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%'e consider plasmons in a lattice with chain structure. The electrons are treated in a one-band tight-

binding model. From the corresponding longitudinal dielectric matrix ao~gq m) the plasmon dispersion is

determined in the random-phase approximation and in the screened-Hartree-Fock approximation. In
comparing these results we find a remarkable decrease of the short-wavelength part of the plasmon dispersion

relative to the long-wavelength limit, caused by the exchange corrections. The inclusion of overlap matrix

elements is important for bands which are not half-filled. Furthermore, this inclusion of overlap is a necessary

but not sufficient precondition for the existence of a second "acoustical" plasmon branch in our model.

I. INTRODUCTION

In recent years there has been great interest in
quasi-one-dimensional metals, which in many re-
spects behave quite different from usual metals.
Two of the best known representatives of this class
of substances are potassium cyano-platinide,
K,Pt(CN), Br, , SH,O (KCP}, and tetrathiafulvalen-
ium-tetracyanoquinodimethanide (TTF-TCNQ),
both of which form crystals with chain structure.
Unfortunately, the lattices of both of these com-
pounds are very complex and, therefore, quanti-
tative agreement between experiment and model
calculation has not yet been achieved.

In general, the plasmon dispersion (apart from
the polariton region &o/ ~q ~

—c not treated here) is
determined by the roots of the determinant of the
frequency-dependent longitudinal dielectric func-
tion woo, (qu&) which is a matrix in the reciprocal-
lattice vectors. Williams and Bloch"' (WB) and

WB, Butler, and Rousseau' have investigated the
plasmon dispersion of quasi-one-dimensional met-
als in several papers. They take full account of
the local-field effects corresponding to the matrix
character of &. They. consider the electrons to be
bound to the chains and to be localized or free
along them. VfB confine themselves to the time-
dependent Hartree or random-phase approximation
(RPA) for the dielectric matrix, neglecting the
pertinent corrections due to exchange and corre-
lation. Contrary to this assumption we calculate
the dielectric function for tightly bound electrons
in a simple form of the screened-Hartree-Fock
(SHF) approximation which includes exchange ef-
fects and also to some extent correlation. In doing
this we closely follow the formulation of Sham
and Hanke' in describing the contribution of ex-
change to the polarizability. The comparison of
the resulting SHF plasmon dispersion with that of
RPA shows that the main effect of exchange is to

decrease the short-wavelength part of the plasmon
dispersion relative to the long-wavelength limit.

Inclusion of overlap matrix elements in the di-
electric matrix, neglected by Williams and Bloch;
may lead to a second root of the determinant of
&oo, (q&u) for frequencies above the electron-hole
continuum even in a one-band one-strand model.
Yet the existence of this second root correspond-
ing to an acoustical plasmon branch depends
strongly on parameters such as the bandwidth,
the radius of the atomic orbitals, and the Fermi
wave vectox'.

II. DIELECTRIC MATRIX AND PLASMON CONDITION

P,(r)=N '~'Q e'4"&y(r-ft ) (2.1)

with

y(r} = (2/vs')'~4e " ~

(2.2)E~= E~ = E, E, c (ko„sa„). -
ll

X is the number of atoms, B, is a lattice vector,
5 is the radius of the Gaussian orbital. Since u,
is assumed to be large enough to make overlap
between orbitals on different chains negligible,

The model we use to determine the dielectric
function is similar to the tight-binding model of
Williams and Bloch. It is a special case of the
general tight-binding formulation of the dielectric
function. ' %'e assume a simple tetxagonal lattice
with the lattice constant a„ in chain direction con-
siderably shorter than that in the two perpendicular
directions q, . The electxons are described in a
one-band tight-binding model, the atomic orbitals
are represented by isotropic Gaussian functions.
The corresponding wave functions and energies in
Hartree approximation are
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the energy E, depends only on the component of
the wave vector parallel to the chains k„. It is
just this negligible interchain overlap which ren-
ders the model quasi-one-dimensional. The cor-
responding RPA dielectric function is

~savs". (q~) = 6„. v(q+ G)

xP A'(q+ G)Nss'(q(d)A"*(q+ G'), (2.3)
SS

with

v(q+ G) = 4ve'/n
I q+ G I'

A'(q ~ G)=e' ' ( dr'd(r ——' e '"'R
2

(2.4)

and

R,XP r+—S

2
(2.5}

Nss' d k-a/k d kra/s S tk(R -Rs ) (2 6)
2
X E~,&,

—Ek, &, +he

0= a„a,' is the unit-cell volume, R, is a lattice
vector in chain direction. WB took R, =0, we in-
clude nearest neighbors along the chains. f,.is
the Fermi distribution function for the electron
state with energy Ek.

In time-dependent Hartree-Fock (HF} approxi-
mation in principle three changes occur: (i) The
exchange term of the self-energy Z"(k) must be
added to the Hartree electron energy. (ii) In gen-
eral the wave function will change, yet in our one-,
band tight-binding ansatz this change is ignored.
We take the radius b of the atomic orbitals as an
independent parameter. (iii) The polarizability
1V now contains a sum over internal Coulomb lad-
ders.

The result for the exchange self-energy in our
model is given by

be expressed in terms of the same exchange Cou-
lomb matrix, '

N„v(q(d) =N(q(u) [1+k Vs(q)N(q(u) ] ', (2.9)

Vs(r ye) V(y' yq)S-kl r r'I (2.10)

Therefore, in our model the only difference to the
HF approximation consists in replacing v(r —r ) in
E(I. (2.8) by v'(r y') of E(I. (-2.10). Equations (2.7)
and (2.9) remain formally unchanged.

We now turn to the well-known equation defining
the plasmon dispersion for

~ q ~

& &u/c in a periodic
lattice

det[kcs, (qur)]= 0. (2.11)

Since the longitudinal dielectric function in the
tight-binding approximation has a separable form,
the determinant of the infinite matrix e«„Eq.
(2.3), can be transformed exactly'

where N(q(d) has the form of Eq. (2.6) with Z" added
to the Hartree energies. We want to stress the im-
portance on including both the exchange contribu-
tion to the self-energy and that corresponding to
the ladder diagrams at the same time. If only one
of these contributions is taken into account, the
long-wavelength plasmon frequency, for instance,
diverges.

We now proceed to the screened-Hartree-Fock
approximation. In the SHF discussed by Baym and
Kadanoff' the bare Coulomb interaction in Z" and
in the internal Coulomb ladders of the polariza-
bility has to be screened by a RPA dielectric func-
tion. In addition the polarizability contains more
complicated diagrams. We confine ourselves to a
simplified version of SHF, where these more com-
plicated diagrams are neglected and where the in-
ternal RPA-screened interaction is replaced by a
screened potential of Yukawa form

Z"(k) = Z"(k„)=P cos(k„R,) V'„' (0)
SsS

x —g f,, cos(k'R, .),1

k'

where V'„' (0) is the q = 0 value of the exchange
Coulomb matrix

(2.7)

det[t, (qte)]=det (II„,—g V" (q)tq' "(qte)),
"

Stt

(2.12)

where V„ is the (Hartree) Coulomb matrix appear-
ing also in the inversion procedure' for &«, , VH

is given by

V'„*'(q) =g exp[i(q/2)(2R +R, -R,,)] Vsss (q) =g A' (q+ G)v(q+ G)A' (q+ G). (2.13)

x (s + m, s '
~
0, m); (2.8)

(s+m, s'~0, m)=
(

dr'dr" (j)*(r+R +R )

x qt)(r+ R,, )v(r —rq)dt) s(rq)qt)(rq+ R ).
The HF polarizability Ns„ in matrix notation can

We note, that V'„'(q) is just the effective Coulomb
interaction U(q) of WB.' The matrix on the right-
hand side of E(I. (2.12) has the advantage of being
finite. In our model, where R, is restricted to
nearest neighbors in chain direction, V„and N are
3 x 3 matrices, and the determinant (2.12) can be
evaluated easily.
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III. PLASMON DISPERSION IN RPA

A. Normal branch
2.7

We first discuss the case most similar to WB,'
namely, the RPA results without overlap (R, = 0).
Then on the right-hand side of Eq. (2.12) the ma-
trix reduces to a scalar function. For simplicity
we choose q always parallel to the chains. Then
expansion for small q(, yields

atee(q„) = (de2(0)

- 1.2
C
O
E 1.0
cj

08-

0.6-

where

F ~20 qa 2 (3.1)
0.2-

0

f= lim [Ao(q„))'
L

Iq„ l

+ Z ",(A'(q„+G)1' q„a„)' .
ggQ lq}}+&I

(3.2}

Equation (3.1) differs from the result of WB by the
constant f, proportional to the second derivative
of VoH'(q). This constant f makes the quadratic term
in (3.1) dependent on the radius of the localized
electron orbitals. Inserting the Gaussian function,
Eq. (2.1), f becomes a monotonous function of b

which decreases with increasing orbital radius b.
This lowering of the plasmon dispersion with in-
creasing value of b is not restricted to small wave
vectors where the expansion (3.1) is valid. For all
qWO, V'„'(q} decreases with increasing k, thus
N"(qv) must increase to satisfy Eq. (2.11) and,
therefore, the plasmon dispersion is lowered. In
Fig. 1 the dependence of the plasmon dispersion on
b is shown for a half-filled band with bandwidth

E,= 0.018 Ry. The orbital radius b is 2.7a~,
3.0ae, and 3.Sac (Bohr units), respectively. The
lattice constants are a„=6a~ and a, = 16a~, similar
to the Pt sublattice in KCP. The comparison of the
8=0' dispersion curves of Figs. 5 and 6 of WB'
shows the same lowering for other model param-
eters.

We now include overlap matrix elements
A (q+ G). The resulting plasmon dispersions for
k~= etr/aI 2tr/a„, and —,'tr/a„are shown in Fig. 2,
where all curves are normalized to unity for q= 0
to eliminate the kF dependence of the long-wave-
length plasmon frequency. For the half-filled band
the dispersion remains almost unchanged as com-
pared to Fig. 1. But the difference between the two
other curves corresponding to kz=(e + —,')tr/ae is en-
tirely due to the overlap matrix elements. We note
the fact that the Gaussian orbitals centered at
nearest-neighbor sites are not orthogonal to one.
another. This nonorthogonality would lead to spur=

0.5 „ 1

wave vector q (&)

FIG. 1. Lowering of the RPA plasmon dispersion for
increased values of the orbital radius: b =2.7',
p =3.0', p =3.5'. kF—- & z/a11, E(=0.018 Ry. The
dashed curve is the upper bound of the electron-hole
region.

ious changes in the RPA long-wavelength plasmon
frequency particularly for k+4 &tr/ag since then
N"(q&d} does not vanish Orth. ogonality requires
that

,

dr'Pe(x)P(r+R„) =A"(0) =0. (3.3)
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FIG. 2. Normalized plasmon dispersion with overlap

matrix elements for three values of the Fermi wave
vector: kF=

6 &/a, ~, kF=y7r/a11 and kF ——
6 m/a11 . b =3.5aa,

P=2ag, E~=0.018 Ry.

We take account of this condition, in an approximate
manner by multiplying A"(q+ G) with the factor
Iq+G'I'/(Iq+&I'+P ). In Fig. 2 we take p=2a, .
Increasing p decreases the influence of the overlap
elements and, therefore, reduces the difference
between the dispersion curves for kz ——&tr/ae+x.
Due to the approximate orthogonalization the dis-
persion curves for k~& etr/a„have a tentative char-
acter. They demonstrate, however, the importance
of overlap matrix elements for bands not half-
filled.
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B. Acoustical plasmon branch in RPA

The inclusion of overlap matrix elements has
another interesting consequence. In our nearest-
neighbor model Eq. (2.11) can be written in a. par-
ticularly simple form for the value q, = (tr/acr Or 0).
Then V" and N" are zero and we get

(1 V'„'(q,)N"(q, ~})(l V'„'(q, )N"(q,~))= 0, (2.4)

where

N"(q, (d) = N'„'p„(q, rd),

and

N" (q, rd) = 2 Re[N'„'p„(q, at) + N„'~„(q,td) ].
Obviously Eq. (3.4} can have two solutions. The
frequency (d, for which the first factor on the left-
hand side is zero leads to the plasmon already dis-
cussed. This solution exists for all values of the
model parameters. In the second factor the term
V~ is positive, but considerably smaller than V'„'.
N" is positive, but it remains finite for 5(d-2E,
unlike N which diverges in this limit. There-
fore, the product V HN" is limited for S(d 2E,.
A second solution v, exists only for parameters
such that the product V'„'N" is greater 1 for 8(d
= 2E, and then &, will be much smaller than v, .
The determinant (2.12) cannot be factorized for
general values of q and has to be calculated numer-
ically. Figure 3 shows an example for this second
plasmon branch for a half-filled band with param-
eters favorable for the existence of the second
solution: E, =0.004 By, b=4.1a~, /=0. 5a~'. With
decreasing wave vector the dispersion approaches
asymptotically the electron-hole excitation region
delimited by the dashed curve. For less favorable
parameters, e.g. , for greater bandwidth E„ the
acoustical branch does no longer exist above the
electron-hole excitation region for all values of
q„or even may be absent completely.

The physics of the two dispersion branches is

quite simple. In the tight-binding approximation
density waveS

6p,(~) ~ p pe(~)p~e, (~)

can be split into contributions
~
y(r —R, )

~
and

y(r —R,)y*(r-R„,), the Fourier transforms of
which are A (q+G) and A"(q+ G), respectively.
They correspond to the parts of the electron den-
sity localized around the atoms and around the
middle between nearest neighbors. For q at the
Brillouin-zone boundary there are two possible
collective density modes. In the first mode the
density at nearest-neighbor atoms oscillates with
opposite phase and does not change between them.
In the second mode the density oscillates between
the atoms and is constant at the atom sites. These
two modes, which do not couple, are the optical
and the acoustical plasmon for q= q, . Yet we note
that we can make no general statement on the exis-
tence of the acoustical plasmon branch, since this
would require a really consistent calculation of the
band structure and the wave functions.

Ptr'. PLASMONS IN SHF APPROXIMATION

We now discuss the effect of screened exchange
contributions on the plasmon dispersion. Since a
calculation of Vee, Eq. (2.6), is difficult even with
a screened potential of Yukawa form and since we
are interested only in qualitative changes, we cal-
culate the matrix elements V'„' with a bare Cou-
lomb potential and multiply them by factors 8 ~"»'.

The parameters r„,are the estimated mean dis-
tances between local densities p(r) and p(r'), and
X is the screening parameter. Again we take ac-
count of the nonorthogonality of thy Gaussian func-
tions approximately by reducing the matrix ele-
ments (10~00) and (10~10) by factors 3 and &, re-
spectively The ele. ments (00~00) and (11~00) de-

o 0.4

&0.3
C0
E 0,2

0.1

0
0 05 „1

wave vector q (a )

FIG. 3. Acoustical branch of the RPA plasmon disper-
sion. k&= 2 m/a(f b =4.la~, p= 0.5am, E, =0.004 By.
The dashed curve is the upper bound of the electron-hole
region.
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FIG. 4. Full curves: Normalized SHF plasmon disper-
sion for two values of the screening parameter:
&=0.7' and &=0.5ag . &~= ~&/a, . The other pa-
rameters are as in Fig. 2. The dotted curve is the cor-
responding RPA dispersion.
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pend only slightly on incomplete orthogonalization
and are not reduced. In Fig. 4 the full curves show
the resulting plasmon dispersions in SHF for the
two values of the screening parameter, X= 0.7a~'
and X=0.5a~'. All of the other parameters are the
same as in Fig. 2; therefore, overlap elements
are included. The dotted curve is the correspond-
ing RPA dispersion. For better comparison we
have normalized all three dispersions to unity for
q= 0. We note that in our SHF model m&(0) is up to
40%%uo larger than in RPA. As Fig. 4 shows, the
main effect of including screened exchange is to
lower the short-wavelength part of the dispersion
relative to the long-wavelength limit. This result
is remarkably independent of the model param-
eters. The lowering can be understood in terms
of a simplified model, where the overlap is neg-
lected and only the largest matrix elements V~
and V„"are taken into account. Then proceeding
from RPA to SHF the only change is the reduction
of V~' to V~ —V'„', and the resulting shift of the
plasmon dispersion to lower frequencies is simi-
lar to the effect of an increased orbital radius b in
RPA (cf. Fig. 1). The other matrix elements, par-
ticularly those of V'„', cause considerable changes

of the dispersion. Figure 4 demonstrates, how-
ever, that the inclusion of the overlap matrix ele-
ments does not change this simple consideration
of the effect of exchange too much, after the re-
sulting general shift of the dispersion is elimi-
nated by normalizing with. the corresponding long-
wavelength limit.

V. CONCLUSION

We have investigated the effect of the overlap
matrix elements and of screened exchange on the
plasmon dispersion of a one-band tight-binding
model of a quasi-one-dimensional conductor. This
model is certainly too simple to allow for a quan-
titative comparison with experiments, because the
two main representatives of one-dimensional met-
als both have rather complicated lattices. There-
fore, wave functions and band structure will be
much more complicated than in our model. Never-
theless we think, the importance of overlap ma-
trix elements for bands not half-filled (as in KCP)
and particularly of screened exchange corrections
to the plasmon dispersion, cf. Figs. 1, 2, and 4,
is not restricted to our special model, but will be
a rather general feature.
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