positive background of density
p, = k»z/3v2 to end abruptly at x=a. With a change
of variables to y=k»x and q=k/kz, the density
and its first and second derivatives normalized
with respect to the bulk density are

dq (1 —q2) cos2[qy+ 5(q, yz)] for y ~ 0,3 1
1 ——

p(y)
2

1 (1 q2) 2
3y'/' dq

'q Ai'(t;) for y ~ 0
A(q y~)

(14)

1
1 —q qsin2 qy+5 q, y+ for y «0

1 dp(y)
1 (1 2 2

6y1~/3 dq Ai(g} Ai'(f) for y ~ 0,
A(q, y~)

(15)

1 d'p(y)
P dy

1
6 dq (1 —q2)q2cos2[qy+ 5(q, yz}] for y ~ 0,

0

1 1 2 2
6 dq [CAi2(f}+Ai'2(g)] for y~ 0,

A(q, y~)

(16)

where yz=k~x~ is the slope parameter, f=( y
—q'y/)y„' ', $2=q'y~ ', and A(q, y„)= f,Ai (-g,)
+ Ai"(-g2). Note that the density and its derivatives
as written in Eqs. (14)-(16)are universal functions
of the slope parameter y„. Large values of the
slope parameter correspond to slowly varying den-
sities whereas the y~=0 limit represents the in-
finite potential barrier model corresponding to a
very rapidly varying density. With these expres-
sions for the density and its derivatives, we then
obtain the various c'omponents of the density grad-
ient expansion Eok for the kinetic energy as given
above.

For particles moving in the linear potential V(x)
of Eq. (9), the exact kinetic-energy contribution
to the surface energy may be obtained"'" from
Eq. (3) asEl~8031+—— q5(q, y~) dq

k4~ 160m m 5

1

0 J

1
[~(P' y) —1'(P; )]P(y) dy . —

k~

This expression may be further simplified by ex-
ploiting the equality of the phase-shift rule of
Sugiyama "' to the charge-neutrality condition
whereby

1

q5(q, y„)dq
0

3 Aqy~

Furthermore, it can easily be shown that

(16)

1
q'~ q yp

0

1/3 1 1 4

y~+ ~
dq —q Ai( —K~) Ai'(-g ) .

A(q y&)
(19)

Thus Eq. (17) for the e~act surface kinetic energy
as a universal function of the slope parameter may
be written as
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~E 1 64~F 4$F
kF 160m 35m 3m

(1 —q')(3+ 5q')
A(q, y~)

x A i(-i', ) Ai'(- i.,))

0.5 1
0

SLOPE PARAMETER y
F

2 3 4

(20)
In Fig. 1 we plot the variation of the universal

functions of the exact kinetic energy E~/k~~ together
with those of the Thomas-Fermi (TF) term E„"'
and the sum of Ek"' plus the first gradient correc-
tion Ek ' for both X=1 and —', as a function of the
slope parameter yF. We also plot the universal
function of the sum of all three terms of the gradi-
ent expansion Ek with & x~ and y= 1. Note that
the origin of the abscissa in the figure is at yF
=0.5. The graph demonstrates definitively the
convergence of the gradient expansion E, as the
density becomes more slowly varying. The per-
centage errors in the results for the TF, TF plus
first gradient correction and TF plus first and
second gradient corrections over this range of
slope parameter are listed in Table I. Over the
entire range of slope parameter considered, the
Thomas-Fermi term may be observed to be a very
poor approximation to the exact result even for
slowly varying densities. At yF = 6, this error
is still 4%, whereas E~os has converged to within
0.2% of the exact result. For rapidly varying den-
sities, TF fails as anticipated being in error by
273% at ye=0.5. The addition of the first density-
gradient correction improves results considerably
becoming a better and better approximation as the
density becomes more slowly varying. For ex-
ample at yF =1, the addition of Ek"' reduces an
error of 86% in the TF result to 44%, and at y~ = 6
gives rise to a, result within 0.8% of the exact val-
ue. As may be observed from column 4 of Table I,
the inclusion of the second density gradient term
to the series removes practically all error for
yF - 2.0. However, even for rapidly varying den-
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FIG. 1. Plot of the universal functions of the exact
surface kinetic energy Ek/kF4 (denoted by Ek), and those
of the Thomas-Fermi (TF) contribution Ek, TF plus
first gradient correction EJ» + EIt {X=1and 9 ), and TF
plus first and second gradient corrections E~a& + E~
(&=-)+dk (y=1), as a function of the slope parameter
PF.

sities, this form of the second gradient term gives
rise to substantial corrections in the appropriate
direction. At y~= 1, E~~s is in error by only 16%%d.

Having demonstrated the convergence of the den-
sity-gradient expansion for the kinetic energy, we
next wish to understand how meaningful the ap-
plication of such an expansion is for the metal
surface problem. In order to do this we must de-
velop a correspondence between a given bulk den-
sity and a specific density profile at the surface
as produced by this model calculation. In other
words, we must relate the slope parameter yF
which determines the density variation at the sur-

TABLE I. Percentage errors in (i) the Thomas-Fermi (TF) contribution Ek( to the surface
kinetic energy, (ii) the sum of TF and first gradient correction Ek +E'k, and (iii) in the sum
of TF and first and second gradient corrections Ek ——Ek +Ek +Ek3 .

Slope
parameter E(1)

(Thomas-Fermi)
E(i)+ E(2)

k k
(x= ')

EGE
k

(Z= ', ;q=1)
EGE

k

(X= ', ;q=1.336)

0.5
1 ' 0
1.5
2.0
3.0
4.0
5.0
6.0

273
86
46
30
15
9
6
4

161
44
20
11

2

1
0.8

41
16
7
4
1
0.4
0.3
0.2

0
6
3
1
0.1
0.2
0 ~ 05
0.01
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FIG. 2. Full line is a plot of the correspondence be-
tween the Wigner-Seitz radius r, and the slope param-
eter yz as determined by the Budd-Vannimenus theorem.
The dashed curve is the correspondence as determined
by the variational principle for the energy.

face to the bulk density or equivalently, the Wig-
ner-Seitz radius r, defined as ~3 wr,'=1/p. One
criterion we use is the Budd-Vannimenus theo-
rem, "'"which relates the difference in electro-
static potential V„between that at the metal sur-
face and that in the bulk, to the energy per electron
for the uniform electron gas. According to this
theorem,

~v=v„(s) —v.,(- )= p „", (21)

where ~~ is the sum of the kinetic, exchange, and
correlation energies per particle for the uniform
electron gas. Employing the Wigner interpolation
formula" e, = 0.44/(r, +7-.8) for the correlation
energy per particle, we have LV in units of the
free-electron Fermi energy to be

aV = 0.4 —0.0829r, —0.0796r', /(r, + 7.8)' . (22)

We obtain the difference hV for any arbitrary value
of the slope parameter y~ by using the expression
for V„ for this model potential given in Ref. 27,
and the corresponding value for the bulk density
from Eq. (22). A plot of this correspondence be-
tween y~ and r, is given in Fig. 2. Another method
by which we may relate the bulk density to the
slope parameter is by application of the variational
principle for the energy. ' We write the surface
energy as the sum of the kinetic, electrostatic,
and the exchange-correlation energy as determined
say in the local density approximation, and min-
imize the energy with respect to the slope para-
meter for a specific value of r, . The results of
the application of this criterion for the correspon-
dence between r, and y~ are also plotted in Fig. 2.

Note that in either case the surface density of
metals (for which 2 ~ r, & 6) may be represented
by values of the slope parameter in the range
0&y~ &4. A study of both Figs. 1 and 2 thus in-
dicates that the density-gradient series for the
kinetic energy (with X= —,

' and y= 1) is an excellent
approximation for high-density metals, reasonably
good for medium densities, and poor for low-den-
sity metals. Qn the other hand, the sum of the TF
plus first gradient correction with X=-', leads to
poor results over the entire metallic range being
consistently well below the exact results. It is
thus possible to understand why the surface-energy
values of the statistical calculations of both Smith"
and Paasch and Heitschold" lie considerably below
those of the self-consistent calculations of Lang
and Kohn. " These authors employed parameter-
ized analytic forms for the density but included
only the first density-gradient correction for the
kinetic energy. They thus underestimated the
kinetic energy considerably which in turn led to a
lower value for the total surface energy. Thus
if the statistical approach is to be employed for
metal surface calculations it is imperative that
the second density-gradient correction as given
by Eq. (7) be included.

We have also plotted in Fig. 1 the variation of
E,"'+E~"' for the original von Weisacker coeffi-
cient X=1. It is evident that the use of this coef-
ficient leads to results for the kinetic energy
which are in substantial error over the entire
range of slope parameter considered in the figure,
even having~ the wrong sign for y~& 2.5. However,
based on the work of Jones as discussed earlier,
it is expected that the von Weisacker coefficient
should lead to convergence for the very rapidly
varying limit. In order to see whether this is the
case, we have extended our calculations to ac-
curately determine the various components of the
density-gradient expansion in the range 0 &y~ & 0.5
and the results are plotted in Fig. 3. Note that
y~= 0 corresponds to the infinite barrier potential
for which the density is most rapidly varying. A
study of the figure indicates that even for rapidly
varying densities the use of the von Weisacker coef-
ficient still leads to substantial errors and that even
in the infinite barrier limit there is no indication of
convergence. It does however have the right sign
for y~&0.25. On the other hand, the use of X=—',
is still a better approximation for y~ & 0.25 and
the addition of the second density-gradient cor-
rection improves matters still further. Of course,
for y~=0, E~ ' diverges. It thus appears that for
physical density profiles which are rapidly varying,
the choice of X=—,

' is still the correct one although
one must add in the correction due to the second
density-gradient term.
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FIG. 4. Variation of the coefficient X of the first grad-
ient correction which leads to the exact result for the
kinetic energy when only the first two terms of the ex-
pansion are considered, as a function of the slope param-
eter yF.
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FIG. 3. Figure caption is the same as that of Fig. 1.
The range of the slope parameter yF considered, how-
ever, is different.

An interesting question which thus arises is what
value of X would lead to the exact kinetic energy
if only the Thomas-Fermi plus first density-grad-
ient correction of the expansion were to be em-
ployed in the calculation. This is important si'nce
Eq. (8) has been solved in many applications in
atomic and molecular physics and for the ~etal
surface problem" (with X= —,

' ). We have therefore
plotted in Fig. 4 the variation of &= (E„E~&'&)/E»" ' as
a function of the slope parameter. The fact that
there is a substantial variation in the values of
X thus obtained indicates that no one value of the
coefficient will suffice over the entire range of
densities considered. However, for a specific
metal the correct value of X to be used in Eq. (6)
or in any parametrized density calculation can
be obtained from this graph since there exist rel-
iable criteria for the correspondence between the
slope parameter and the Wigner-Seitz radius. An
alternative approach would be to solve the Euler
equation (8) in conjunction with the constraint of
the Budd-Vannimenus theorem.

Finally we note that although the results of the den-
sity gradient expansion with X = —,

' and y = 1 are very ac-
curate in the range of both metallic and higher
densities, they still lie a few percent below the
exact values. Thus to improve matters further,
we propose the, following semiemperical method
for the deter'mination of the coefficient y of the
second density-gradient correction. We adjust
the coefficient y such that the results of the grad-

ient expansion agree with the exact result at
yF =0.5. This value of yF corresponds to a very
rapidly varying density for which there is a sub-
stantial error between the exact result and that of
the original gradient expansion (See Table I). The
value of y thus obtained is 1.336. The results of
using this coefficient for the second gradient cor-
rection are shown in Fig. 5, and the percentage
errors are given in the last column of Table I.
Note that the energy scale has been considerably
expanded in this diagram. As may be observed,
the improvement in the results over those shown
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FIG. 5. Plot of the universal functions of the exact
surface kinetic energy E~/kF (denoted by E~), and the
energy as obtained by the gradient expansion E~ for
both y =1 and 1.336, as a function of the slope parameter
yF.
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in Fig. 1 are substantial for all densities being in
error by less than 3% for y~ ~ 1.5 and within 0.01%
of the exact result at y~ = 6.

In conclusion we note that we have demonstrated
the convergence of the density-gradient expansion
for the kinetic energy for a semiinfinite system
of noninteracting fermions confined at its surface
by a linear potential. The value of —', for the co-
efficient of the first density-gradient expansion
term is the appropriate choice for slowly varying
densities in agreement with theoretical predictions,
and should also be employed for rapidly varying
densities such as those existing at metal surfaces,
provided the second gradient correction is in-
cluded. The choice of the original von Weisacker
coefficient, however, leads to results which are
consistently in error for both rapidly and slowly
varying densities. A semiemperically determined
value of 1.336 for the coefficient of the second
density-gradient term leads to results which are
essentially exact over a very wide range of density

profiles. Obviously, as shown above, the addition
of this second density-gradient contribution with
its nonlinear response terms is an important factor
for convergence and particularly so for metal
surface calculations. In Ref. 29 evidence was
presented that indicated that the first density-
gradient correction for the exchange-correlation
energy was inappropriate for metallic surface
densities. Thus together with the conclusions of
this work, we expect the second density-gradient
correction including its nonlinear response terms
to be necessary components of any gradient ex-
pansion calculation of the exchange-correlation
energy of metal surfaces. In order to better un-
derstand the applicability of this expansion to the
metal surface problem we are presently investigat-
ing the gradient expansion for screened Coulomb
exchange within this model potential, (thus en-
suring the use of physically realistic densities)
and in addition are studying means of treating
the screening locally in our calculations.
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