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Total and inelastic-neutron-scattering measurements have been made of the small-angle critical scattering

from polycrystalline cobalt both above and below its Curie temperature T~. Below T~ the scattering is

dominated by well-defined spin-wave modes which exhibit quadratic dispersion, A'co(q) = Dq '. Within the

hydrodynamic region, the spin-wave stiffness constant is found to have the power-law temperature

dependence D ~ (T —T~)" where x = 0.39+0.05. As T~ is approached, the spin waves renormalize and

broaden but no evidence of a central peak indicative of the longitudinal component of the susceptibility is

observed. Above T~, the exponents y = 1.23+0.05 and v = 0.65+0.04, describing the power-law

dependences of the static susceptibility and the inverse correlation range, respectively, have been obtained

from the small-angle scans after taking full account of the inelasticity of the scattering. In addition, the

critical scattering has been calibrated directly against the nuclear incoherent scattering and in this way the

interaction range r„which appears in the classical and modified Ornstein-Zernike expressions for the

asymptotic form of the spin pair correlation function, has also been determined. The linewidths of the

quasielastic critical scattering have been measured over a range of wave vectors at temperatures up to 150'C

above T~. At T~ the linewidths vary with q to the 2.4+0.2 power. Above T~, the linewidths are well

described by a dynamical scaling function which, however, differs from that previously found for iron.

I. INTRODUCTION

The scattering of thermal neutrons has proven
to be a uniquely powerful tool for elucidating both
the static and dynamic features of the critical fluc-
tuations in magnetic systems. Among ferromag-
netic materials, the techniques of neutron scat-
tering have been applied most extensively to iron.
From the resulting body of data on iron, a rather
complete description of the critical scattering has
emerged Which is in good agreement with current
theory in nearly all respects. The extent to which
the detailed results obtained for iron are generally
characteristic of isotropic ferromagnets is yet
largely undetermined, however. This is particu-
larly true with regard to the spin dynamics near
T~,' the form of the dynamical scaling function
which describes the temperature dependence of
the lifetimes of the critical fluctuations has been
measured for iron alone. The overall objective of
the study described herein has been to examine in

comparable detail the critical scattering from co-
balt, to date the least studied of the 3d-transition-
metal ferromagnets. Both total and inelastic scat-
tering measurements have been carried out to ob-
tain the small-wave-vector and low-frequency de-
pendence of the scattering function S(Q, &u) in the
critical region. Emphasis has been placed on in-
elastic-scattering measurements which have yield-
ed the form of the dynamical scaling function above
T&. Although qualitatively similar, the scaling

function for cobalt is notably different from that
found for iron.

Previous studies of the critical behavior of cobalt
have dealt solely with the static critical properties.
Bulk measurements of the divergence of the uni-
form susceptibility above T~ by Colvin and Arajs, '
Geissler and Lange, ' and Rocker and Kohlhaas'
place the value of the exponent y at 1.20+0.04.
Such a low value for y is to be contrasted with the
results of similar measurements on iron and nickel
which have yielded values for y between 1.30 and
1.34. In the only reported measurement of the ex-
ponent P for cobalt, which describes the power-
law temperature dependence of the spontaneous
magnetization near T~, Rocker and Kohlhaas' ob-
tained p = 0.42+0..01. This result is supported,
however, by the earlier magnetization measure-
ments of Myers and Sucksmith, ~ which when plotted
on a log-log scale give a value for p of 0.41. The
consensus of numerous measurements of P for iron
and nickel, on the other hand, is that P =0.38~0.01
for both these materials. Hence, in bulk measure-
ments of its static critical properties, cobalt has
been observed to deviate from the behavior found
for iron and nickel.

In the only previous study of the critical neutron
scattering from cobalt, Bally et al. ' measured the
angular distribution of the small-angle scattering
at several temperatures above T~. Their results
were analyzed within the static approximation in
which the critical scattering is treated as entirely
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elastic. Although they lacked data on the dynamics
of the spin fluctuations on which to base such an
approximation, they estimated that if the relaxation
times of the spin fluctuations in cobalt were not
less than those which had been measured for iron,
then inelasticity corrections to their data could be
neglected. Within the static approximation, Bally
et al. determined that y =1.19, in close agreement
with the low values for y derived from the bulk
measurements. In addition, they extracted the in-
verse correlation range I(., from the angular dis-
tribution of the scattering and the exponent v =0.625
for the dependence of z, on the reduced tempera-
ture near T~. This exponent is once again lower
than that derived by Bally' in similar measure-
ments on iron which gave p =0.70+0.015.

Despite the apparent agreement between the neu-
tron-scattering and bulk measurements of the stat-
ic susceptibility, the underlying assumption of the
neutron results that the dynamical behavior of the
spin fluctuations is similar in iron and cobalt is
open to question in light of the consistently differ-
ent values obtained for the static critical exponents
for the two materials. Furthermore, at the time
of Bally's measurements there existed only limited
data on the inelastic nature of the critical scatter-
ing from iron. Only subsequent experiments"
revealed the extent to which inelasticity can affect
the interpretation of total scattering data. " Hence
in our study we have attempted to correlate mea-
surements of the angular dependence of the criti-
cal scattering with extensive additional measure-
ments of its energy dependence in order to quan-
titatively assess the importance of inelasticity
corrections in the determination of the static cri-
tical exponents y and p.

Because cobalt undergoes a first-order structur-
al transition from hcp to fcc at about 420 'C, only
polycrystalline samples ar e conveniently available
for studies near the critical point (Tc =1115'C).
Critical-scattering measurements on cobalt are
nonetheless feasible, if confined to the forward
direction, for near T~ the magnetic scattering is
expected to be isotropic at small scattering vec-
tors. This is expected because cobalt is cubic
in its high-temperature phase as are iron and
nickel which experiments' "'"on single crystals
have shown to be magnetically isotropic near their
-respective critical points. Because of this mag-
netic isotropy, our measurements on cobalt have
yielded a great deal of the information normally
requiring single-crystal samples.

The remainder of this paper is organized as
follows. In Sec. II we present various proposed
forms for the neutron cross section near T~ in
order to provide the theoretical background against
which to view our results. In Sec. III we describe

the experimental apparatus and the techniques used
in making the measurements. Our experimental
results are presented and discussed in Sec. IV.
We note that some of these results have been
briefly reported in two previous publications. '
Finally, in Sec. V we compare the available ex-
perimental data regarding the critical behavior of
cobalt with that for iron and nickel.

II. CRITICAL SCATTERING CROSS SECTIONS

A. General form of the cross section

The differential cross section for the scattering
of unpolarized neutrons from an initial state k,. to
a final state k, with momentum transfer kQ =k(k,.
—k ) and energy loss k&u =k'(k,' —kf')/2m„, by a
system of N localized spins on a Bravais lattice
is given by 4

(2 1)

where F(Q) is the atomic magnetic form factor and
g (Q, ~), the so-called scattering law, is the spa-
tial and temporal Fourier transform of the spin
pair correlation function, i.e.,

(2.2)

In (2.2}, Sa(t) is one Cartesian component of the
spin operator at site R and time t. The term (1
—Q'„) multiplying 8"(Q, &) in (2.1) selects those
components of the scattering law which are per-
pendicular to the scattering vector Q. For a poly-
crystalline sample, this term must be averaged
over all possible crystallite orientations and is
then equal to -', . In this case all components of
8 (Q, w) contribute equally to the scattering.

Through the application of linear response the-
ory, "it is possible to express the scattering law
measured by neutron scattering in a form which
separates the static and dynamic behavior of the
spin correlations. This is accomplished through
the introduction of two response functions, (i)
g "(Q}, which is the susceptibility of the spin sys-
tem to a static sinusoidal applied field of wave
vector Q, and (ii) a relaxation function f (Q, t)
which describes how the magnetization relaxes
following the sudden cutoff at t =0 of a steady-state
field of periodicity Q. A lucid account of how these
two functions may be related to S~(Q, +) is given in
Ref. 14. Here we merely reproduce the general
result for the complete wave-vector and frequency
dependence of the scattering law
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&"(Q,~) =~)),.«(Q, Q) =o)

NS (S + 1) h &gp
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n
Q)
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where XQ
=-,'(gi(s)'S(S + 1)p is the susceptibility of

an isolated ion and the spectral-weight function
F"(Q,&u) is the Fourier transform of the relax-
ation function f"(Q, t), normalized such that

(2 4)

The first term in (2.3) is proportional to the square
of the magnetization and gives rise to the elastic-
magnetic Bragg scattering while the second term
gives the diffuse, and in general inelastic, scat-
tering from spin fluctuations which becomes the
critical scattering near T~. In this expression for
8 "(Q,Q)) the static properties of the spin fluctu-
ations are manifested in x (Q) while F"(Q, (()) con-
tains all the dynamical information. The wave-
vector-dependent susceptibility x"(Q) is defined
such that X"(Q=O) is just the macroscopic iso-
thermal susceptibility measured by bulk techniques.

By combining (2.3) with (2.1), we arrive at an

expression for the diffuse cross section which is
most convenient for discussing the magnetic scat-
tering from an isotropic polycrystalline sample,
namely,

dAdm 3 m c' k,

& S(S+1)
1 —exp (-h (L)P)

&&
— F'(Q, ~) +— ('(Q, )),
1 x'(Q), - 2 x'(Q)

Xo 3 Xp

(2.5)

where the superscripts l and t identify, respective-
ly, the longitudinal and transverse components of
the susceptibility and spectral-weight functions de-
fined with respect to the direction of the spontane-
ous magnetization, the only unique direction in an
otherwise isotropic system.

B. Wave-vectorMependent susceptibility X(Q)

Above T~, where the spontaneous magnetization
is zero, no distinction can be made between trans-
verse and longitudinal components of the suscepti-
bility so that X'(Q) =X'(Q) =X(Q). By applying the
mean-field approximation to a Heisenberg ferro-
magnet, an expression for x(q) valid for small
values of the reduced scattering vector q =Q-7.

(f is a reciprocal-lattice vector) can be calculated
and is found to have the familiar Ornstein-Zernike
form

() xo
'Y2(K2 +q2 )

(2.6)

X(q) is related to the static pair correlation func-
tion by Fourier inversion' which, for the above
expression, gives the well-known result

, () xo
x q y2( 2+ Q)

~ (2.8)

The q dependence obtained in this approximation
for the transverse susceptibility x (q) is simply,

x.'(q) =,.'2 ~ (2.9)

Although small corrections to these two expres-
sions have been proposed" based on theoretical
approaches more sophisticated than mean-field
theory, there is general agreement that x'(q) is
not associated with an inverse correlation range.
which implies that only the longitudinal part of the
susceptibility is expected to show divergent be-
havior as T-T~. This essential difference be-
tween x'(q) and x'(q) has been confirmed by recent
experiments" on the nearly ideal isotropic Heis-
enberg ferromagnets EuO and EuS which are in

(ES()(0)ES„"(0))= 12
S(S+1)—, , (2.7)

/

valid for large distances f' Here vp is the volume
of the unit cell. It is through Eq. - (2.7) that
the parameter z, receives its interpretation as an

inverse correlation range and r„a measure of
the strength of the spin correlations. Since X(q =0)
diverges as Tc is approached, Eq. (2.6) im-
plies that Ky 0 at Tg. The parameter r„however,
is related to the range of direct interaction between
individual spins and is expected to be only weakly
temperature dependent through the critical point.

While the Ornstein-Zernike form for X(q) has
generally proven to give a good description of the
critical scattering not only from magnetic systems
but also from simple fluids and binary liquids md
alloys, for example, small deviations from (2.6)
have been observed experimentally and predicted
theoretically. " None of the various approximants
for x(q) which have, been proposed, primarily by

Fisher and coworkers, "'9will be mentioned here,
however, for as will be shown in Sec. IVB the
Ornstein- Zernike expression is entirely adequate
to describe the small-angle critical scattering from
cobalt above T~.

Below T~, the mean-field result in the small q
limit for the longitudinal susceptibility x'(q) is
once again of the Ornstein-Zernike form
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general accord with the mean-field expressions
for y'(q) and y'(q) and provide about the best evi-
dence to date for their validity, at least in describ-
ing a truly Heisenberg-like system.

where I' is, in general, a q-dependent damping
constant inversely related to the spin-wave life-
time. Here, the spin-wave dispersion still has the
form h&o(q) =Dq', but now the so-called stiffness
constant D is temperature dependent.

An alternative spectral-weight function has been
proposed by Halperin and Hohenberg" based on hy-
drodynamic theory. They suggest

, ( )
1 y~(q)'

[ 2 ()2)Z 2 ()2 (2.11)

where y(q) is a damping constant. This form for
E'(q, (d) also has peaks at +(d (q) and differs in shape
from the double Lorentzian form only when the
spin-wave peaks partially overlap which occurs
when the damping becomes comparable to (d(q).
In this limit, the validity of either expression is
questionable, however, for one assumption of the
hydrodynamic theory underlying equation (2.11)

C. Spectral weight function F(q,m)

In this section, we review some results for the

spectral weight function obtained from spin-wave
theory and the hydrodynamic theory of spin dif-
fusion which serve to describe the dynamics well
away from the critical point in the ordered and dis-
ordered phases, respectively. We then go on in

Sec. IID to discuss how these results may be ex-
tended into the critical region with the aid of dy-
namical scaling and also mention the results of
direct, though approximate, calculations of the
time-dependent spin correlation function near T~.

In the ordered state, the transverse fluctuations
of the magnetic moments are spin waves which for
an isotropic ferromagnet exhibit quadratic disper-
sion, 5+(q) =+Dq', in the small q limit. The spec-
tral-weight function obtained from linear spin-wave
theory at low temperatures consists of sharp peaks
at the spin-wave creation and annihilation energies.
At higher temperatures the effects of spin-wave
interactions become important and result in the
renormalization of the spin-wave energies and in

t'

the reduction of the spin-wave lifetimes. " Cor-
respondingly, the sharp peaks in the spectral
weight function broaden and shift to lower energies.
The most commonly proposed form for the spectral
weight function which incorporates these effects
consists of a pair of Lorentzian line shapes,

is that y « ~ (q) .
At temperatures where linear spin-wave theory

begins to break down, longitudinal fluctuations in

the magnetization are expected to play an increas-
ingly important role in the dynamics. For the most
part, theory and experiment have agreed that the
longitudinal fluctuations show nonpropagating, dif-
fusivelike behavior; the most commonly proposed
form for F'(q, &u) being a single Lorentzian cen-
tered at & =0. Such a central peak is expected to
become more pronounced as the temperature is
raised (ultimately to diverge at Tc for q =0) and

to have an integrated intensity which varies as q
'

in accord with the expression for y'(q) in Eq.
(2.8). These expectations have been borne out in

experiments on isotropic' and anisotropic'~ anti-
ferromagnets and on anisotropic ferromagnets, "
but repeated attempts to observe a central peak in

the isotropic ferromagnets Fe,' "Ni, "and EuS
and EuO, "have yielded null results. There have

been two recent experiments, one" on Fe and the
other" on the nearly isotropic metallic ferro-
magnet CoS„ in which some indication of a weak

central peak was observed immediately below T~,
but in neither case could the scattering be positive-
ly identified as arising from the longitudinal fluc-
tuations.

In what is perhaps the most thorough treatment
of the longitudinal spin fluctuations in a ferro-
magnet below T~, Vaks et al. have suggested that

the longitudinal fluctuations can decay through

interaction with the spin waves. They describe
a process of spin diffusion through spin waves
which they argue is enhanced in an isotropic fer-
romagnet because the Dq' dispersion relation im-
plies a high density of long-wavelength spin-wave
states to promote the interaction. In their cal-
culations based on the Heisenberg model, they
find that in addition to a small central peak,
+'(q, &) should also have sidebands which peak
at the spin wave energies &u(q) =+Dq2. If; in fact,
much of the longitudinal spectral weight is con-
centrated in sideband peaks, then this could ex-
plain why the observation of a central peak has
proven so difficult.

At the other end of the temperature scale, well
above T~, the spin system is homogeneous to a,

high degree owing to the nearly complete disorder
of the moments and therefore hydrodynamic the-
ory is once again applicable for analyzing at least
the long-wavelength low-frequency phenomena.
Van Hove first suggested" that in this regime the
magnetization density M(r, t) obeys a diffusion
equation' of the form d M/dt =AT'M where A(T) is
the spin diffusion constant. Accordingly, an initial
plane wave of magnetization of wave vector q- de-
cays in time like exp(-Aq't). The Fourier trans-
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form of this relaxation function gives the spectral
weight function

1 Aq2
F(q, (u) =-

v (Aq')'+(u' (2.12)

There is a basic agreement on the above form for
F(q, &u) in the high-temperature low-q limit both
from more microscopic theories and from a num-
ber of experiments.

(2.13)

where the factor ~„(q) ' insures the normalization
1"f„,(x) dx = 1. In Eq. (2.13), the characteristic
frequency &o„(q) is defined by the relation

~~(c)
F(q, (d) d(d = —, (2.14)

and thus half the area under F(q, &u) lies within
e„(q). This definition of &g„(q), although admit-

tedly arbitrary, has a precise meaning at all tem-
peratures regardless of the shape of F(q, &u}.

D. Dynamical scaling

The results presented in the previous section,
obtained from hydrodynamic theory, are valid for
long wavelengths and low frequencies. According
to the concepts of static scaling originally put forth
by Widom, "Kadanoff, "and others, ~ all lengths
should be measured relative to the correlation
range $ =~ ' since it is assumed that ( reflects the
most important effects of critical fluctuations. In
this view, hydrodynamic theory should apply at
temperatures and wave vectors such that z/q»1,
while quite different behavior can be expected in
the so-called critical region where v/q « l.

The static-scaling hypothesis assumes that a
single function describes the spin correlations for
all q and ~, with a characteristic dependence on
the ratio a/q. Expressed mathematically, the
static-scaling hypothesis states that the static-
pair correlation function is a homogeneous func-
tion of a and q, which implies that the static sus-
ceptibility can be written in the form y (q) cc q'h (K/q).
Note that the expressions for ~(q) given in Sec. IIB
can be cast in this form where the exponent y =-2.

Scaling arguments were first extended to dynam-
ic phenomena by Ferrell et al. ' in connection with
the superfluid transition in helium and later re-
formulated by Halp'em and Hohenberg ' for mag-
netic systems. They proposed that there is a
characteristic frequency which plays an analogous
role in describing the dynamics of the spin fluc-
tuations that the characteristic length, the corre-
lation range, does for the statics. Thus they sug-
gest that the spectral-weight function has the form

Underlying dynamical scaling is the assumption
that not only the static but the frequency-depen-
dent correlation function depends crucially on the
ratio z/q. This assumption is expressed in two
specific hypotheses, namely: (i) that the charac-
teristic frequency &„(q) is a homogeneous func-
tion of q and z,

(u„(q) =oq~Q(~/q) (2.15)

and (ii) that the scaled spectral-weight function

f„,(&o /&„(q)) depends only on the ratio ~/q and
not on q or x separately. Thus the shape of F(q, ur)
will be the same, apart from a change of scale,
for all values of q and ~ such that the ratio z/q is
fixed.

The dynamical scaling hypotheses can be used
to relate the behavior of the spin dynamics in the
critical region to that in the hydrodynamic regions
above and below the critical point. For example,
in the spin-wave region below T~ it can be shown
from hydrodynamic theory" that the stiffness con-
stant D is proportional to rc' so that the complete
temperature and wave-vector dependence of the
characteristic frequency in this region is given by

&u„(q) =Dq ~z' q, v»q, T&Tc. (2.16)

Comparing this with the general form for &o„(q),
Eq. (2.15) implies that Q(K/q)-(K/q)' in this limit
and therefore the exponent Z =-,'. These conclu-
sions in turn imply that at T~, where I(. =0 and so
Q(a/q) is a constant for all q, the characteristic
frequency is simply

(2.17)

where for convenience we have let Q(0) =1.
Although important features of the critical be-

havior may be inferred from hydrodynamic the-
ory through dynamical scaling, scaling itself
does not predict the functional form of the cor-
relation function. To do so requires a microscop-
ic theory. Hubbard" has recently succeeded in
extending the work of Mori, "Kawasaki, "and oth-
ers, 40 to calculate approximately the time-depen-
dent spin correlation functions in the paramag-
netic and critical regions for an isotropic Heisen-
berg model with nearest-neighbor coupling. From
these results he has been able to predict the in-
elastic neutron scattering line shapes and widths
at all temperatures above T~. The spectral-weight
function he obtains does not have a simple anal-
ytical representation, however, but must be cal-
culated numerically. Figure 1 shows the results
of such a numerical calculation in which the nor-
malized spectral-weight function F(q, &u)/F(q, o) is
plotted versus the scaled frequency ~/oq'~' for
various values of ~/q. The first point to be noted
from Fig. 1 is that the shape of F(q, m) depends
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FIG. 1. NormaLized spectral-weight function cal-
culated by Hubbard for the simple cubic Heisenberg
ferromagnet with nearest-neighbor coupling. When
plotted vs the scaled frequency co/0q~, the spectral
function depends only on the ratio K/q in agreement with
the dynamical scaling hypotheses (from Ref. 37).

III. EXPERIMENTAL APPARATUS AND PROCEDURES

The measurements to be presented in Sec. IV
were performed on a triple-axis spectrometer at
the High-Flux Beam Reactor at Brookhaven Na-
tional Laboratory. Pyrolytic graphite crystals
were used as monochromator and analyzer and
all measurements were made with a filtered in-
cident beam of 12.5 meV (X =2.46 A). For most
of the inelastic scattering measurements, Soller
slit collimators with horizontal divergence angles
of 20-10-20-20 minutes were used in the in-pile,
monochromator-to-sample, sample-to-analyzer,
and analyzer-to-detector regions, respectively,
resulting in a measured energy resolution of 0.37
+0.02 meV (full width at half-maximum).

Measurements of the angular dependence of the
critical scattering were carried out by operating
the spectrometer in the two-axis mode in which

only on the ratio z/q as anticipated by dynamical
scaling. Furthermore, the widths of the curves in
Fig. 1 are evidently of the form given in Eq. (2.15)
with Z =-', . Thus the predictions of dynamical scal-
ing are contained in the results of Hubbard's cal-
culations. The other significant feature shown in
the figure is the progressive change in the shape
of F(q, &u) from a rounded, Gaussian-like line at
T (K/cq=0) to the Lorentzian shape F(q, &o) must
take at large values of v/q. A distinctly non-
Lorentzian shape at T~, similar to that in Fig. 1,
has generally been observed for isotropic ferro-
magnets "2"

the analyzer crystal is removed and thus all neu-
trons scattered through a given angle are detected
regardless of their energies. For these measure-
ments, Q resolution is of utmost importance and
the increased intensity resulting from removal
of the analyzer crystal permits tighter Q resolution
to be imposed. In addition to horizontal collimation
having divergence angles of 20-20-20 min, Soller
slit assemblies with a vertical divergence of 40
min were inserted before and after the sample.
The vertical Q resolution of this configuration,
which gives the largest contribution to the over-
all resolution, was measured to be 0.045+0.02 A '.
By contrast, the Q resolution along the scattering
vector was 0.020 A '.

An aluminum vacuum furnace provided access
to the high temperatures needed for the critical
scattering measurements (Tc =1115'C). The
sample was heated by direct radiation from h
graphite resistance heater specially designed to
produce no magnetic field at the sample position.
The temperature distribution in the hot zone was
tested by measuring the peak in the critical scat-
tering as a function of temperature, first from
the top of the sample and then from the bottom.
The total temperature difference across the face
of the sample was thus estimated to be about
1 at 1100'C. The furnace temperature was regu-
lated with a three-mode temperature controller
which enabled temperature variations to be held
to less than 0.5'C over a period of 24 h.

The polycrystalline samples used in our mea-
surements were thin slabs 38x32x2 mm owing to
cobalt's rather large absorption cross section of
nearly 52 b for 13.5 meV neutrons. Because co-
balt has a considerable vapor pressure near its
Curie point, it was necessary to encapsulate the
samples to prevent loss of material through evap-
oration. Sample containers of aluminum oxide
were fabricated for this purpose and the platinum-
rhodium thermocouples used to monitor the tem-
perature were affixed to the containers to prevent
their alloying with the samples. This arrangement
precluded absolute temperature measurements,
however temperatures relative to the Curie point
could be accurately determined by calibrating each
thermocouple from the peak in the critical scatter-
ing, as mentioned above. Considering all sources
of uncertainty, the precision with which tempera-
ture differences, ~T —Tc~, could be determined
was about 1.5'C.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Dynamics below T~-spin waves

We choose to present first the results of our in-
elastic scattering measurements below T~. Owing
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FIG. 2. Spin-wave line shapes observed in constant-Q
scans at 8 C below Tc. The solid curves were obtained
by convoluting the Halperin-Hohenberg spin-wave cross
section with the spectrometer resolution function.

to the extreme steepness of the spin-wave disper-
sion in cobalt (D =385 meVA' for cobalt" stabil-
ized in the fcc phase at room temperature) plus the
limited range of energy transfer available in a
small-angle experiment, our observations of the
spin waves were restricted to temperatures close
to T~, where their energies are greatly reduced
as a result of spin-wave renormalization. Below
about 1000 'C, triple-axis constant-Q scans reveal
only an elastic temperature-independent peak aris-
ing from cobalt's rather large (5.9 b) nuclear
spin-incoherent cross section. Careful scans of
this nonmagnetic contribution to the scattering
were subsequently subtracted from the data in the
critical region. Despite the rather large incoherent
cross section, the nonmagnetic scattering amoun-
ted to only one or two percent of the total at T~.

We were able to observe the spin waves for waVe
vectors 0.03 &q ~0.08 A ' over the temperature
range 0.002 &1 —T/Tc &0.03; at lower temperatures
the spin-wave peaks lie beyond the available range
of energy transfer and at larger wave vectors the
spin waves are too severly broadened to be iden-
tifiable as discrete excitations.

'

In Fig. 2, the
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intensity recorded in constant-Q scans taken at
8'below Tc (1-T/Tc =0.006) is plotted versus
neutron energy transfer. At each wave vector
distinct spin-wave creation and annihilation peaks
are seen which exhibit dispersion and a significant
q-dependent line broadening. Each scan in the
figure extends over the entire range of energy
transfer accessible at that wave vector.

The renormalization and broadening of the spin
waves is illustrated in Fig. 3 which shows line
shapes observed at a fixed q of 0.05 A ' for sev-
eral temperatures. At the lowest temperature,
where the spin waves are just coming into view,
their widths are due solely to instrumental reso-
lution. This indicates that the spin-wave disper-
sion at small wave vectors is truly isotropic for
if it were not, the implicit averaging over all di-
rections in the Brillouin zone inherent in mea-
surements on polycrystalline samples would intro-
duce a width over and above that due to other
sources. We also note that there is no indication
in either Fig. 2 or 3 of a central peak due to the
longitudinal susceptibility. We shall consider this
point further later in this section.

In an attempt to account in detail for the spin-
wave line shapes we observed as well as obtain
resolution-corrected values for the spin-wave
energies, we fit all of our data using both the

0
0 I I I I I

g
I I I I I

-0.6 -0.3 0 0.3 0.6 -0.6 -0.3 0 0 3 0.6

ENERGY TRANSFER (meV)

FIG. 3. Spin-wave line shapes observed in constant-Q
scans for Q = 0.05 A at several temperatures below
Tz. The curves in the figure are least-squares fits to
the data obtained using Halperin-Hohenberg form for
the cross section.
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Halperin-Hohenberg' (HH) curve, on the other
hand, is quite adequate in describing the entire
line shape. The two cross-sectional forms are
contrasted more directly in Fig. 4(b) where the
spectral functions, not folded with the resolution
function, are plotted such that their peak and half-
height positions coincide. The double Lorentzian
curve falls below the HH curve at k~ =0 but rises
above it in the wings.

The solid curves in Figs. 2 and 3 were obtained
by convoluting the HH cross section with the reso-
lution function. The line shapes in these figures,
and all of our spin-wave data, are well represent-
ed in this way.

That the two-peaked HH spectral-weight function
is so successful in representing the entirety of our
spin-wave data, right up to T~, is surprising since
it is expected to apply only within the low-tempera-
ture hydrodynamic regime. In fact, if the criter-
ion of the hydrodynamic region that the spin-wave
damping be much smaller than the spin-wave fre-
quency, y«&(q), is not satisfied, then the HH ex-
pression [Eq. (2.11)] is not even properly normal-
ized, i.e., integrating over all frequencies gives,

I I I

-0.5 0 0.5
ENERGY TRANSFER (meV)

FIG. 4. (a) Results of fitting both the Halperin-Hohen-
berg and double Lorentzian forms of the spectral-weight
function to a typical spin-wave line shape; (b) the two
forms for E(q, u) are contrasted more directly by
matching their peak heights and half-widths.

double Lorentzian [Eq. (2.10)] and Halperin-Hohen-
berg [Eq. (2.11)]forms for the spectral-weight
function together with Eq. (2.9) for the transverse
susceptibility. An overall scale parameter, the
spin-wave energy and the damping constant in each
cross section were treated as variables to be de-
termined by the nonlinear least-squares fitting
routine. In those few instances where, the spin
vraves are well separated, the two forms of the
cross section are virtually indistinguishable and

give equally satisfactory fits to the data. When the
spin-wave peaks partially overlap, however, the
Halperin-Hohenberg spectral function provides a
systematically better fit to the line shape as a
whole, particularly around & =0. This point is
brought out in Fig. 4(a) which shows the results of
fitting the profile observed for q=0.05 A ', taken
at 8'below T~, to both the double Lorentzian
(dashed curve) and Halperin-Hohenberg (solid
curve) spectral functions, folded with the reso-
lution function. The double Lorentzian curve,
forced to fit the spin-. wave peaks, is seen to fail
to account for all the intensity near @w =0. The

J
OO

F„H(q, e) du& = (p + 1)' '/(2p)' ', (4.1)

where p = (1 +[y/&u(q)]'p~'. Only when y «v(q) does
the right-hand side of Eq. (4.1) approach unity. And

yet when the HH spectral function is multiplied by
(2p)'~'/j(p'+1)'~~, so that it is normalized for all
values of y and &o(q), the overall scale parameter
determined by our fitting routine is nearly con-
stant for all the line shapes at a given temperature.
This is significant because it indicates that the
presumed form for the transverse susceptibility,
y'(q) ~q ', can account for the large variation of
spin-wave intensity with wave vector that can be
seen in Fig. 2, for example. In other words, a
cross section consisting of a static term propor-
tional to q

2 and the HH form, properly normalized,
for the spectral-weight function is sufficient to de-
scribe both the frequency and q dependence of the
inelastic scattering line shapes we observed be-
low T~. The overall normalization constant ob-
tained by fitting to our spin-wave data did show a
gradual temperature dependence, however, in-
creasing as T~ is approached. This could per-
haps indi ate the presence of a broad central peak
although without further evidence this is only spec-
ulation.

The resolution-corrected spin-wave energies
obtained from our fitted line shapes follow a quad-
ratic dispersion relation, . @m(q) =Dq Yet deriv.ed
values for the stiffness constant D, when plotted
versus reduced temperature on a log-log scale,
show systematic deviation, near Tc, from the
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FIG. 5. Spin-wave stiffness constant D plotted vs
(1—T/Tz) on a log-log scale. The values for D were
derived from only those data estimated to lie within the
hydrodynamic region.

simple power-law temperature dependence ex-
pected from hydrodynamic theory. This may re-
sult because most of our data fail to satisfy the
criterion that y «u&(q) and so probably lie outside
the hydrodynamic regime. However, if we ignore
those data which grossly violate this criterion and
plot values for D obtained from only those data
which satisfy the weaker, and admittedly arbitrary,
condition y j~(q) ~1, we then do find a simple
power-law temperature dependence. This is shown
in Fig. 5 where we find that, treated in this way,
the data yield a stiffness constant which varies as
the 0.39~0.05 power of the reduced temperature.
Hydrodynamic theory, together with static scaling,

COSA LT

I I

28 = I.33
q -006A

30—
x 10&

z 20—
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FIG. 6. Total scattered intensity observed at a.

fixed scattering angle of 1.33 as a function of tempera-
ture. The peak in the scattering served to locate the
Curie point to within 1 'C.

predicts" the value of this exponent to be equal to
p' —P, where p' and P are exponents describing,
respectively, the temperature dependence of the
inverse correlation range and the magnetization.
According to static scaling, v' = p (the correspond-
ing exponent above Tc) and series-expansion cal-
culations for the Heisenberg model estimate" the
exponent p to be -0.70 and the exponent P to be
-0.38 so that p' —P-0.32, which is somewhat lower
than the exponent we obtain.

We conclude this section by returning to the puz-
zling problem of identifying the scattering asso-
ciated with the longitudinal susceptibility which is
presumably the true, i.e., divergent, critical
scattering. Figure 6 shows the result of a two-
axis measurement of the total scattering observed
at a fixed scattering angle of 28 =1.33' (q=0.06 A ')
as a function of temperature. From the intense,
well-defined peak seen in the total scattering, we
were able to locate the Curie temperature to with-
in 1 'C. Since in a two-axis experiment, neutrons
with all values of scattered wave vector k& (and
hence all values of energy transfer h& from -~ to
k'k,'/2m) are detected, it might at first seem that
the spin waves would give some contribution to the
observed intensity at all temperatures below Tc.
The sharp rise in intensity near Tc would then
seem to be clear evidence for the diverging longi-
tudinal susceptibility. However, in order to ob-
serve scattering from a spin wave with energy 5&
=Dq'(~) [the dependence of q on &u for a fixed scat-
tering angle 28 is given in Eq. (4.3)] in a two-axis
experiment, the energy conservation condition 8&
=(I'j2m)(k,'-kz) must, of course, alsobe satisfied,
and together these two conditions do restrict the
observability of the spin-wave scattering for a
material like cobalt. For the circumstances under
which the data in Fig. 6 were recorded (k,. =2.55
A ', 28 = 1.33'), these two equations for k&g have
simultaneous solutions only for 0 &D &90 meVA'.
The spin-wave dispersion in cobalt stiffens so
rapidly that D = 90 meVA' at about 10 C below T~.
Consequently, even in a two-axis measurement,
the spin waves contribute to the scattered intensity
only in the immediate vicinity of T~. The sharp
peak in Fig. 6 is, therefore, at least partially due
to the transverse rather than the longitudinal fluc-
tuations.

In order to estimate the spin-wave contribution
to the line shape in Fig. 6, we integrated the dou-
ble-differential cross section which best de-
scribed our triple-axis measurements over the
path in q, ~ space corresponding to the fixed scat-
tering angle 20 =1.33'. We performed the inte-
gration numerically, using, below T~, only the
expression for the transverse susceptibility [Eq.
(2.9)] and the HH form for the transverse spectral-
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FIG. 7. Result of numerically integrating the dif-
ferential cross section derived from triple-axis
measurements so as to simulate the total scattering
observed at a fixed scattering angle as a function of
temperature. The figure is to be compared with the
experimental curve shown in Fig. 6.

weight function. The temperature dependence of
the cross section enters primarily through the

stiffness constant which was taken to be D =680 (1
—T/Tc)'" meV A' as derived from our triple-axis
measurements, and secondarily through the spin-
wave line width y which was taken to be proportion-
al to (1 —T/Tc) ' as predicted by scaling. " Above

T~, the spectral function deduced from our triple-
axis data (Sec. IVD) was used in the calculation
along with the Ornstein-Zernike susceptibility, in-
cluding the temperature dependence of Ky derived
from our angular scans (Sec. IVB). The results
of our numerical calculations are shown as the

dashed curve in Fig. 7 where the intensities com-
puted with the two forms for the cross section have

been smoothly joined at T~. The curve in Fig. 7

is seen to reproduce quite closely the data in Fig.
6 considering that no more than qualitative agree-
ment can be expected from the approximate cross-
sectional forms used in the calculation (the exact
shape of the foot of the curve below T~ depends on

the detailed wave vector and temperature depen-
dence of the spin-wave linewidths, for example).
This basic agreement with the data in Fig. 6 allows

us to draw two conclusions regarding the critical
scattering below T~. First of all, we see that, .

just as with our triple-axis measurements, the

critical scattering observed in Fig. 6 can be sat-
isfactorily accounted for solely in terms of the

cross section for the transverse susceptibility. It

may be that the form of the cross section for the

longitudinal susceptibility is not greatly different
from that for the transverse susceptibility, at
least over the wave vector and temperature range
of our measurements, as suggested by Vaks et al."
And secondly, Fig. 7 reveals that, as a conse-
quence of the steepness of the spin-wave disper-
sion in cobalt, at temperatures well below T~ there
is no magnetic scattering whatsoever near the for-
ward direction. This is significant because the

ability to separate the magnetic scattering from
that due to other sources is a crucial, although

often underemphasized, factor in the determina-
tion of critical exponents. Figure 7 implies that,
for cobalt, the background contribution to either
two-axis or triple-axis scans made in the critical
region may be simply determined by making cor-
responding scans at 800 'Q, for example.

x y (q) F(q, (o) d(o, (4.2)

where q is a function of the energy transfer 5+
through the relation

2 2m
- ~/» /2

q(w}=I2k' — a —2R. k* — w cosgI
(4.3)

The first factor in the integrand of Eg. (4.2) arises
because (d'g/dAdco) is proportional to kz/k, while

the second factor is the detailed balance factor with

P =1/keT. If the spectral function F(q, +) is a nar-
row function of &, i.e., the scattering is nearly
elastic, or if k, is large so that q(&o) is nearly con-
stant, the cross section o(8) in Eq. (4.2) becomes

B. Wave-vector4ependent susceptibility

and inverse correlation range above T~

Above Tc, the critical scattering is quasielastic
and can be associated with a single expression for
the static susceptibility y(q) and spectral function

F(q, cg). For both these reasons the critical scat-
tering above T~ is more amenable to detailed,
quantitative study by small-angle scattering than

that below Tc.
In order to determine the static susceptibility

y(q) and inverse correlation range a„ the angular
distribution of the scattering was measured in a
series of double-axis scans at temperatures up to
150 'C above T~. As already noted, in the two-

Bxis mode the spectrometer implicitly integrates
over all neutron energy transfers corresponding to
scattering through a fixed angle 8. As a result,
the cross section which is directly measured" be-
comes [from Eq. (2.3)]
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simply proportional to the reduced susceptibility
X(q) —= y(q)/y, . When either of these conditions ob-
tains, the angular dependence of the scattering may
be analyzed solely in terms of x(q). This is known

as the quasistatic approximation. In general, how-
ever, knowledge of F(q, &u) is necessary to infer
x(q)

In order to obtain direct information regarding
the inelasticity of the scattering above Tc, a sep-
arate series of triple-axis scans were undertaken
in which the frequency distribution of the scatter-
ing at fixed wave vectors was determined. These
measurements, to be described in Sec. IVD,
served to characterize F(q, &u) over the wave vector
and temperature range of our two-axis data. The
frequency dependence of F (q, e) was found to be
well represented, except in the immediate vicinity
of T~, by a single Lorentzian, peaked at + =0.
This simple shape, plus the fact that F(q, v) is a
normalized function, reduced the task of specifying
F(q, Id) to one of empirically determining its Lor-
entzian width f'(q) as a function of wave vector and

temperature. By measuring l'(q) at several tem-
peratures, we were able to approximate its func-
tional dependence with simple analytic expressions
which were in turn used to interpolate between the
measured points to obtain I'(q) at general values of

q and T.
With the form of F(q, &») Jieduced from our triple-

axis measurements, we were able to correct our
two-axis data for the effects of inelasticity in the
following manner. J' First, the integral in EIl. (4.2)
is evaluated numerically usin'g a Lorentzian F (q, &)
and a parametrized form for )((q). For example, if
the Qrnstein-Zernike expression, g '(q) cc q +K„
is used, then p (8) depends only on the parameter
Ky Using a least-squares routine, a search is
made for the value of Ky for which the computed
constant-angle cross sections are simply propor-
tional to the measured intensities, I (q) =Qg (8, KJ),
for all angles 8. The success of this procedure de-
pends, of course, on choosing the correct form for
X(q) in evaluating o(8, KJ).

Having determined the value of Ky for a given
temperature, it is convenient to compute the so-
called inelasticity correction factor, R (q, K, ), de-
fined as

2
xi04

T —T = 35 Cc
o MEASURED

~ COR R ECTE D

z
LJJ

Ideally, therefore, the corrected intensities are
those that would be observed if the scattering were
totally elastic. Since o (q, K, ) cc y(q), the corrected
intensities should'exhibit the functional dependence
of the assumed form for x(q); this is the ultimate

' criterion for judging the success of the correction
procedure.

In addition to corrections for inelasticity, our
two-axis data were further corrected for the ef-

- fects of finite instrumental resolution. This
amounts to performing a weighted average of the
cross section over the region in q space sampled
by the spectrometer. We combined corrections
for inelasticity and resolution in one calculation by
folding both o (8, K, ) and p'(q, KJ ) with the resolution
function before forming the inelasticity correction
factors R(q, K, ). Owing to the tight collimation
conditions employed in our two-axis measurements,
the resolution corrections were not large, amount-

ing to only a few percent adjustment in the observed
intensities.

The results of correcting our two-axis data for
inelasticity and resolution effects are illustrated
in Figs. 8 and 9. In Fig. 8 the uncorrected, reci-
procal intensities (open circles) measured in a
typical angular scan at 35 'C above T~ are plotted
as a function of q'. Also shown in the figure are
these same reciprocal intensities (filled circles) cor-
rected for inelasticity and resolution effects assuming
an Qrnstein-Zernike form for ~(q). The raw data
are seen to deviate substantially from the straight-
line, Ornstein- Zernike-like behavior obeyed by
the corrected intensities. The deviations, which

are almost entirely due to inelasticity rather than

resolution effects, are most pronounced at the
larger q's where the scattering is most inelastic,
the width I'(q) of the spectral-weight function in-
crea, sing roughly with q .

R(q, K, ) =o(8&K, )/o(q& K, ) &
(4.4) LIJ

(f)

LIJ

I „„(q)=f (q)/R (q, KJ) =Co(q& KJ) . (4.5)

where a(q, K, ) is obtained from EIl. (4,2) by re-
placing F(q, &) with a 6 function, i.e. , o(q, K, )
is the two-axis cross section in the limit that the
scattering is entirely elastic. Corrected values
for the two-axis intensities are then computed by
dividing the measured intensities by R (q, K, ),

0 I

0.005
q2 (3,

I

0.0 IO O.OI 5

FIG. 8. Open circles are the reciprocal total scatter-
ing intensities observed at 35'C above 7'z plotted vs q .
The filled circles are obtained from the measured values
by correcting for inelasticity as described in the text.
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T —Tc 'Y

X '(q=0)
T

gives for the exponent y,

(4.8)

In Fig. 9, corrected inverse intensities are
plotted versus q' for two-axis scans taken at tem-
peratures up to 100 'C above T~. That all these
data are satisfactorily described by the Ornstein-
Zernike expression for y(q) serves to justify its
use in computing the inelasticity corrections.

The necessity for making rather large inelas-
ticity corrections to our two-axis data unfortunately
precludes our discriminating between the Ornstein-
Zernike expression for g(q) and the slightly modi-
fied form proposed by Ritchie and Fisher" for ex-
ample. The uncertainties introduced in the data
points in Fig. 9 by correcting for resolution and
inelasticity are too large to justify invoking one of
the modified expressions to account for any ap-
parent deviations from pure Ornstein-Zernike be-
havior seen there.

From the data in Fig. 9 we obtain the tempera-
ture dependence of the macroscopic susceptibility
g(q =0) and the inverse correlation range ~,. Since
the corrected two-axis intensities in the figure are
directly proportional to y(q), the intercepts of the
I/I plots atq =Oare thereforeproportional toy '(q =0)
while the extrapolated intercepts with the q' axis give
a,'directly. Valuesfory '(q =0) andz,'obtainedinthis
way are plotted versus reduced temperature on a log-
log scale in Fig. 10. Carrying out a weighted least-
squares fit of the data for y '(0) to the expression,

R EDUCED TEMPERATURE

FIG. 10. Temperature dependence of the inverse re-
duced susceptibility and the square of the inverse cor-
relation range plotted on a log-log scale. The slopes of
the fitted straight lines give the exponents y and 2v.

y = 1.23+0.05.

By fitting the data for Ky to the power law,

(4.7)

A~Kg =F (4.8)

where a„„=2.55 A is the nearest-neighbor distance
for cobalt a,t T~, we obtain

v =0.65+o.o4,

F =2.4~0.2.
(4.9)

The values we obtain for the exponents y and p

agree reasonalby well with previous determinations
(see Tables I and II). They are, however, signifi-
cantly lower than the values y = 1.38, p = 0.70 ob-
tained by series expansion calculations" for the
isotropic Heisenberg model and are much closer
to the values y =1.24, +=0.64 calculated for the
three-dimensional Ising model" using the same
computational techniques.

Theoretical values for the coefficient F in Eq.
(4.8) range from about 2.0 to 2.5. For example,
from molecular-field theory44 F =2.45, for the
three-dimensional Ising model & =2.30, and for
the Heisenberg model" F =2.19. Our experimental.
value for F is in line with all of the above pre-
dictions but is not determined with sufficient pre-
cision to discriminate among them.

The one disturbing feature of our data, which
can be seen in Fi'g. 10, is the systematic departure
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TABLE I. Values for the exponent y describing the
power-law divergence of the uniform susceptibility above
T&, for iron, cobalt, and nickel.

Material References

Fe

Co

Ni

(56) Noakes et gl, .
(57) Develey
(58) Arajs and Colvin

(6) Passell et gl.
(7) Bally pt gl a

(1) Colvin and Arajs
(2) Geissler and Lange

(59) De veley
(3) Rocker and Kohlhass
(5) Bally et gl.

this work~
(60) Kouvel et gl.
(57) Develey
(61) Araj s
(62) Jac rot

1.33 ~ 0.015
1.33+0.03
1 ~ 33
1.30 + 0.04
1.34+ 0.04
1.21 + 0.04
1.20 +0.04
1.32 +0.02
1.20 +0.05
1.19
1.23 ~0.05
1.34 +0.01
1.32 +0.02
1.29 +0.04
1.30

~Neutron scattering measurements.

TABLE II. Previous determinations of the exponent P,
describing the power-law temperature dependence of the
spontaneous magnetization near Tz, for iron, cobalt, and
nickel.

Material References

Fe

Co

Ni

(63) Arajs et al.
(64) Preston et gl.
(65) Potter

(3) Rocker and Kohlhaas
(4) Myers and Sucksmith

(60) Kouvel et gl.
(66) Howard et gl.
(67) Ander son e t g E.

0.389
0.34
0.35
0.42
0.41
0.378
0.375
0.35

+0.005
~0.04
+0.06
+0.01

~0.004
~0.02
+0.01

from simple-power-law behavior of the values for
g, and y (q =0) derived from our measurements
closest to T~. In seeking the origin of this depar-
ture, a number of possible causes were considered
including multiple scattering and the consequences
of a finite value for the Fisher exponent" g. The
effects of multiple scattering were investigated by
means of a Monte Carlo simulation of the experi-
ment in which absorption (c,b,

= 52 b for 13.5 meV
neutrons), incoherent scattering (c,.„„„=5.9 b),
and critical scattering were considered as the three
most likely processes whereby a neutron can in-
teract with cobalt nea, r .T~.

The overall effect of multiple scattering is to
flatten and broaden the critical scattering so that
fitting to a Lorentzian shape for y(q) ~ (q'+v', )

'
leads to an apparent value for z, which is larger
than the true value, i.e., the value one would ob-
tain if only singly scattered neutrons were detected.
This effect becomes more pronounced close to T~
and will produce systematic errors in the derived

values for Ky in the same sense as the observed de-
viations in Fig. 10. ' However, our computer anal-
ysis reveals that, primarily as a result of using a
thin sample having a rather large absorption cross-
section, the number of neutrons multiply scattered
into the angular range of our measurements never
exceeds 1'//~ of the total. Shifts in the apparent value
of v, cuased by this low level of multiple scattering,
while not entirely negligible, can account for only
a small fraction of the departure from power-law
behavior seen in Fig. 10. Hence multiple scatter-
ing cannot be deemed as solely responsible for the-
curvature in our data.

To determine if a finite value for g could be re-
sponsible for the breakdown in power-law behavior
seen in Fig. 10 we attempted to fit our plots of in-
verse intensity versus q' shown in Fig. 9 to the ex.—
pression"

(4.10)

which is the simplest of the proposed generaliza-
tions of the Ornstein-Zernike theory. To deduce a
number for g, we imposed the additional constraint
that the values of 1'�(0),obtained by evaluating
Eq. (4.10) at q =0, obey a power-law temperature
dependence. We were, however, unable to fulfill
this constraint and also satisfactorily fit our in-
verse intensity versus q' data for any value of q.

We have not been able to attribute the departure
from power-law behavior seen in Fig. 10 to any
single cause. We note that Bally et al. ' observed
no similar breakdown in power-law behavior in
their neutron studies on cobalt.

C. Absolute cross-section measurement

In order to determine the so-called interaction
range r„which appears in the Ornstein-Zernike
and other expressions for ~(q), measurements of
the wave-vector-dependent susceptibility must be
put on an absolute scale. For this reason there
have been relatively few experimental determin-
ations of r, and among those which have been made,
mostly for iron, ~ 4' agreement has been poor. This
is no doubt due to the difficulties inherent in nor-
malizing the scattering against that from a sample
whose cross section is well known, which has been
the usual procedure. For cobalt, however, the
critical scattering may be calibrated directly
against the rather large and accurately measured4'
nuclear spin-incoherent cross section (o,.„„„=5.9 b)
of cobalt itself. In this way factors of sample vol-
ume, for example, exactly cancel when forming
intensity ratios. Furthermore, the nuclear in-
coherent scattering is easily separated from the
magnetic scattering simply by measuring the for-
ward scattering at low temperatures where there
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is no magnetic scattering over the angular range
of our two-axis scans. This is due to the ex''Arne
steepness of the spin-wave dispersion in cobalt,
as discussed in Sec. IVA. Hence the circumstanc-
es of our experiment are well suited for an accur-
ate determination of r,.

The details of our absolute cross-section mea-
surement have been discussed in Ref. 13(b). Here,
we merely note that the value we obtained for the
ratio of r, to the nearest-neighbor distance, r,/a
=0.46+0.03, agrees well with theoretical predic-
tions, which have proven to be rather insensitive
both to methods of calculation and to the crystal
lattice. For example, the mean-field approxima-
tion leads to the result~ thatx, /a =0.408. Ritchie
and Fishers's calculations" based on the Heisen-
berg model yield values for x,/a„„ranging from
0.45 to 0.52 depending on the spin and type of lat-
tice; for a spin-1 system on a fcc lattice, which
is the case most applicable to cobalt, they find'

r,/a„„=0.462. Similar calculations" for the spin- —,
'

Ising model lead to values for r,/a„„ from 0.44 to
0.46, the former' number applying to a fcc lattice.

D. Inelastic scattering above T~

In this section we present the results of triple-
axis, constant-q scans taken at temperature equal
to and greater than T~. These measurements
served not only to characterize the dynamics of
the spin fluctuations above T~, but also provided
the basis for making the inelasticity corrections
to our two-axis data discussed in Sec. IVB.

In Fig. 11, the results of constant-q scans at
q =0.07 A ' are shown for various temperatures
both above and below T~. Figure 11 essentially
summarizes the different types of line shapes
observed in our triple-axis scans. At T~, the spin
waves have coalesced into a single albeit broadened
and round-topped peak. As the temperature is
increased above T~, the line shapes quickly be-
come more obviously single peaked in character.
Most noteworthy, however, is the pronounced
narrowing of the linewidths with increasing tem-
perature and their subsequent broadening upon
approaching the hydrodynamic region. We will
return to this point later in this section.

In fitting to the line shapes observed at T~, a
variety of expressions for F(q, &o) were tried in an
effort to best characterize the intrinsic line shape
and to extract the q dependence of the characteris-
tic frequency. Single and double-peaked Gaussian
and Lorentzian functions, along with the Hubbard
line shape discussed in Sec. IIC (Fig. 1), were
tried as representations for F(q, &u). Partially as a
result of being unable to observe the high-energy
tails of the line shapes in our. constant-q scans,
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FIG. 11. Energy distribution of the scattering at q
= 0.07 A on passing through the transition tempera-
ture. The curves in the figure were obtained by folding
the neutron cross section with the instrument resolu-
tion function. The double-ended bar below the curve at
Tz indicates the width of the instrument resolution.

satisfactory fits to the data could be obtained for
most of the assumed forms for F(q, &u) in the sense
that the X-squared criterion for the goodness of fit
did not strongly favor one form over another.

In fitting to the data at T~, both the width of
F(q, &u), and an overall scale factor were varied
by the fitting program. For the proper expres-
sions for X(q)

"and F(q, sr), this scale factor
should be independent of q and hence can serve as
an additional criterion, along with the X-squared
test, for judging the appropriateness of a particu-
lar choice for F(q, &o). Among the several expres-
sions for F(q, &u) which provided satisfactory fits to
the observed line shapes, only a single Gaussian
and the Hubbard line shapes also met this second
criterion. Qverall, values for y-squared were
somewhat lower for the fits obtained with a Gaus-
sian rather than the Hubbard form for F(q, &o) as
best representing our data at T~.

The half-width at half-maximum energies derived
from our data at Tc by fitting to a Gaussian F(q, &)
are plotted in Fig. 12. The exponent obtained for
the q-dependence of the intrinsic widths of the
Gaussian fits is 2.4+0.2. The dashed line in Fig.
12 has a slope of 2.5, the value predicted from
dynamical scaling for the q-dependence of the
characteristic frequency at T~. Fitting to the
Hubbard form for F(q, &u) resulted m an exponent
of 2.2, however, which indicates that the value de-
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Consequently, the characteristic frequencies of the
inelastic scattering above T~ were taken to be the
intrinsic half-widths at half-maximum of the fitted
Lorentzian line shapes.

From our measurements of the characteristic
frequency at general values of wave vector and
temperature above T~, we have been able to test
directly one of the cardinal assumptions of dynami-
cal scaling; namely, that the characteristic fre-
quency is a homogeneous function of q and Ky of the
form

UJ
R
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0.03 0.05 O. IO

WAVE VECTOR (A )

FIG. 12. Half-width at half-maximum energies de-
rived from fitting the line shapes observed in constant-
Q scans at T~ with a Gaussian spectral-weight function.
The slope of the fitted line gives the q-dependence of
the linewidths. The dashed line has a slope of 2.5, the
value predicted by scaling.

rived for the exponent is rather sensitive to the
choice of spectral shape function used in the analy-
sis.

As can be seen from Fig. 12, our data are cer-
tainly consistent with the —,'power law predicted by
dynamical scaling. If we assume a —,

' law, then the
half widths at half maximum of our line shape at
T~ are best described by the relation

F(q K, =O) =300q''meV. (4.11)

It is Eq. (4.11) which is plotted as the dashed line
in Fig. 12. The coefficient, 300+30 meVA' ', is
a measure of the overall degree of inelasticity of
the critical scattering and is quite large for cobalt.
The corresponding value for iron' is only 130
meVA', for example.

For our inelastic scattering data above T~, both
Lorentzian and Gaussian forms for ~(q, &o) were
convoluted with the spectrometer resolution func-
tion and fit to the observed line shapes. The Hub-
bard form for ~(q, &u) was not employed in fitting
to these data, however, because over the tempera-
ture range- of most of our measurements the Hub-
bard form differs little from a simple Lorentzian.
In contrast to the results at T~, the least-squares
fits obtained with a Lorentzian shape were con-
sistently better, both in the sense of having lower
X-squared values and a normalization factor which
showed no q dependence, than the Gaussian fits.

F(q, x, ) =(rq''Q(a, /q), (4.12)
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FIG. 13. Shape of the dynamical scaling function for
cobalt obtained by plotting the ratios of the linewidths
above Tz to those at Tz as a function of I(.&/q.

where the scaling function Q(x,/q) is normalized to
unity for g,/q =0 and has the limiting behavior

Q(/c, /q) ~(/c, /q}' for x,»q in accord with hydro-
dynamic theory. " We have already seen that for
cobalt the linewidths at T~ are adequately described
by the expression F(q, 0) =oq' ', with+ =300
meVA''. Hence the ratios, F(q, «, )/&rq'', of the

linewidths above T& to those at T~, when plotted
as a function of x,/q, should lie on a single curve
which would then serve to empirically determine
the form of the scaling function Q(v, /q).

Using the values of K, derived from our corrected
two-axis data [Eqs. (4.8) and (4.9)], we have plotted
the linewidth ratios" obtained from our triple-
axis measurements as a function of «,/q in Fig. 13.
There we find that, within the experimental uncer-
tainties, the linewidth ratios do indeed lie on a
single curve as anticipated by dynamical scaling.

The dashed curve in Fig. 13 is a calculation of the
scaling function Q(~,/q} for a Heisenberg ferro-
magnet by Resibois and Piette" who solved, in a
lowest-order approximation, the kinetic equations
obtained by DeLeener and Resibois" and by Kaw-
asaki. ~ Although in overall agreement with Resi-
bois and Piette's result, the data in the figure
show a deeper minimum, shifted to a lower value
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of ~,/q, followed by a more rapid broadening of the
linewidths than is accounted for by their calculation.
The linewidths derived from Hubbard's calculation
of the full spectral-weight function show a narrow-
ing from 50% to 60% near z,/q =1 which would
seem to agree well with our observed linewidths.
However, full details of the shape of the scaling
function implicit in Hubbard's results, particularly
at larger z~/q, have not been published.

The Resibois-Piette result for the sealing func-
tion O(z, /q), although obtainable only by iterative,
numerical methods, is rather closely approximat-
ed by the simple expression

Q(tc,/q) =e & ' +0.47(K,/q)' (4.14)

Equation (4.14), in conjunction with Eq. (4.12), was
used to analytically describe the inelasticity of the
critical scattering in making the corrections to our
two-axis data described in Sec. IVB.

Since our linewidth measurements extended out
to nearly z,/q =4, it was hoped that sufficient data,
had been collected within the hydrodynamic regime
to enable the power-law temperature dependence
of the spin diffusion constant A to be determined.
The linewidths extracted from data taken at tem-
peratures greater than 80' above T~ did indeed
exhibit the q' dependence indicative of spin diffusion
(i.e., I' =Aq'). From these data, only those line-
widths obtained at wave vectors such that z,/q &2
were considered in computing values for A from
the slopes of I' vs q plots. In this way values of
A were obtained for reduced temperatures from
(T —Tc)/Tc =0.06 to 0.11. When plotted versus
reduced temperature on a log-log scale, however,
our derived values for A failed to lie on a straight
line but rather showed a systematic curvature.
The local slope at the highest temperatures was
about —,', the values expected from the hydrodynamic
prediction that A cc v', 'c& (T —Tc)" ', but steepened
to more than —,

' at the lower temperatures. This
departure from expected hydrodynamic behavior
is similar to that observed by Parette and Kahn"
in their neutron time-of-flight study'of spin dif-
fusion in iron. They found anomalous exponents
for the temperature dependence of A for data cor-
responding to 1&a,/q&4, a, region they termed
"quasihydrodynamic, " and were able to observe the
predicted hydrodynamic behavior only in the region
g~/q&4. Our data are consistent with their con-
clusion that the crossover from critical to hydro-

n(~, /q) =e '""& ' +0.43(z,/q)
' ' (Rhsibois-Piette) .

(4.13)

The solid curve in Fig. 13 was obtained by varying
the constants in the above equation in a weighted
least-squares fit to our data which gave the result

dynamic regimes is quite gradual so that z,/q must
be large before true hydrodynamic behavior may
be obserVed.

V. CONCLUSIONS AND COMPARISON

WITH IRON AND NICKEL

Our neutron scattering studies have shown cobalt
to be an example of a magnetic system whose cri-
tical scattering exhibits a high degree of inelasti-
city. fhe linewidths we observed for cobalt are,
for example, more than twice as broad as those in
iron. ' ~ ' The effect of the inelasticity is to cause
the angular distributions of the critical scattering
to deviate significantly from the expected behavior
of the static susceptibility y(q). However, by em-
pirically determining the form of the spectral
weight function F(q, v) through a separate series
of triple-axis measurements, the inelasticity ef-
fects could be removed from our data, at least
above Tc. We find that above T~ the Ornstein-
Zernike expression for y(q) provides an adequate
description of the wave-vector dependence of the
critical scattering. Below Tc,. however, we have
not been able to separate transverse and longitud-
inal components of the susceptibility. In fact, we
find clear evidence for only the transverse com-
ponent. The form of the longitudinal suscepti-
bility below T~ is for cobalt, as well as for all
other isotropic ferromagnets investigated so far,
the least understood aspect of the critical scatter-
ing.

With regard to the dynamics, we find that the
hydrodynamic expression of Halperin and, Hohen-
berg for the transverse spectral shape function
F'(q, &u) describes our inelastic scattering line
shapes at all temperatures below T~. At T~ we
observe a single peaked spectral function with an
approximately Gaussian shape which quickly be-
comes Lorentzian in character at higher tempera-
tures. The highly inelastic nature of the critical
scattering in cobalt enabled us to make accurate
linewidth measurements above T~ and thereby
deduce the form of the dynamical scaling function.
Our results for cobalt show some significant de-
viation from the scaling function calculated by
Resibois and Piette for a simple Heisenberg fer-
romagnet which has been found to give a highly
successful account of the inelastic scattering in
iron ""

We have noted above and in previous sections
some of the similarities and differences between
our results for cobalt and those for iron and nickel.
Here we summarize the current situation regarding
the critical behavior of the transition-metal fer-
romagnets by presenting tables of results of a
variety of measurements, emphasizing those quan-
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TABLE III. Values for the coefficient F and exponent v in the expression a~K~ ——F(T/T~ —1)"
describing the power law behavior of the inverse correlation function above T~, and also
Fisher's exponent g, for iron, cobalt, and nickel.

Material References

Fe
Co

(7) Bally et al, .
(5) Bally et al.

this work

2.97 +0.15
1.17
2.4 +0.2

0.70 +0.015
0.625
0.65 +0.04

0.07 +0.05
0.10+0.05

tities which are accessible to measurement by neu-
tron scattering.

The critical exponent y, giving the degree of the
divergence of the uniform susceptibility above T~,
has received the greatest attention in experimental
investigations of the critical behavior of the transi-
tion-metal ferromagnets. Some of the more recent
results for y are listed in Table I. We note that
there is basic agreement between the values for y
measured by neutron scattering and those deter-
mined by bulk techniques. There is also basic
agreement between the values for y obtained for
iron and nickel which range from 1.30 to 1.34.
These values are somewhat lower than the most
recent numerical estimates" of y obtained for the
Heisenberg model which give y = 1.38+0.02. On
the other hand, all of the susceptibility measure-
ments for cobalt, with the exception of Develey's, "
place the value of y near 1.2.

It is interesting to compare the values for y
listed in Table I with those for the exponent P,
which describes the power-law behavior of the
spontaneous magnetization near T~. These are
listed in Table II. Qnce again the results for iron
and nickel are seen to be quite similar and in this
case agree reasonably well with the theoretical
estimate ' that p=0.38 obtained for the Heisenberg
model. There has been only one direct measure-
ment of P for cobalt, that of Rocker and Kohlhaas'
who obtained P = 0.42+0.01. This result receives
support from the magnetization measurements of
Myers and Sucksmith, however, which extended to
within 0.995 T~. The data of Myers and Suck-
smith, when plotted versus

~

T- To~ on a log-
log scale is linear near T~ and yields a value
for P of -0.41. Hence these two results would
again indicate a departure in the critical behavior
of cobalt from that of iron and nickel. The values
of y and P for cobalt both deviate from iron and
nickel in the same sense; i.e., toward the mean-
field exponents y = 1, P = —,'.

We continue our comparison of the static critical
properties of iron, cobalt and nickel in Table III
where values for the exponent p, describing the
power-law behavior of the inverse correlation

range K„and for Fisher's exponent q are listed.
Although there have been a number of early cri-
tical scattering studies of iron which have focused
on the asymptotic form of the spin correlation func-
tion, the actual power-law dependence of K, was
seldom extracted from such measurements. Fur-
thermore, the effects of the inelasticity of the
scattering on the apparent value of Ky were not
well-understood and often not taken into account
in these early experiments. Bally's results for p

and q listed in Table III were obtained after cor-
recting for inelasticity, although this was done in
an approximate manner since the full form of the
dynamical scaling function for iron was not known
at that time. These results for iron are in good
agreement with predictions based on the Heisen-
berg model" that @=0.70 and q=0.04.

For cobalt, we note that in Table III there is
some disagreement between our results and those
of Bally et al. , particularly with regard to the
coefficient p which measures the absolute mag-
nitude of Ky Since information on the dynamics
of the spin fluctuations in cobalt was not available
at the time of Bally's work, he assumed that the
inelasticity corrections required for cobalt would
be about the same as those for iron. Our inelastic
scattering measurements have showy, however,
that the critical scattering in cobalt is far more
inelastic than that for iron, contradicting Bally's
assumption. This is the probable origin of the dif-
ferences seen in Table III between Bally's results
and our own. Nevertheless, both values for p are
somewhat lower than that found for iron and again
deviate from the Heisenberg model result in the
direction of the mean-field value p =-,'.

According to scaling, the exponents P, p, and y
are not all independent quantities but are, in fact,
related through the expression P =-,'(3p -y). We
can test this relation for both iron and cobalt by
using the highest precision values for the exponents
given in the foregoing tables. Hence for iron we
use P =0.389+0.005, p =0.70+0.015, and y = 1.333
+0.015.M For cobalt we take P = 0.42+0.01,' to-
gether with our own results for p and y. For these
exponent values we obtain
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TABLE IV. Values of dynamical critical exponents for iron, cobalt, and nickel determined by neutron scattering.

Dynamical
property Expression

Scaling
laws

Heisenberg
model Iron Cobalt N jckel

Linewidth
at Tc

5 I
Z —2 —2rl 2.48 2.7 +0 3

2.8 ~0.3d
2.4 +0.2 2.46 +0.25

Spin-wave
stiffness

D (1 —TITc)" x = v' —P 0.32 0.37 +0.03 0.39 +0.05 0.39 +0.04
0.36 +0.03

Spin diff'usion A- (T/Tc —1)" y=(vlv')(v' —P)
constant

-0.32 0.38 +0.06

This work.
Reference 12.

~Reference 8.

Reference 26.
~Reference 55.

0-(»-y) /2=
+0.005+0.02 for iron,

+0.06+0.07 for cobalt.

Hence although the values for the exponents P, v,
and y are different for iron and cobalt, the scaling
law relating these exponents is found to be satis-
fied, to within the experimental uncertainties,
for both materials.

Turning now to the dynamical properties, we
compare in Table IV the results of inelastic neu-
tron scattering measurements on iron, cobalt, and
nickel with scaling predictions. We see that there
is satisfactory agreement for all three materials
with the prediction that at Tc the characteristic
frequency varies with q to about the —', power. The
coefficient of the —,

' law is a measure of the over-
all degree of inelasticity of the critical scattering
For cobalt we find for this coefficient g =300+30
meVA' compared to g ——130 meVA' ' for iron and
g=,330 meVA' ' for nickel, indicating that the cri-

- tical scattering in nickel is even more inelastic
than that for cobalt.

Reasonably consistent results have also been
found for the power-law dependence of the spin-
wave stiffness constant D in all three materials,
although the experimental uncertainties are rather
large. Scaling predicts that D should vary with
~T —Tc~ to the v' —P power. If we use the static
scalirig result that p'= p and the values for p and P
for cobalt listed in the preceding tables, this
leads to an exponent for D of only -0.23, far below
what we actually observed. However, it may be
inappropriate to assume that p' = p since the longi-
tudinal susceptibility below Tc has never been
clearly identified in these materials. It is there-
fore not clear what meaning should be attributed to
the exponent p'. The results in Table IV would

suggest rather that D scales directly with the

magnetization although more precise measure-
ments are needed to confirm this speculation.

The experimental results regarding the power-
law behavior of the spin diffusion constant are un-
fortunately quite limited. Our triple-axis mea-
surements above Tc support the conclusion drawn

by Parette and Kahn" from their spin diffusion
studies in iron that the true hydrodynamic regime
above Tc lies beyond z,/q-4. Earlier neutron-
scattering measurements of the spin diffusion in
iron' and nickel" were probably not made entirely
within the hydrodynamic region and therefore the
anomalous exponents obtained for the'spin diffusion
constant in these studies must be discounted.
Parette and Kahn did claim to succeed in reaching
the hydrodynamic region in their time-of-flight
measurements on iron and their result in Table IV
gives the only indication at present that the spin
diffusion processes in the transition metals are
correctly described by hydrodynamics.

From the foregoing tables and discussion, it is
evident that a complete phenomenological descrip-
tion of the critical behavior of the transition metal
ferromagnets does not yet exist. Further investi-
gation is needed, especially in the case of nickel.
The form of the dynamical scaling function for
nickel has not yet been determined. Since the cri-
tical scattering in nickel is even more inelastic
than that for cobalt, the scaling function for nickel
is of particular interest.
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