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The equilibrium thermal fluctuation in metal films is studied with careful consideration of the finite size of
the specimen and the boundary conditions on the metal-vacuum and metal-substrate interfaces. For a freely

suspended film, the noise spectrum due to bulk fluctuation has two parts, a frequency-independent part
belo~ a characteristic frequency and an f " part above that frequency. The characteristic frequency is the
inverse of the diffusion time across the largest dimension of the specimen. The 1/f spectrum is obtained

when two conditions are met: (a) the metal film is deposited on a substrate of very low bulk thermal

conductivity; and (b) the thermal fluctuation in the film is two dimensional and is mainly excited by the
random flow of heat between the film and the substrate. In freely standing metal whiskers, the 1/f spectrum
can be obtained when the fluctuation is excited by white-noise sources at the ends.

I. INTRODUCTION

Recent experiments strongly suggest that 1/f
noise in metal films at room temperature, ' in
superconducting films at the resistive transition, '
and in Josephson tunnel junctions' arises from
equilibrium temperature fluctuations. The analysis
of the noise spectrum is based on the diffusion
equation for temperature fluctuations. In the
Langevin approach, "*'the driving term added to
the diffusion equation has the form V ~ F(r, t),
where F is uncorrelated in space and time. This
fluctuating term leads to a power spectrum that
varies at ln(1/f) and f' over the appropriate fre-
quency ranges, and that does not exhibit a 1/f re-
gion. Voss and Clarke then incorporated a sug-
gestion of Lundstrom et al.' into a theory in which
the driving term had the form P(r, I), where P is
uncorrelated in space and time. This formulation
led to a 1/f power spectrum over a, substantial
range of frequencies with an amplitude that was in
good agreement with the measured 1/f noise. How-
ever, no physical mechanism was suggested to ac-
count for the origin of this unusual driving term.

In all previous theoretical discussions, the spec-
imen is assumed to be a finite portion of an infinite
solid, but in actual measurements metal films of
finite dimensions are invariably employed. There
has been no attempt to incorporate the boundary
condition into the problem because of a general
lack of information on boundary effects. The situ-
ation is very different now, however, because of a
recent measurement by Clarke and Ketchen' in
which the metal film is peeled off from the sub-
strate and suspended freely in the apparatus. The
noise spectrum is found to be very different from
that predicted from the three-dimensional model,
but in agreement with that for the one-dimensional
model. Furthermore, there is no 1/f region.

Ibis strongly suggests that the 1/f noise comes
from fluctuating heat f lorn through the metal-sub-
strate boundary, and that in the freely suspended
film, the finite size of the film renders the three-
dimensional model inapplicable.

We present in this paper a detailed analysis of
boundary effects on the noise spectrum of metal
films. It is shown that by imposing a set of phys-
ically reasonable boundary conditions, one can ex-
plain both the one-dimensional nature of the tem-
perature fluctuation in the freely suspended film
and the 1/f spectrum of a metal film attached to
an insulating substrate.

We have also extended the same consideration
to a freely standing metal whisker. It is shown
that the noise spectrum can have a 1/f part if the
noise is excited by white-noise sources at the ends
of the whisker. The implications of this finding on
the recent experimental results of Dutta et aI.'
will be discussed.

II. FREELY SUSPENDED FILMS

We considez a metal film of dimensions l, »L2
»L,. The heat-diffusion equation in the film is
written as

where T(r, t) is the fluctuating part of the tempera-
ture, A is the thermal-diffusion constant defined
by A = K/C, C is the specific heat, and K is the
thermal conductivity of the metal. In the driving
term, the quantity F(r, t) is uncorrelated in space
and time.

A. Ideal boundary condition

There is negligible heat flow between the metal
film and the surrounding space, so the boundary
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condition on the free surfaces are

Kn VT =0, (2)
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This is just the result of the one-dimensional fluc-
tuation problem considered by Voss and Clarke. '
The spectrum of the temperature fluctuation was
found by these authors as
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where Fo is the square magnitude of F'(q, rd), 0
= (&u/&ur)'/', and u&, =2A/1'r. For &u»&u, the spec-
trum

where 8 is the unit normal of the surface. This
boundary condition applies to the surfaces y = 0,
y=l„ z =0, and z = l,. The ends x = 0 and x =l,
are connected to the current source and other mea-
suring apparatus, so we treat the x dimension of

the film as a part of a large system.
Before the boundary conditions are imposed, the

solution of Eq. (1) is
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where F(q, &u) is the Fourier transform of F(r, t).
The boundary conditions imply that the y, z depen-
dence of the solution must be of the form
cos(q y) cos(q,z), and that

q, =n,v/l„q, =n, v/1),

where n„, n, = 0, 1, 2, 3, . . . . Furthermore, only the

part of the driving force which is odd in q, agd q,
can excite a response in the system. If we denote

this part by F'(q, rd), then we can write the solution

as

) g d&u iq F'(q, rd)
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In the actual measurement, the average temper-
ature fluctuation over the film is measured. When

we average the result in Eq. (5) over the film only

the terms with q, =q, =0 will remain. This gives

The only characteristic frequency of the film is
+„which is associated with the largest dimension
of the film.

When the frequency is much less than z„another
boundary effect may become important. If the
measuring apparatus has a much larger heat capa-
city and consequently much less temperature fluc-
tuation than the film, we must impose the condition
T =0 at x=0 and x=l, for the film. This produces
standing-wave patterns in the x direction and

T(- f) ~ d~ iq.Fl(q. , ~)
2g i~ -Aq„'

x sin(q, z)e ' ', (6)

where q„=nv/lr. Averaging over the length l, of

the film and working out the spectrum, we obtain
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Since Aq„'= 2n'm'&y &+ (d p it follows that in the fre-
quency range under consideration the spectrum is
frequency independent.

In summary, we find that under ideal boundary
conditions the noise spectrum is f '/' for rd» cu,

and f '/' or f' for &u «rd„depending on the heat
capacity of the measuring apparatus.

B. Relaxed boundary condition

Actual metal films are never made with perfect
geometric surfaces, so we must find ways to deal
with surface imperfections. When the wavelength
of the diffusion pattern is small compared with the
linear dimension of the specimen but comparable
to the roughness of the edges, the standing-wave

pattern is so severely disturbed that the spatial
quantization condition, Eq. (4), is meaningless.
The discreteness of the allowed wave vectors is
smeared out, so that it is more appropriate to
treat the wave vector as a continuous variable.
The net effect of this is equivalent to treating that

dimension of the film as a part of a large system.
We first encounter the relaxed boundary condi-

tion when the frequency becomes comparable or
higher than the second highest natural frequency
+3=2A/13. There is still standing wave in the z

direction, but the standing-wave condition in the y

direction is relaxed. 'Ihe average temperature
fluctuation is

) g d(o iq F'(q, (u)
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where q= (q„q„0). The spectrum of the fluctua-
tion is
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In the above integration the range of q„ is much
smaller than that of q, because Ly»l, . This allows
us to approximate q„=0 in the frequency-depen-
dent factor and carry out the rest of the integration
over q, . The result is

gible compared with the Johnson noise. So one
must seek to verify the relaxed boundary condition
in films of large dimensions or low thermal con-
ductivity. Unfortunately, both requirements tend
to reduce the noise level.

III. FILM ON SUBSTRATE

In this section, we consider a film deposited on
a substrate which is made of a material of very
low thermal conductivity, denoted by K, . An ex-
ample of this combination is the system of gold
film on glass substrate used in the experiment of
Voss and Clarke. ' The ratio K/K, is approximately
300.

On the interface between the metal and the sub-
strate we can write the boundary conditions

The problem becomes a one-dimensional fluctua-
tion in the y direction, so

S ((v) —= &0/v2vl A' '40' '
T( =0')=r(z=0-),

J,(z =0') = J,(z =0 ),
(14)
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FIG. 1. Predicted spectrum of the equilibrium ther-
mal fluctuation in a freely suspended metal film.

for cu» ~,. This gives a higher level of noise than
that given by Eq. (7) by a factor lg/, . In the actual
experiment, one should observe a leveling of the
spectrum around + -

002, followed by a f 2~2 portion
when - » cg2.

In a similar manner, we will experience another
relaxation of boundary condition in the z direction
with another zigzag in the noise spectrum when co
= &u„where &u2= 2A/l22

The results of the above discussion may be sum-
marized in Fig. 1. The observation of Clarke and
Ketchdn has confirmed the spectrum around +,.
Further work at higher frequencies is needed to
establish the applicability of the relaxed boundary
condition. But for metal films used in the experi-
ments +, is so high that the thermal fluctuation
noise around this frequency becomes totally negli-

where J, is the z component of the heat flux. The
heat Qux can be related to the temperature by
means of the transport equation. So Eq. (15) may
be rewritten as

BT BTK — —K, — =G(x, y, t),
BZ — + BZ

where the fluctuation term G(x, y, t) represents
the instantaneous deviation of the heat flux from
that given by the equilibrium transport equation.

Ideally, one should solve the coupled heat-diffu-
sion problem for the combined film-substrate sys-
tem with the above-mentioned boundary conditions.
This is not practical, however, because the geometry
of the system, that the film covers a small part of
one surface of the substrate, is difficult to analyze.
Therefore, we simplify the problem by consider-
ing two extreme cases of very small and very
large thermal-diffusion lengths.

In the small-diffusion-length limit, the film is
poorly couple& with the bulk of the substrate. The
temperature at the interface is free to fluctuate
from the average temperature of the substrate, so
the boundary condition in Eq. (14) is unimportant.
In the Qux equation, the relative importance of the
two terms on the left-hand side may be estimated
as follows. The length scale of temperature varia-
tion in the substrate is the thermal-diffusion length
f4 = (2A, /&u)'~', where l, is the thermal-diffusion
constant in glass. Thus, we estimate that the ratio
of the second term to the first is of the order (K,/
K)' ', and so we will neglect the second term from
now on. As in the bulk fluctuation problem, the
driving term G(x, y, t) is taken as totally uncorre-
lated in space and time.

The boundary conditions on the other surfaces
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q, = t(~/A) —(q, + q ) ~ (18)

The boundary condition in Eq. (16) is satisfied by

T (q„q„&u) = -G(q„q„~)/Kq, sin q, l, , (19)

where G(q„,q„ur) is the Fourier transform of
G(x, y, t). The average temperature over the film
is found to be

of the film must be reexamined. The free surface
boundary condition, Eq. (2), continues to apply to
the surface z =l, . However, because of the con-
stant flow of heat across the interface, the tem-
perature distribution in the y direction can no

longer maintain sinusoidal standing-wave patterns.
The situation is analogous to a rectangular wave-
guide with one side open. The field distribution
inside the waveguide cannot be described by a
superposition of the normal modes of the closed
waveguide. Since the width of the film is very
large compared with its thickness, the effects of
the y = 0 and y= l, boundaries are limited to a small
region near the edges. To a good approximation it
is appropriate to treat the y dimension of the film
as a part of a large solid, as was done in Ref. 2.

The noise spectrum of the film is the sum of a
bulk fluctuation part and a part excited by the sur-
face term G(x, y, t). In the limit of short diffusion
length in the substrate, the bulk fluctuation part of
the spectrum is the same as that of the freely sus-
pended film, which does not display 1/f behavior.
In analyzing the effect of the surface excitation we
drop the source term in Eq. (1), and write the sol-
ution of the diffusion equation as

r)))= Q f ~ , )'(e., s., )
a„a

&&cos[q, (z -l,)]e""*'""' ',
where the boundary condition on the z = l, surface
has been imposed. 'Ihe wave vector q, is not ar-
bitrary but satisfies

amplitude of G(q„q„a&).
There is close resemblance between this

result and that derived by Voss and Clarke' by
using a source term P(r, t) in the diffusion equa-
tion, except that in our result there are only two

independent wave vectors. The spectrum in vari-
ous frequency regions can be calculated immedi-
ately by the method of Ref. 2. We obtain

G',/C'l', (u' for u)»(u,

Sr(v) =— Gol, /C'W2Al, u ' for m, »)d» m,

Gol, l,/2C'A13&o for &a& «v, .
(22)

The spectrum has the 1/f frequency dependence
when the frequency is lower than the lowest diffu-
sion frequency f, = cu,/2v. For the gold film studied
in Ref. 2, we estimate A = 1.3 cm'/sec, l, = 6.25
&& 10 ' cm, and consequently f, = 106 Hz. The 1/f
spectrum was observed in the frequency range 1-
300 Hz. ' It is difficult to tell whether there exists
a kink in the spectrum in the narrow frequency
range above f,

We now consider the limit where the thermal-
diffusion length in the substrate is comparable to
the length of the film. Ihis happens when the fre-
quency is below +o=2A, /l', =—0.3 Hz. Under this
condition, the temperature fluctuation of the film
is strongly coupled to that of the substrate, and

the fluctuation spectrum will be the same as that
of a part of the substrate of volume l, &l,xl„
where we take the effective thickness of the sub-
strate as the thermal-diffusion length l, . In Ref.
2 it was shown that under these conditions the
noise spectrum of the substrate is independent of
the frequency, so we infer that the 1/f spectrum is
replaced by f' spectrum when &u &+,.

Finally, we normalize the spectrum according
to the relation that at room temperature we must
have

( ~ )) g der -G(q„,q„u))
2m Kl, q,

'
S& cu d(d = AT ' =T' 3N,

0
(23)
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X
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where N is the number of atoms in the film. The
integral is cut off at v, as a close approximation.
Ibis gives

(20)

and the spectrum of the average temperature is
T'

3N~ [1+ln(~, /&uo)]
(24)
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In the above equation the quantity G0 is the square

The noise spectrum of the voltage fluctuation is
obtained by applying the scale factor (VP)~, where
V is the average voltage across the length of the
film and P is the temperature coefficient of the
electrical resistivity of the film. For the gold film
on glass substrate studied in Ref. 2, we put in &u,/
(uo—= K/K, =—300, T =293 K, V=0.81 V, P =0.0012
K ', and the dimensions of the film 250 Ax 8 pm
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&&625 pm. Then Eq. (24) predicts a voltage noise
of 0.6&&10 ' V'/Hz at 10 Hz. This is in excellent
agreement with the data.

The above analysis points to the source of 1/f
noise as due to the random flow of heat across the
metal-surface interface. It also shows that if the
thermal coupling between the metal and the sub-
strate is improved, the noise level should reduce
as was observed by Clarke and Hsiang. ' The 1/f
noise'can be suppressed very effectively if there
is good thermal contact between the film and the
substrate and the substrate has high thermal con-
ductivity.

T(x, t) = [T(q, &u) e '*+T (-q, u)) e "*]e '"',

(25}

where ~q'+ ice= 0. The boundary conditions are

IV. 1 jfNOISE IN METAL WHISKERS

Recently Dutta et al. ' reported the observation of
1/f noise in freely standing copper crystal whis-
kers of various lengths. There are a number of
outstanding features in the data that are difficult
to explain. Among these are: (a) there is no ap-
parent change in spectrum at the frequency (L)y

characteristic of the length of the whisker and (b)
the noise level is two to three orders of magnitude
higher than that observed in copper films of the
same volume. We discuss here a possible mecha-
nism of 1/f noise in thin metal whiskers. While it
does not give a satisfactory explanation of the data
in Ref. 8, it may shed light on the source of the
noise.

In the experiment four gold wires, which are at-
tached to the whisker with silver paint, are used
as current and voltage leads. This should be con-
trasted with the film experiments in Refs. 2 and 3
in which the leads are contiguous parts of the film.
As was discussed in the previous section, any
junction between two substances may be a source
of noise. So in the present model, we consider a
one-dimensional heat-flow problem with noise
sources at both ends. The one-dimensional model
is justified in a thin whisker by the consideration
in Sec. IIA.

The temperature distribution in the whisker is

The average temperature of the wire is

s (~) = (IG,I'+ IG.I')l(t»-'qt)/«I',

where IG,I' and IG,I' are both constants. The
quantity

I qt I
= (~t'/A)" = (»/~, )'",

(29)

where &u, =2A jl' is the characteristic frequency.
For u»& &u, one can find that I tan 2 ql I

=—1, so

Sr((u)~(O '. (30)

For &«&, the spectrum becomes frequency inde-
pendent. At the high-frequency end the 1/f spec-
trum is cut off at &u, = 2A/d', where d is the diam-
eter of the whisker.

The spectrum is easy to normalize in an approxi-
mate manner, with the result

A jld g~ 0 & (d & (d gSz/e) =

A/e,
(31)

where A = kT'/C [1+in(ege, )]. Putting in the typi-
cal sizes t = 1 cm, d=3 pm, and C =3.5&&107 erg/
cm' —g for copper at T = 300 K, we find that A
= 1.7&& 10'/N, where N is the number of atoms in

the whisker. To convert this to the voltage fluctu-
ation spectrum, we multiply A by P', where P
=0.0038 K ' is the temperature coefficient of elec-
trical resistivity for copper. This gives

S»(f)/V =7.7X10 '/Nf (32)

This is comparable to the noise level in metal
films. ' The noise level observed in Ref. 8 is two
to three orders of magnitude higher.

The implication of this calculation is that the ob-
served noise cannot be due to equilibrium temper-
ature fluctuation in the whisker. The high noise
level suggests that a small volume is involved.
This seems to indicate that the temperature fluctu-
ation in the junctions is responsible for the noise.
Further experiments are necessary to test this
speculation.

(28)

and the spectrum of the average temperature is

T(0 t)=G1(t) T(t t)=G2(t) (26)
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where both G,(t) and G~(t) are white-noise sources
Matching of the boundary conditions gives simple
results for T(+q, v). Then we find
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