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The method of the two-time Green s function is applied to the investigation of the ferroelectric phase

transition in KH, PO4. The zero-frequency difficulties are circumvented by means of the fermion Green's

function. It is shown that the softening of the mixed mode and the onset of static long-range order take

place at the same temperature.

I. INTRODUCTION where q =+ 1, [A, B]„=AB qBA—, and

II. DOUBLE-TIME GREEN'S FUNCTION METHOD

The retarded and advanced Green's functions as
defined by Zubarev' are

G„"'(t, t') = (( A (t) I
B(t') » "'-

= -te(t - t') ( [A(t), B(t )]„&,

G~, (t, t') -=(&A(t) I
B(t') &&"

=te(t' —t) & [A(t), B(t')]„&,

(2 l)

(2.2)

The mechanism of ferroelectric phase transition
in potassium dihydrogen phosphate (KDP) and its
isomorphs is often described in terms of the pseu-
dospin model' ' and its modification to include in-
teractions with the lattice. Although the model has
been the subject of several investigations, it ap-
pears that there has not been an attempt to treat
both the static and dynamical properties of the sys-
tem in a unified formalism. Generally, the static
properties such as the average values of the spin
operators are determined by methods such as the
mean-field approximation, and dynamical quanti-
ties such as the energies of the collective modes
are determined by other methods such as the lin-
earized equation of motion method. This causes
some inconsistencies between the static and dy-
namic properties, and there is no guarantee that
the two transition temperatures, treated static-
ally and dynamically, should be the same. The
method of double-time Green's functions" offers
an alternative, whereby both static and dynamical
quantities may be treated in the same formalism.
The poles of the Green's function correspond to the
energies of the elementary excitations of the sys-
tem, and the average values of the operators in-
volved can also be calculated from the Green's
function. This method will be applied to the pseu-
dospin Hamiltonian, and it shall be seen that even
very simple decoupling procedures yield the major
results of the model.

(2.3)

It follows from the definition that the Green's
functions so defined are a function of t —t' only.

The Fourier-transformed Green's function is
defined by

1
G„(u)) =((A. IB» =

2 G„(t)e' 'dt. (2.4)

This Green's function satisfies the equation of
motion

~«A IB)) = ([A, B]q&+(([A,H]IB»~
1

- t (((A I B)&.„,-((A I B));,)
(BA& = lim 8~ dc' ~

e ~0+ 8 —'g

(2.6)

The parameter q may be arbitrarily chosen as
+1 or -1. If 4 and B are Bose operators, g is
generally chosen as +1, and if they are Fermi op-
erators, q is chosen to be -1. Sometimes, how-
ever, the reverse choice becomes necessary. In
the problem of KDP, where one deals with spin
operators, it would be convenient to choose q =+1

(2.5)

The equation for ((A I B&) thus involves an in-
homogeneous term and a higher-order Green's
function. One of the problems of this method is to
decouple the higher-order Green's function and to
choose appropriate Green's functions so that a
closed system of equations is obtained.

In addition, Zubarev has shown that the poles of
the Green's function correspond to the energies of
the elementary excitations of the system. The
average value of the product of two operators can
be calculated from the formula
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since this would simplify the inhomogeneous terms
in (2.5) considerably. However, it turns out that
the Green's functions for the system have a zero-
frequency pole. Under these circumstances, the
formula (2.6) cannot be used with )I = +1, since the
integral becomes divergent. (Efforts to circum-
vent this problem by the addition of vanishingly
small perturbation terms were unsuccessful. ) One
therefore has to report to fermion Green's func-
tions, i.e., with g = -1, to treat the pseudospin
problem.

III. APPLICATION TO THE PSEUDOSPIN MODEL

The pseudospin Hamiltonian is given by

H = -2n Q s,."——Q z, , s;. s;. ,
1

fj
(3.1)

where S",. and S;. are components of the spin- —,
' op-

erator. Introducing the operators S+ =S"~ iS', one
can consider the Green's functions ((S'

~ Sz )),
((S, ~ S~)), and ((S;~ S~)). The equations for these
Green's functions that correspond to (2.5) are

~((s;~ s;&) = ' ' " ' ' -2n((s;~ s;)&+—gz ((s's
~ s;&&+—pz„((s's;~ s;)&,

(2' S++6y (1 —2S~ S+)& I

&«s;I s;» =
2

+2n(&s; Is;» —
2 gz, „«s;s:Is;)) —

2 gz„«s;s;I s;»,
2&s-s-)

(1 —5„)(s;s;)~«s;Is, »= "2 ' ' -n«s;Is, »+n(&s, ls, ».

(3.2)

«s,'s'. Is;» =&s:&&(s,'I s;&),

«s;s,'I s, )) = (s;) &(s,'I s, ))
(3.3)

The Eqs. (3.2) can be closed by decoupling the
higher-order Green's functions. The two decou-
pling procedures that will be discussed here are
the Tyablikov and the symmetric.

In Tyablikov decoupling, one assumes that

((z i-)& = -(I/2m') n((u+g, ~) . (3.7)

The application of (2.6) to (3.6) and (3.7) yields

Z,n(1 —e "&)
(S S") =-,'--n=~+ '

(
(h, ~„)

or

Introduce the notation

«=(s & =&s &; =&s &; z, =Ps, .

Then, Eq. (3.2) becomes with f =g and the decou-
pling of (3.3):

2
tan h

2

(s s') =';&s ) = (s*)= s. tant( s')

(3.6)

v-Jon 0 2n +- 1

1,(u+z, n -2n ((-i-)) = 0

—0 Q)' 8 — 0

(3.4)

where ((+ ~-)&, ((- ~-&&, and ((z ~-&) are abbreviated
notations for «Sz ~ Sz )), ettc.

The secular determinant for the system is given
by

Zk —(t) ((d (t)~ ) s

where

or

(s*) = tant( ) . (3 9)

The results (3.8) and (3.9) are identical with those
obtained in the mean-field approximation. The
poles of the Green's function, given by 0, ~&~, do
not show any softening in this approximation.

In the symmetric-type decoupling, it is assumed
that

((s„s,'I s, )) = (s:)((s,'I s;)) +(s,') ((s'. I s;)) .
(3.10)

Define

(u =[(z,n)'+(2n)']'~'.

From (3.4) and (3.5),

(( +
~

-&& = (I/2)((t ) [ ((d(u J+,n) —2n']

(3.5)

(3.6)

M„=«s; Is;}&; v„=«s;Is;»; ~„=«s;Is;)&
(3.11a)
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x~, =(s~s;& +-,' n~, (1-2(s~s;&);
=(Sf S

v~, = ( S~ S;& —6~, ( S~;& .
(3.1lb)

X~
sou« = —2Qse«+ Jonu& + xj m~,

m

cov« — +20r&fg —Jpnvfg xJ~RI~ s
7T

With the approximation of (3.10), and the nota, tion
of (3.11), Eqs. (3.2) become

Vyg
QÃvfg = —Quyg +Qvfg ~

jr
(3.12)

Define the lattice Fourier transform of a variable by

g(k) QQ eik. ( R(, -Rf)
g

Such a, transformation of the Eqs. (3.12) into momentum space gives

(3.13)

e-Jon o sn-~~(i
(d + jon -2n +xj(k)

)

I' (i))
v(k)

(w (i)

I
~(«))

(3.14)

The secular determinant for (3.14) is given by

a =(u [(u' —&u, (k)],
I

x =
N

v(k)

where

~', (k) = (j,n)'+2n [2n -xj(k)] . (3.15)

( g n(&(&) —u(k)], (()ro,(ic))
k ' (()g(k)

1 ~ jane(k) —[2n —xj(k)] v(k)
N ~ &u,(k)

x tanh (3.16)

The poles of the Green's function, and hence the
energies of the collective modes occur at++, (k).

For T&T, , n =0 and ~', (0) =2n(2n -xj, ) which
corresponds exactly with the results of Tokunaga'
and Brout, Mueller, and Thomas. ' Also, from
(3.8) and (3.9), x-(2n/j, ) as T-T, , so that (d,(0)
-0 as T-T,. The symmetric-type decoupling thus
predicts the familiar softening of the collective
mode of proton motion.

Equations for the expectation values of the op-
erators can be set up as before, by solving for
the Green's functions of (3.14) and applying (2.6).
This leads to

1
X(k)

(3.17)

An analytic solution of (3.16) and (3.17) is not
possible unless very crude approximations are
introduced.

IV. APPLICATION TO THE COUPLED HAMILTONIAN

The Hamiltonian proposed by Kobayashi to take
into account coupling of the proton system with the
lattice is given by

II = -2n Q S )
——Q j, Sf S''1

l lm

—g z„(c',+c, ) s;+ P ~, (c,'c„+-,'),
ql

(4.1)

where C~ and g, are the optical-mode phonon cre-
ation and annihilation operators, I', =I',e '

and ~, is the optical-mode frequency.
The equations for the various Qreen's functions

are given by

~«s;Is;» = ' —an(&s; I s;»+2+ j,.«s;s: I s;»+
2 P j„«s;s;Is;&)

+pe„«c', s; I s;» ps„«c,s; I s;»,
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~«s;Is;» = +2n«s;Is;»-
2 gg, .&&s;s:Is;»-2 pz„«s;s, ls;» -+F„«c,s;Is;»
1 1

-g F„«c,s;I s;»,

~(& s; I s, )&
= "-n((s; I s, » +n &(s, Is, »,

~ « c', I s, » = —
& c',s; & + g F „&(s;I s, » —~,&& c', I s;&&,

1

~«c, l s;)}= —&c,s;& —QF „«s; I s;» +~, &&c, l s;&&.
1

7T
g

(4.2)

The higher-order Green's functions are decoupled symmetrically.
Define

g(k) =«c', Is;», I (k)=«c, Is, »,

g(k)=&C'„S;&, and q(t)=&C, S, &.
(4.3)

Then the equations obtained from (4.2) on decoupling the higher-order Green's functions can be trans-
formed into momentum space. If this is done, and only the q =0 terms in the expectation values of the
phonon operators (which correspond to a macroscopic displacement of the lattice) are retained, one gets

(u —Jon —(Co +Co&FO

+-kf

+-kf

g(k)

co —co~ ~k (k)

0 2n —xj (k) NxF~~ -NxF~~ -u(k)
&o +J,n+ (Ct+ CJF, -2n +xJ (k) NxF„& NxF, &

v (k)

-0 QP 0 0 w(k)

~(k)

p, (k)
1

v (k)

(k)

q(k)

(4 4)

The secular determinant is given by

a =(o [(u' —(u,'(k)] [(u'- (u', (k)],

where

~',, (k) = 2((~,'+~.')

+[((u„'- u),')'+ I5nNx(u, I F„I']'i'],

in which

(4.5)

ar,'=(Z, n+(C tC+)F ) +2n[2n —xZ(k)]. (4.6)

Equation (4.5), which corresponds to the roots of
~ and hence to the poles of the Green's functions,
gives the energies of the collective spin-phonon
modes, and is similar to the result derived by
Kobayashi. It is also possible to see that ~,(0)-0
as the transition temperature is reached, thus
showing a softening of the mixed mode.

V. CONCLUSIONS

The Tyablikov approximation consists of ignor-
ing the fluctuations in 8' and replacing this oper-
ator by its equilibrium value. The symmetric de-
coupling procedure includes a term corresponding
to the tunneling motion of the protons. It is the
presence of this correction that gives rise to soft-
ening of the mode as T approaches T,.

Application of the method to the problem of the
transverse susceptibility of KDP reproduces, with
a Tyablikov-type decoupling, the results of Havlin,
Litov, and Uehling. ' The dynamics of the trans-
verse susceptibility can also be studied with this
method.

In conclusion, it appears that the use of fermion
Green's functions offers a systematic approach to
the study of both the static and dynamical aspects
of the ferroelectric phase transition in KDP. The
method can easily be applied to extend the problem
to take into account the real lattice structure of
KDP instead of making the usual "one spin per unit
cell" assumption.



426 VENKATRAMAN RAMAKRISHWAN AND TOMOYASU TANAKA 16

*Supported by NASA Grant No. NSA5-20885.
R. Blinc, J. Phys. Chem. Solids 13, 204 (1960).
P. de Gennes, Solid State Commun. 1, 132 (1963).

3M. Tokunaga and T. Matsubara, Prog. Theor. Phys.
35, 581 (1966).

K. K. Kobayashi, J. Phys. Soc. Jpn. 24, 497 (1968).
5D. N. Zubarev, Usp. Fix. Nauk. 71, 71 (1960) [Sov.

Phys. Usp. 3, 320 (1960)].

V. L. Bonch-Bruevich and S. V. Tyablikov, The G~een
Function Method in StatisticaL Mechanics (North-
Holland, Amsterdam, 1962).

M. Tokunaga, Prog. Theor. Phys. 36, 857 (1966).
R. Brout, K. A. Mueller, and H. Thomas, Solid State
Commun. 4, 507 (1966).

S. Havlin, E. Litov, and E. A. Uehling, Phys. Rev. B 9,
1024 (1974).


