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Itinerant ferromagnetism, particularly in iron, nickel, and cobalt, is described by a fluctuating-local-band
theory, a new concept which generalizes the old band theory. In this description, the old unexplained
localized-itinerant complementarity is resolved. It is noted that band structure itself is determined locally, on
the scale of a few neighbors, and that the main coordinate which changes in space and time is M, the
collective variable representing the magnetization direction. Because these changes are relatively slow, their
effects on band structure can be calculated in a perturbation theory. It is stressed that the classical variable
M is appropriate, even though quantization is in some cases eventually necessary. In this paper a
ferromagnetic-Fermi-liquid theory is set up and compared with previous versions which it generalizes. The
range of validity of the theory is shown to extend well above T, the Curie temperature. Some estimates of
Tc on the basis of the new theory are obtained, which are encouraging. Agreement with a range of
experiments is found. Papers II and III discuss nonlinear magnetization-fluctuation interactions, and their

bearing on experiment.

I. INTRODUCTION

Theorists have never been able to present a
satisfying picture of itinerant ferromagnetism cap-
able of explaining the major phenomena which are
observed. It is the purpose of this series of papers
to present such a picture and to outline the main
new results, some of which have been briefly an-
nounced previously.}*? It is tobe emphasized, how-
ever, that one of the most significant virtues of this
idea, which we call the “fluctuating-local-band
theory” of itinerant ferromagnetism, or “local-
band theory” for short, is that it incorporates
and generalizes in a natural manner many pre-
vious theoretical efforts which have been extreme-
ly successful in explaining this or that experimen-
tal result.

The results may be summarized as follows:

(i) We develop a new concept giving explicit mean-
ing to spin-split ferromagnetic bands which con-
tinue to be spin split even above T,. This result
immediately and naturally explains the photo-3
and field-emission data,* as well as work-function,’
thermodynamic,® and neutron data.”?®

(ii) Ferromagnetic-Fermi-liquid theory, like
band theory, can also be reformulated and extended
above T,. We have estimated the parameters of
this theory, in the band approximation.

(iii) It is feasible to do serious calculations of
the influence of local magnetic order on the spin-
wave damping and softening as a function of temp-
erature. We have found new terms which are like-
ly to be the dominant contributions to these effects.
A model calculation gives results in encouraging
agreement with experiment. This calculation is
made in Paper II of this series.®

(iv) The theory has been found to apply numer-
ically to pure iron, Fe(Si), and nickel, the cases
for which the best data are available. We make
no fundamental distinction between these mater-
ials, in contrast to many other authors. We ex-
pect the theory to apply to cobalt and the weak
ferromagnets, such as ZrZn,, as well. With some
modifications the theory should also work for mag-
netic alloys of transition metals. We obtain esti-
mates of T, which are encouraging, and estimates
which show the theory is valid even well above 7.

The concept of “local-band theory” is of much
wider application than to magnetism. In most of
our development it is not necessary to make a
commitment to any special form of band theory,
or even to a single-particle scheme. Doing so,
however, allows one to find results of considerable
intuitive appeal.

The “local-band theory” is a generalization of the
ordinary band theory, or perhaps one should say
of ordinary band theories, since there are so many
schemes for carrying out band calculations that
one must be a specialist'to appreciate the finer
points of this art. Band theory (at zero tempera-
ture) has, overall, been a resounding success, for
the itinerant ferromagnets as well as for other
transition metals (not to speak of the simple met-
als and semiconductors). It is, however, numer-
ically rather complex and a number of apparent
failures of band theory, for example, the results
of experiments on photo- or field-emission or pol-
arized electrons, may well be attributed to ap-
proximations made in applying the theory, rather
than to a fundamental breakdown of the theory it-
Se].f.lo'll

However, for a decade or more it was fashion-
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able to argue that the strong correlations which
are a concomitant of narrow energy bands changed
things in a fundamental way in the direction of pro-
ducing localized electronic states, or at any rate
states which had a local character not consistent
with the usual band theory, even though these
states must evidently retain a delocalized itinerant
character in order to be in agreement with experi-
ment.’? The success of Mott in describing the
metal-insulator transitions in certain antiferro-
magnets,'® as well as the relative success of the
Heisenberg model in describing the magnetic phase
transitions of the itinerant magnets lent credence
to the view that there are somehow local atomic-
like magnetic d electrons which are more or less
free to have their magnetic moment point in any
direction relative to neighboring spins.

At the same time, the finite-temperature band
theory, which we know under the name “Stoner
theory,” fails rather dismally to predict the mag-
netization or susceptibility as a function of temp-
erature, although the literature is not without
papers claiming success for the Stoner theory,
particularly for nickel. However, Stoner theory,
if done on the basis of realistic bands, gives far
too high a transition temperature’ T and in any
case gives detailed magnetization curves which
are strongly band-structure dependent, in contrast
to the experimental fact that the reduced magneti-
zation curves of iron, nickel, and cobalt are very
similar. On the other hand, certain modern ex-
periments (photoemission,® work function,’
de Haas—Van Alphen'®) indicate that the bands do
not change rapidly with temperature. These re-
sults are in numerical agreement with Stoner theo-
ry, (as we reinterpret it), since Tg> T.

The beginning of an answer to all these problems
is, and has been, rather obvious. Spin waves,
magnons, and spin fluctuations (terms we shall
use more or less interchangeably) must be in-
cluded. This has been carried out by a kind of per-
turbation theory in the case where the deviation
of the spin from perfect alignment is small. The
random-phase approximation (RPA) is an obvious
choice to study the magnon dispersion. A careful
numerical treatment of the RPA seems capable of
giving reasonable numerical agreement with mag-
non dispersions as measured by neutron scatter-
ing !® A theory of interacting electrons and mag-
nons, analogous to that of electrons and phonons,
can then be built up.

One of two courses has been followed. One may
make a formal graphical perturbation theory, in
which special account is taken of the pole in the
electron-hole-of-opposite-spin ladder graphs, i.e.,
the RPA magnon. An immediate difficulty arises,
since unlike the electron-phonon coupling, the

magnon-electron coupling is found to be large and
approximately independent of magnon momentum.'”
[In the short-range, one-band “Hubbard” model
(SROB model) the coupling is just U, the intra-
atomic Coulomb potential.]

Suppose one considers the energy Shlft of an elec-
tron due to the existence of long-wavelength mag-
nons of wave number g. It is clear that this shift

"must be proportional to quq where N is the num-

ber of magnons present. That the shift vanishes
with ¢ follows from the consideration that a spin
wave of long wavelength is nearly equivalent to a
rigid rotation of spin, which cannot affect the elec-
tron energy.'® That it is proportional to ¢°N, (for
small N q) follows from Fermi-liquid theory (see
below).

On the other hand, in the presence of these mag-
nons, there is a spin rotation proportional to N,
and the electron wave function is modified to order
N,, not ¢°N,. For this reason, the electron-magnon
vertex must be large,'” as noted. Elementary
graphs are, as a result, individually large, but
careful calculation produces the necessary can-
cellation, at least in lowest order in N,.'° Higher-
order graphs must also maintain this cancellation
due to spin rotational invariance, but a systematic
approach is difficult.

The other approach is Fermi-liquid theory which
concentrates on energetics and thus avoids this
problem. However, it should not be naively in-
terpreted, as we shall show. One may give an in-
tuitive derivation of Fermi-liquid theory, follow-
ing Landau,?® by assuming that the energy & is a
function of N, and n, , the quasiparticle occupa-
tion number for crystal momentum % and spin s.
The magnon and quasiparticle energies are, re-
spectively, withz=1,

D =w,=88 /6N, (1.1)

E, =08 /0n,,. (1.2)

The electron energy depends on magnon occupation
by

SE, s

e an,,s s 7 gy én =8 (1.3)

thus showing the correct ¢ dependence (for small
q-

As an aside, we make several remarks in order
not to mislead the reader. First, we note that the
form of the theory in which magnon variables do
not explicitly appear but in which the magnon is
derived is wrong, as shown in Herring.'> Con-
nected with this, we remark that spin labels s
corresponding to a definite direction must be used,
rather than the matrix notation of Landau. This is
because the transverse spin fluctuations are
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counted in the magnons. A more formal deriva-
tion, again following Landau, studies the singul-
arity structure (for long wavelength and low fre-
quency) of certain vertex functions,? and distin-
guishes between the transverse and longitudinal
(with respect to the total madgnetization) cases.

Both Fermi-liquid theory and band theory plus
RPA are successful at low temperatures. Both
fail near or above T,.

The advantage of Fermi-liquid theory over band
theory is its presumed exactitude in certain
limits. Our theory shares with Fermi-liquid theo-
ry this advantage. It reinterprets and extends the
Fermi-liquid theory far beyond its original range
of validity, in fact to above the Curie temperature.
We do not, of course, pretend that Fermi-liquid
theory is exact at such elevated temperatures
since lifetimes of electron and magnon states will
be finite. In fact, our theory allows a study and
reinterpretation of these lifetimes. The renormal-
izations which distinguish Fermi-liquid theory from
band theory can, however, be included in principle.

On the other hand, band theory, even if not exact,
is very valuable in interpreting optical, photoemis-
sion, and other experiments. Our picture provides
a generalization of either band theory or Fermi-
liquid theory.

The basic idea of the local-band theory is hardly
novel. It is to set up a hierarchy of the length and
time scales of the important physical processes.
One then works out the effects of the fastest and
most local processes first, and describes these
effects by a renormalized, or effective, Hamilton-
ian governing the remaining degrees of freedom.

It thus proceeds systematically from fast to slow,
from local to extended. If we are concerned with
an experiment which probes a relatively fast and
local process, we may find the effects of slower
disturbances by calculating the fast process in the
presence of a typical slow disturbance and then
performing an appropriate average over the degrees
of freedom of the slow disturbance.

We illustrate this by an example from nuclear
physics 2 In a deformed nucleus, the slow pro-
cesses may be taken to be the rotation of the nu-
cleus, and the fast processes the establishment
of single-particle states. (Even faster processes
involving meson exchange, or quarks and gluons,
are eliminated in favor of an effective Hamiltonian.)
Single-particle states in a self-consistently de-
formed potential are first worked out. If we wish
to study only the rotation, we may “integrate out”
the single-particle states and their self-consistent
potential replacing this complex by a simpler Ham-
iltonian described by a moment of inertia, whose
value is computed via the single-particle-state
wave functions. If the single-particle levels are to
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be studied experimentally, an appropriate average
over orientations must be made, which is in this
case determined by the principles of quantum
mechanics.

We note that in this case the deformation is col-
lective, thus involving some questions of principle
in the counting of degrees of freedom, although this
counting problem is not significant in practice.
Further, we note that although the collective mo-
tion must be quantized, so that in the ground state
no net direction of orientation remains, it would
be a mistake to average the orientation direction
before finding the single-particle levels.

Our picture of itinerant ferromagnetism is close-
ly analogous. The single-particle states of band
theory (or other self-consistent field theories)
are known to be established very quickly and re-
markably locally. There may be certain energetic-
ally important correlations which also are estab-
lished rapidly and which are taken into account by
a renormalization of the band parameters or by re-
sort to Fermi-liquid phenomenology. Such, for
example, are the screening of the Coulomb inter-
action, and the corrections to the effective value
of the intra-atomic Coulomb repulsion.'?

The collective degrees of freedom are described
by a classical variable which we take to be the di-
rection of the local magnetization 1\71('1’). This is
assumed to be relatively slowly varying in space
and time. (We integrate out if necessary, the fast,
short-wavelength fluctuations in this quantity.)
Only later, does one average over the motion of
M(r) It is only at this stage, if at all, that it
may be necessary to quantize the motlon of M.

In fact, this quantization is only possible at low
temperatures when 1171('1") deviates little from con-
stancy. If M(¥) deviates significantly from its av-
erage direction, quantization necessarily involves
large magnon numbers and nonlinear magnon ef-
fects, so the quantization scheme must be changed,
although the classical description retains and in-
deed improves its validity.

The natural coordinate system in Wthh to dis-
cuss the single-particle states, given M(r) is one
in which the z axis of spin is locally rotated to be
in the direction i1 (). The Hamiltonian in this sys-
tem of coordinates acquires perturbing terms pro-
portional to the gradient of M. Hence, the appro-
priate measure of spin excitation is not the devia-
tion of M from some standard direction, but ‘rather
VM, or in scalar form X, 5(Vy M g)>=(VI .

The coupling of single-electron variables to the
collective variables, in this theory, is found to be
proportional to the wave number of the collective
disturbance. We must underscore the fact that
this result is obtained only by using locally rotated
spin states.
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Again, the novelty of this result should not be
overestimated. Already in the case of the electron-
phonon interaction, it is, strictly speaking, neces-
sary to use locally translated electron states in
order to have an electron-phonon interaction van-
ishing with phonon wave number. A small uniform
displacement of the lattice results in a small uni-
form displacement of the electronic states. If the
displaced states are described in terms of undis-
placed states, contributions from higher bands are
necessary. These contributions are proportional
to the displacement. This change of coordinate
system is not usually made explicit, because the
unstrained original coordinate system is not ob-
servable. The “deformation potential” approach®?
is rather analogous to ours and makes clear the
use of locally displaced states.

In the case of the ferromagnet, an external axis
is fixed, for example, by application of an external
field, so it is not possible to forget entirely about
the original coordinate system. However, using
the locally spin rotated system avoids the cal-
culationally difficult but physically trivial problem
of describing rotated spins in terms of unrotated

ones. It thus much improves the perturbation theory.

We therefore take as the fundamental variables
of the system 191(?) and the single-particle vari-
ables characteristic of a band structure whose spin
quantization direction is M(‘f) and whose states
are correct to order VM(Y‘).

Correspondingly, in Fermi-liquid theory, we
abandon N, as a variable in favor of (VM)2. At the
same time, the quasiparticle states are regarded
as having spin quantization in directionA]V[ .

Insofar'as the perturbations due to VM are small,
the spin fluctuations have little influence on the en-
ergy bands. We present evidence that in fact these
perturbations are small up to and above T, so that
the persistence of spin splitting, for example, is
immediately understood. The Curie temperature
T is characterized only by the disappearance of
long-vange spin order. If VM is small at T, we
may conclude that there is sufficient short-vange
magnetic order to permit a well-defined local band
structure. The Stoner temperature Ty gives the
temperature region below which the local bands
acquire a spin splitting. :

To complete the picture we need to know how to
compute averages over M. In most cases, this
may be done by averaging over all other variables

thermodynamic weight of M will be e 1/ T 5
ysual. The step of carrying out the averages over
M is unfortunately unsolved numerically, although
much is known in.principle, and approximate meth-
ods are available.

The time dependence of M is given by the Landau-
Lifshitz equation. We shall not dwell on this in-
teresting question at great length, but shall usual-
ly make the adiabatic approximation of neglecting
the time dependence.

Relatively few components of this paper are dis-
tinctly new. It is the picture as a whole which is
new. We are perhaps the first to suggest using
stochastic (rather than quantum) fluctuations in the
collective variable of a “band” theory. We are
among the first to stress the fact that the itinerant
magnets have sufficient short-range order even
above T, to make our theory applicable there.''?:2*
Our form of Fermi-liquid theory is also an innova-
tion. We have also obtained a few important newre-
sults on specific details of the elementary excitations.

In this paper we shall present results on a new
formulation of Fermi-liquid theory, and on ther-
modynamics. In paper II we obtain results on the
nonlinear interaction of magnetization fluctuations
which give new interpretations of the observed
spin-wave broadening and dispersion.

II. LOCAL SPIN COORDINATE SYSTEM
A. Coordinate transformation

In this subsection we make a straightforward
transformation which rotates the spin coordinate
system locally, so that the new z direction is in
the direction 6(T), ¢(¥) with respect to the labora-
tory z direction, where 6, ¢ are the polar and az-
imuthal angles in the laboratory spherical coordi-
nate system. A further arbitrary Euler angle b(T)
is necessary to specify completely the orientation
of the spin coordinate system. The arbitrariness
of this angle is a gauge invariance which will not
concern us deeply in this paper. The direction
6(F), ¢(¥) is taken to be the direction of the local
magnetization.

Let ¢,(T) be the annihilation operator for an
electron in the laboratory frame, with a =+ refer-
ring to spin quantization along the laboratory z
axis. Let z,b,(?) be the corresponding operator with
quantization along the local (6, ¢) z axis. Then

A X = R(T 1
to obtain F[M], the free energy for givenAM('f). Pa Z,,: ©arty, (r.1)
(At low temperatures one must quantize M.) The with
—
1z 19 _ _lie inl
R@),, = (exp[—21(¢+b)] cos3f, —exp[-3i(d b)]sm,_9> ' (1.2)
exp[3i(¢ — b)] sinz0, exp[3i(c¢ +b)] cos3o



4036 V. KORENMAN, J. L. MURRAY, AND R. E. PRANGE 16

The next step is to express the Hamiltonian in the

new coordinate system, which is done by substi-
tuting ¥ in place of ¢ using Eq. (II.1). The Hamil-
tonian used depends on what further approxima-
tions are to be made. We shall adopt a very gen-
eral Hamiltonian at this stage, and make, for pur-
poses of illustration, some drastic approximations
later. One could equally well start with an approx-
imate Hamiltonian, at the cost of having somewhat
more complicated expressions in the locally ro-
tated frame. Accordingly, we assume that

50, = (2m)™ f dory Vol Voot + K. (IL3)

Here 3C,., is the electron-lattice potential and

3C,.. is the electron-electron (Coulomb) interaction.

These two terms are local and invariant to local
spin rotations, if we neglect spin-orbit interac-
tions as we do. In the locally rotated system we
find for the Hamiltonian

L TALDYD (f A0+ [ E,,;T,w) =%+t

(I1.4)
Here 3G, has the same form as (I1.3) with ¢ sub-
stituted for ¢. The operators p and J are defined
as

P, =k (¥, (F), (I1.5)
., =08 ¥0, - (Fut)w,1/2mi. (11.6)

The coefficient matrices are

A= Z vR;la ¢ ﬁRav/Zm, (11.7)

B,,=i)_ VR, R, =-i) RVR,,. (11.8)

The matrix A may easily be seen to commute with
the rotation matrix R, using (I1.8) and it is found
to be proportional to the unit matrix. Thus,

A, =5, [|5F) |2 +|EE)|2)/2m, (11.9)

B,,=8%(0"),,+3(0"),, - EF)N0?),,, (11.10)
with

A(F) = 3[sino(F)V o (F) - iVo(¥)]e >, (11.11)
and

E(F) =3[V () + cos(F)Vo(F)].

We have employed the Pauli spin matrices ¢ and
ot=3(0*+i0?).

(11.12)

B. Time dependence and g terms

We now takg up the consequences of a time de-
pendence of M, i.e., of 6 and ¢. Since the annihil-
ation operator obeys (8/8¢ is represented by a dot)

i¢u=[¢>a,3(’°] (I1.13)
in the laboratory frame, we have
.9
i 5 Z Ry, = Z,: R, [¥,, 5], (I1.14)
from which it follows that
i), =[,,5¢] = i 3 R (Roo)Ve- (11.15)
ab

This acts for many purposes like an additional
term in 3C given by

K,= Ef WCoo¥s (11.16)
76
with
Cpo=-1 Z RyiRy,
(-1
==3(0%) 5 (3) + coseq'b)
+§(°*),,5[(Sin9t,.b+ib)e”’]+H.c. (I1.17)

The perturbing term 3¢, will be small, if we
choose 8, ¢ to correspond to M and the timé evolu-
tion of this quantity to be given by the Landau- Lif-
shitz equation. In this case, a time derivative is,
in order of magnitude, proportional to the square
of a spatial derivative.

We wish to discuss the energy to order (Vil)?.

In this case we need to consider only the lowest-
order effects of 3C,, and then only its diagonal
part. Let

Gop = (0, (F1); DL(F'2')) (11.18)
be the Green’s function, and let
G, = Gy U4 (11.19)

be the Green’s function of the operators appropri-
ate to the rotated frame. Clearly

G=RGR™. (1I1.20)

Then G satisfies iG =1+3¢,G +G® where 3¢, is the
single-particle part of 3, (expressed in Schro-
dinger form) and G’ is a two-particle Green’s
function. Correspondingly

iG=1+(C,+3€, +3¢,)G+G®, (m.21)
The energy, however, is given by
9
<3Co>=%Trf d3¢<ia—t+fic,>G[,,,,, (11.22)

‘where #’ is set equal to ¢ and ¥’ to T in an appro-

priate fashion. Thus,

e =3 [ asrme(

.8 -
1 .a_t +3CI)RG

. 9 -
=§Trf d3r<i8—t+$(3,+f}cl-3€,)6. (11.23)
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Because of the negative sign of 3C, appearing in
this expression, neglect of 3¢, creates no error
in lowest order. We shall accordingly neglect 3C,
in the rest of this paper.

The term in § can be represented as the vector
potential corresponding to a magnetic field, depend-
ing on spin, but acting on the orbits, given by

fi=(c/2e)0,(V cost x Vo). (11.24)

The time-dependent effects can be regarded as
arising from an electric field

- It 8¢ 8dcosb
e—ggog(ﬁcose 55 = o §¢>,

(11.25)

Clearly, fi is of second order, & of third, in the
spatial gradients. The vector § can also have no
important effect on the energetics. The argu-
ment here is that, as in Landau diamagnetism,
the change of the total energy is proportional to
|R|2, which is here of fourth order in gradients.
In discussing spin-wave-spin-wave interactions
€ is of importance and we shall discuss it in papers
I and III of this series. We shall ignore it in
most of the remainder of this paper, however.
This is an important simplification as it reduces
the two variables 6, ¢ to the single variable #.

For the effective electric and magnetic fields
not to vanish, the spin fluctuations have to be of
some complexity. From Egs. (1I.24) and (I1.25) it
is clear that there must be more than one wave
number involved. The main physical effect of these
fields is the real scattering, without spin flip, of
the electrons by the spin fluctuation. In magnon
language this requires the absorption and emission
of magnons of different wave number, which is an-
other way of seeing why the spatial structure of
the spin fluctuation must be complex to be effec-
tive.

III. BAND THEORY IN THE ROTATED FRAME
A. Single-electron states

In this section, keeping only the terms in &, we
calculate the single-electron states, in the sense
of band theory. These states are calculated to
first order in 2. (The effect of § on the wave func-
tion is to contribute a phase factor, since it is the
vector potential of an effective field, and can be
treated in the quasiclassical approximation.) If
the Bloch states of 3¢, are given by ¢,,(¥)(),
0P,

S DN

-6 V(®)BF)/A) 7

b= e(sb,,ﬁ(m-a*(f)/b.) ]
e

(mmI.1)

We have simplified the writing by assuming the
spatial variation of Z is slow compared with that
given by k. More exactly, neighboring & values
are mixed into the wave function labeled by k. We
also have written €,_—€,,=A as a constant. Here
€, is the energy of the unperturbed Bloch state.
We have not written out interband matrix elements,
which can be approximately included by introduc-
ing the velocity ¥(k) instead of k/m. € is the nor-
malization (1+ |¥+%[2,/A%)"/2, where av indicates
the volume average.

We shall continue to write results in the approxi-
mation equivalent to using the SROB model, occa-
sionally also assuming parabolic bands. The pur-
pose of so doing is to arrive at expressions trans--
parent enough to be understood, while not losing
really essential features of the theory, even though
numerical results will be untrustworthy.

The states of Eq. (III. 1) are not aligned per-
fectly parallel to M(¥), but rather are tilted away
from it. Classically, the electron spin precesses
about the mean direction. As the electron passes
into a new region with a different M , the exchange
gives a torque which causes the precession. Be-
cause the precession is fast, (frequency ~A /) the
average spin of the electron points in the direction
M , but the contribution of that spin to the magneti-
zation is somewhat reduced.

The energies to second order are given by
E.=¢€,+% |3, /m=|¥-3F,/A%3U(0,). (IL.2)

We have introduced the intra-atomic exchange U
of the SROB model. (o,) is given by

(0,)= [ @) [£,@® -7.@]e(1 - [7-3E,/4%), (1.3)

where f,(k) gives the actual occupation, including
any repopulation because of the existence of 3. We
abbreviate d®k/(27)3 by (dk). Thus,

U(o,)=a-20 [ (@R [AB-L@1T-25/a%,
(m1.4)

where A =U(N, - N_) includes possible repopulation.
It need not be distinguished from the A appearing
in energy denominators to the order of approxima-
tion we are using. Denoting

AR)=3 [ (@) (f,~IA® (11L.5)

as the average over singly occupied states, we find
En=¢+5|a Rk /mziaz(|v-8L,-([7-3E))/A.

(111.6)
Thus, corrections to E,_ - E,, =A, are propor-
tional to (VM)?, not M, as in Stoner theory. Clear-
ly (A,)=A. Note also, {0,) is not given by the
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population difference, but is reduced from that by
tilting of individual spins away from their mean
direction. This A does not vanish at T, explain-
ing the photoemission and other results.!'®

We remark that properties of single-particle
states at the Fermi surface are observed at low
temperatures, e.g., by the de Haas-van Alphen
effect. The shifts of Eq. (III.6), being of order
|2P are much smaller than that predicted by Stoner
theory. This is in accord with the experiments of
Lonzarich and Gold.'®

B. Free energy

We have calculated. the total energy in the pre-
sence of a nonvanishing 3 by two methods. The
first, direct, formal perturbation theory, is in-
teresting, since if 3 represents a single spin-den-
sity wave, of very long wavelength, the expression
gives an exact formula for D, the spin-wave con-
stant. This formula has been obtained previously,?
so we do not reproduce it here.

The band-theory approximation to the energy is
interesting as well. If applied to find the spin-wave
constant, it gives the RPA expression. If it is
used to find the total free energy, it gives approxi-
mations to the Landau-theory parameters. It is
the most direct way to discuss repopulation of sin-
gle-particle states.

We seek to find the difference between free en-
ergies per unit volume keeping the single-particle
occupation fixed. We thus want 6F =F[T,n,,,3]

- 9[T,n,,,0]. This, however, is also equal to the
difference in energies, since if the »n,, are fixed,
there is no change in entropy. The energy, in band
theory, is obtained by adding, for all occupied
states, the kinetic part of the single-particle en-
ergies to half the potential part. Since H, is all
Kinetic, (fyg |H, |9y )= |5E./2m - 2|32, /A is the
kinetic energy part of E,. Stralghtforward calcula-
tion yields

65 = [ (k) [£,(0) +1. @) [2E,/2m

-[f®&) - £ @] EE/A . (.7
The most common case will be that the occupations
are sufficiently isotropic to allow the replacement
of |¥,-3f, by 1|¥,F|2R,. Noting |3.]2 —V‘lfd3v
X3(VM)?, we have F=V-! [d3y A(VHI)? with the
RPA formula for A,

f (dR) _++_f- _-Li ¥R . (111.8)
The usual relation between A and D, the spin-wave

constant, holds at low temperature and is D =24/
M, where 2M =N, - N_.

L. MURRAY, AND R. E.
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C. Repopulation

In the presence of a magnetization fluctuation %,
the single-particle energies will shift and in con-
sequence, there may be a change in occupation
number. This repopulation can be taken into ac-
count by using the appropriate single-particle en-
ergies in the Fermi functions giving the occupa-
tions. Alternatively, the free energy whose shift
was just calculated can be minimized with respect
to occupation number.

To proceed by the latter method, we need toknow
properties of F[T,n,,,0]. This quantity, however,
if calculated in the band approximation, is just
that given by the usual Stoner theory. The result
is exactly as in Fermi-liquid theory, to which the
band theory provides an approximation.

If we are interested only in the gross features
of the repopulation, we may eliminate the individu-
al n,, as variables and use only Na=2nka.' In fact,
for simplicity, we assume N =N, +N_ is fixed. [If
N includes all the electrons, this is guaranteed by
the long-range Coulomb force. If it is to repre-
sent just the d electrons, it is still likely to be a
good approximation.] Then we may write

F[T,N,z(N,-N.),0]=[T,N,Ms,0]
2Xs[ (N -N.)- Ms] (I11.9)

In (II.9) My is the Stoner saturation magnetiza-
tion and ¢ is the band susceptibility, given in the

present model by
x:sl =m:l + i)'z:l -2 <m'1 > . (III-lO)

We define

(Im.11)

as the (in principle, temperature-dependent) value
of a function at the a-spin Fermi surface. N,
given by (II1.11) with A(€) =9(¢€) the density of
states, and (') by (II1.5) with A =9"!. In the
SROB approximation (3! )=U. For simplicity, we
have assumed a rigid exchange shift, as predicted
by this model.

To find the repopulation, $[7,N,3(N,-N.), |ZE,]
is minimized with respect to N, - N_. For this
purpose it is necessary to compute 6A/6(N -N).
Only the second term (proportional to ]v af,) con-
tributes, as f, - f_ and A depend on this quantlty
We obtain the result

N,-N_-2M;

=2xs (M, /I, +IM_ /N~ 2 MY/ NL)). (IMI.12)

Here 9M(¢) = [ (dk)6(c,—€)|¥+4F /A, and Egs.
(II.5) and (II1.11) define the quantities appearing in
(II1.12). Note that, at zero temperature, strong
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ferromagnetism (with a completely full or com-
pletely empty band) gives no repopulation, as xX,,
M, (or N_, I ) will vanish, together with the sus-
ceptibility, xg. In fact xg is rather small as a gen-
eral rule, and repopulation is not an important ef-
fect even at higher temperatures.

We have here assumed that there are no entropic
contributions to F from fluctuations in & which are
of importance. More generally (see Eq. IV.1)
F[npe] == T In2gexp[-F(n,,, 3)/T]. At high temper-
atures Z; is given by a functional integral over
6(7), ¢(r). Then it is easily seen that the preced-
ing formulas hold.

At low temperature, one must quantize %, in
which case somewhat different results are ob-
tained (see Sec. IVC). In this case 3, in effect,
depends on the variables n,, and the repopulation
is given by adding the quantity 4D |3, to the right
side of Eq. (III.12) which for parabolic bands causes
a slight increase in majority over minority spin.
At high temperatures, this term does not appear
and the repopulation is small and negative.

We conclude by making some remarks about
whether repopulation can actually take place. It
might seem at first sight that thermodynamic for-
mulas for repopulation would only be valid if the
single-particle states come into thermal equili-
brium in a time short compared with the time over
which & changes. This would require an investiga-
tion of scattering rates. However, it should be
noted that even for an arbitrary, fixed @ what ap-
pears in the perturbation formulas for the single-
particle energy is |%f%, and |+¥E,, in other
words, the spatial averages. This happens be-
cause the matrix elements are between delocalized,
itinerant states. Now, unless A refers to a mag-
netization fluctuation which is not thermal, we
know that even though A may have a significant
time dependence on the scale of electron relaxa-
tion times, |Z, will be constant in time. Hence
the repopulation has time to take place as dis-
cussed above. A case where this does not happen
is in ferromagnetic resonance, where 3 is driven
by an external electromagnetic wave. For this
case there is a “normal” regime in which the elec-

trons are locally in equilibrium, aad an “anom-
J

alous” one where they are not. Such effects are
discussed in Ref. 26-28.

IV. FERMI LIQUID THEORY
A. Band approximation

In Sec. III we found a formula for the free-energy
difference,

FIT, 1y, 8] = F[T,14y,0],
which is also equal to the energy difference. We
first say a word about the entropic contribution to
F. Clearly, the single-particle entropy is given
by the usual formula, so if there is no change in
occupation, there is no change in single-particle
entropy.

The entropy for any fixed value of A(F) is the
same as it is for the special value 2=0. However,
there are many different values of 2 with the same
IEE", and this will contribute to the entropy. These
entropic considerations can be taken care of auto-
matically by defining

e S/ 7=y e lme B/ T @v.1)

H

where the sum is over possible values of & [keep-
ing some variable, such as |Z, fixed if desired].
Exactly how this sum is performed will depend on
several factors, among them whether it is neces-
sary to quantize 3. For most purposes, it is only
here, if at all, that 3 need be quantized. Previous
versions of Fermi-liquid theory have insisted
upon quantization, unnecessarily, in our opinion,
and consequently have had to restrict considera-
tions to very low temperatures.

We therefore avoid committing ourselves to
specifying how (IV.1) is to be carried out until
the very end. This leaves our version of Fermi-
liquid theory somewhat incomplete. In compensa-
tion, the range of validity of the theory is enor-
mously improved, and much can be learned with-
out specification of an exact form for (IV.1).

With this understanding, we consider the energy,
rather than the free energy. After Landau, an ex-
pansion of the energy functional is made,

g[nka’-a.]=é’,[n%a?0]+zfE(l’zaonka (dk)+4Al§|§v+% Z f (dk)f (dk’)fka.k‘a‘énkaénk’a'

+Z:f (dk)gl:alilivénka °
a

We have here dropped terms of order a* which
should, strictly speaking, be kept, as they are
formally of the same order. This term will be
discussed in the following paper.

(Iv.2)

—

In the SROB model, treated in band theory,
Sra,neqe 1S just U, for a#a’.

Eq. (II.6) gives for g, the band approximation
result
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gho=1/2m - 3a(|V|2 - (|F]|?))/A. av.3)

Equation (IV.2) gives the form of a new version of
Fermi-liquid theory in which the variables are
n,,, quasiparticles with spin parallel and anti-
parallel to the local magnetization, and a variable
2 describing the gradient of magnetization direc-
tion.

B. Rapidly established correlations

As a rule, band theory naively applied is not
completely adequate numerically. There are cer-
tain correlation effects which are not properly
described by the mean-field approximation. Such
fast correlations are, for example, the screen-
ing of the long-range Coulomb force, and the ad-
justments to the effective value of U as reviewed
by Herring.!> From a practical point of view,
probably the best approach is to reduce the Ham-
iltonian to an effective one in which these effects
are taken into account by renormalizations of the
parameters. )

We may, however, follow the technique of Lan-
dau to make plausible the idea that these fast cor-
relations will do no more than renormalize the pa-
rameters E,, A, f, and g’ of (IV.2). In this ap-
proach one studies various vertex functions, or
Green’s functions, and makes it plausible that
the leading poles at low frequency and long wave-
length have appropriate properties.

To be more specific, one can study the single-
particle Green’s function, to order |Z|2, not in
band theory, but to higher orders in the electron-
electron interactions. In the customary case, the
Green’s function to every order of perturbation
in this interaction has the appropriate singular
properties at long wavelength and low frequency.
This is a “proof” or plausibility argument for the
validity of Fermi-liquid theory .2°

Naive calculation would give the same results
in the rotated frame. On the one hand, however,
it is known the 3, describes a system whose low-
lying excitations include spin waves, and on the
other hand, it is clear that, in the rotated frame
we should exclude these excitations, since they
are taken into account by the local rotation itself.
Thus, some means must be found to exclude from
the space of states available to the system those
states which are described by the local rotation
itself. We have not yet succeeded in divising a
completely satisfactory formal theory which pro-
jects out these states, so we content ourselves with
a couple of remarks. First, for given finite & there
will be electron lifetime corrections, since & re-
presents a disordered scatterer. The corrections
will be of order a*, which may be formally neglig-
ible. Second, it seems plausible that the single-

electron Green’s function will continue to have only
quasiparticle poles near the Fermi surface, since
the spin-wave states projected out are the ones
which could have been troublesome.

In summary, we argue that the form of Fermi-
liquid theory is preserved in approximations going
beyond the band approximation. The band approx-
imation with an appropriate starting Hamiltonian
is probably sufficiently accurate for practical
purposes, however.

C. Comparison of old and new theories

All previous ferromagnetic Fermi-liquid theo-
ries have regarded the magnon number as the ap-
propriate variable to describe the spin fluctuations.
A seeming inconsistency then arises as follows:

The pure magnon contribution to the energy,
which we have written

8n=44l5[3, (v .4)
is written in the old theory as f (dq) Dg*N .
Thus
|§|§v=f (dq) ¢°N,/2M, (IV 5)

where we have assumed a temperature so low that
higher powers of N, q/M are negligible. The single-
electron energies are given by

E, =E%+08,, /on,|1=E% +g4 |2|2, (1v .6)

in the new theory.
In the old version,® the energy is given by

Eka =E2a+6nka/6é,ml}lq

=E?za + f (dq)gkaquq'

The state ¢ must correspond to quantization in the
lab frame, since for fixed N, no local frame is well
defined. .
Paradoxically, it would seem, E, #E,, . This
happens because according to Eq. (IV.5), the rela-
tion between |Z|2, and N, contains a factor M which
depends on single-particle occupation. In the band
approximation, using Eq. (IV.4), we have

(Iv.m

B, =E,-a f (dq)N,Dg?/2M. (IV.8)

We thus find that although the total energy is the
same in either representation, the energy associ-
ated with an electron quasiparticle in the presence
of a spin fluctuation (or the energy associated with
a spin fluctuation in the presence of an electron
fluctuation) differs in the two descriptions.

Which is correct? The answer, we believe, is
that both are correct.- It is just a matter of using
different coordinate systems.
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To clarify this point, let us consider the single-
particle Green’s function in the band approximation
for the special case in which the spin fluctuation
is a spin-density wave. We choose 6 to be a small
constant, and ¢ =§+ T - Q,t with Q_ =Dg? cosf. The
number of magnons, all of wave number ¢, re-

G(Ft,¥,11)= f (dk) €% E-

2

C es)*e{b' D zei(b.b:) _ % ib
x e"EH(“")( ’~b . +e 1B (t-t) ' ' . » —€D*¥e .
ecDe! , |§D ‘zez(b -b) _eﬂ)e-tb’ @2

Here E,, is given by Eq. (III.2), € is the normal-
ization defined in Eq. (IlI.1), and D =—-e¥(k)+2e'®/
A. In this case, we may choose b =-¢(¥¢) cosé,

'=_¢(¥’,t') cosh, so that §(F,?) vanishes. Note
also @2+ |D|2=1 and D may be chosen real. As
we discussed earlier, the fact that D+#0 is inter-
preted as a rapid precession of the individual
electron spin about the mean spin.

We next work out the Green’s function in the la-
boratory system, which can be accomplished by
use of Eqs. (I1.20) and (I1.2). The result is

G(Ft, #'t") = f (dF) exp[ik+ (F - 77)]

XZ exp[—iffka(t -t"M,, (1v.10)

where M, has a large constant component in the
(a, a) position, with small off-diagonal and (-a,
—a) components. Here E,, is given by

E,,=E,, - aN,DF#/2MV + a§*%,N /2MV. (IV.11)
This is consistent with (IV.8) where the last term
does not appear because it has been assumed that
the average over directions of § is isotropic. The
reason E differs from E, according to this point
of view, is that the transformation R is time de-
pendent. In other words, the spin-density wave is
moving, and we have taken into account the Doppler
shift in changing the frames of reference.

It may seem strange that the energy relation
Eq. (IV.8) is a consequence of either the Doppler
shift or a change of variable from % to N,. How-
ever, the fact that the free energy is preserved,
as discussed in Sec. III B, guarantees this nice
result. )

Fermi-liquid theory is derived by a procedure
whereby the pole in the Green’s function with large
residue is renormalized to have unit residue, and
the other parts of the spectrum are accounted for
by renormalization, or in this case, by introduc-
tion of a new kind of excitation. Where both theo-
ries are valid, they are equivalent, at least insofar

quired to produce such a wave is N,=2M sin®36.
We find |2, =1q%sin’0 =(N,/2M)(1 - N /2M)¢?
=(N,/2M)q?, agreeing with Eq. (IV.4). ThisGreen’s
function we calculate in the locally rotated frame.
We find (again in the SROB case), using the defin-
ition of Eq. (11.19)

(Iv.9)

r

as the nature of the wave functions does not come
into question, but only the energies.

Do the sundry Fermi-surface experiments mea-
sure properties of the states in the lab frame or
the locally rotated frame? From a practical point
of view, there is no difference, as the shift is very
small, proportional to f ¢°N,(dq), not qu (dq), in
either case. Further, insofar as the geometry of
the Fermi surface is the measured quantity, both
forms give the same result, since they both re-
sult from a minimization of the same free
energy.

We have mentioned this point at the end of Sec.
III. In this context, it means that to find the free
energy which is to be minimized with respect to
7., and &, we must subtract the entropy term TS
from the energy of Eq. (IV.2). The standard boson
expression for the entropy will be
—V25,[N,InN, - (1+N,) In(1+N,)]. If one uses this
expression and Eq. (IV.5), specialized to Fourier
components of @, it is found that the energies E,m
are those which determine the occupations; at ele-
vated temperatures, the standard boson expression
will not give the correct entropy and one expects
203 in Eq. (IV.1) to be given by a functional integral
over 6(7),¥(r). In this case E,, determines the oc-
cupations. We have not attempted to map out the
crossover in detail since we expect repopulation to
be of minor importance in any case.

It is interesting to note that the residue of the
dominant pole of the laboratory-frame Green’s
function is reduced by a factor [1 - (- V)?)]/A%,
thus giving a T°/2 term in the magnetization.

This is just the same as our reduction of (v,)
due to tilting of individual electron spins away
from their mean direction. Fermi-liquid theory
renormalizes this residue and is correct only to
order T2 in the magnetization. The difference
between the old and new versions thus first ap-
pears in going to higher order in f (dg)N,/M, or
in subtler questions, such as that of the quasi-
particle lifetimes, as well as in the question of
the range of validity of the two theories.
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V. VALIDITY OF THE FLUCTUATING-LOCAL-BAND
THEORY

We here treat briefly the fundamental question
of the range of validity of the new form of band
theory (or Fermi-liquid theory). Clearly the old
form cannot be valid in any situation in which the
magnetization is reduced appreciably from its
zero-temperature value.

There are two questions to be studied in this
section. The first is: What is the range of validity
of the new theory? The second is: Why is the
range what it is? The second question is much
more difficult than the first and we can make
only some remarks. The first can be treated semi-
phenomenologically.

A. Phenomenological range of validity

We regard the foregoing theory as valid if the
quantity @ is small enough so that corrections to
single-particle energies, etc. are adequately given
by the perturbation developed in the previous sec-
tions. If this is so, then the energy bands in most
respects will look rather similar to those at zero
temperature.

Because of electron lifetime effects, details of
energy bands cannot be measured very accurately
except at the very lowest temperature. Neverthe-
less, what evidence is available indicates that
bands continue to exist above T, much like those
below. We have cited photoemission,® work func-
tion,® and other data*®7 which show no anomalies
at T, in support of this contention. An analysis of
thermodynamic data also leads to this conclusion.®

We can also attempt to find, phenomenologically,
the size of |§|§Lv as a function of temperature. To
do this, we can take the expression for the mag-
netic energy Eq. (IV.4) and compare it with that
extracted from specific-heat measurements. For
nickel, from the analysis of Pawel and Stansbury,3°
we find that the fofal magnetic energy (for 7> T,)
is 1.2 X 10"%2eV/atom. This gives |Z|2,~5x 102
A as the maximum. With A~0.8 eV according
to Wang and Calloway,* and v~107 cm/sec, we
have |3+¥|/A~0.18. The value of ¥ is not well
known. It should be an average over the singly oc-
cupied states. In nickel the bands are extremely
flat near the point X where the pockets of holes
in the minority band are believed to exist. Direct
estimates of the magnetic energies based on spin-
wave extrapolation give values of |Z|2, somewhat
smaller than this.

A corollary of this is that ||2,, according to
the specific-heat data, varies slowly except rel-
atively close to T. It rises from small values be-
low T and saturates shortly above, which has a
bearing on observations”® to be discussed in paper

II of this series. Its critical behavior at T, is in-
conspicuous, since measured and theoretical values
of the specific-heat critical exponent a indicate a
small negative value for this quantity.

Another argument is as follows. 2 can be small
for two reasons. The gradients can be small, or
the angle of tilt can be small, or we can imagine
the local rotation to be compounded of two rota-
tions, a first through a large angle but with small
gradients, followed by a second through a small
angle, but with larger gradients. This will also
give a small value of . Since the larger-gradient,
i.e., shorter-wavelength, disturbances of the mag-
netization correspond to higher-energy spin waves,
it is clear that the amplitude of these disturbances
will be small. These short-wavelength distur-
bances are ripples on the longer wavelength and
slower “ground swell,” which is of large ampli-
tude above T,. To predict their amplitude, these
ripples must be quantized. They should be ob-
servable by neutron scattering and in fact are the
famous spin waves observed above the transition
temperature.

Since spin waves with considerable width, but
nevertheless distinctly defined have been observed
for ¢>@Q,~0.25 A in nickel” and iron,® we can
draw the conclusion that there is short-range mag-
netic order on this scale. Superimposed on this
local order are the small amplitude, relatively
fast, and short-wavelength spin fluctuations, which
must be quantized, as well as the even faster and/
or shorter-wavelength fluctuations of the single-
particle states.

The spin fluctuation for ¢> @, are weak enough
in amplitude to be treated by perturbation theory,
i.e., RPA. The spin fluctuations for ¢<@, clearly
have a maximum contribution to & of order Q,, .
which corresponds to a wavelength of order 25 A.
The shorter-wavelength waves can be estimated
by spin-wave theory to make a somewhat smaller
contribution to |X|2,.

This consideration also affords an escape from
the difficulties posed by the fact that the spin-
wave spectrum is known not to be purely quadratic
in crystal momentum, as our theory apparently
predicts. In fact for shorter wavelengths we do
not have to rely on the smallness of the gradient,
and our results go over to the RPA approximation,
which is believed to be substantially valid numer-
ically. (One must not neglect the time dependence
of the magnetization wave in this case. Several
of the approximations made in Sec. III in the in-
terests of simplicity have to be improved for a
short-wavelength spin fluctuation. The following
paper discusses this case at greater length.)

The conclusion of this section is that |Z|3, is
small enough, even well above T, so that the per-
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trubation theory of Secs. II and III is approximately
valid.

B. Theoretical consideration

In this section we consider briefly the question:
Why is |%|2, so small? Why, in other words, does
short-range magnetic order persist? How general
is this result?

Part of the answer to this question may be due
to the circumstance that the spin-wave constant
D is much larger here than in, say, a nearest-
neighbor Heisenberg model. In the latter case
DG?~ T, where G is a zone-boundary wave vector,
whereas in the itinerant case DG*>»>T,. At T,
then, a nearest-neighbor Heisenberg model has a
rather large mean angle between neighboring spins.

That D is large relates to the effective range of
exchange forces, as well as tothe oscillating nature
of this exchange. A local magnetizationdisturbance
is carried in an oscillatory fashion by the Ruder-
man-Kittel-Kasuya-Yosida (RKKY) mechanism to
affect electrons at a considerable distance. This
RKKY mechanism is microscopically just the pro-
pagation of virtual particle-hole pairs, the same
mechanism really as appears in the RPA, or in our
considerations of Sec. III. The length scale of the
RKKY has been shown by Stearns® to play a role
in the theory. '

However, why does the magnetic energy saturate
so relatively close to T,? Again the RKKY argu-
ment may play a role. Because the spins on fur-
ther neighbors may have an antiferromagnetic ex-
change, the exchange forces on nearest neighbors
has to be very strongly ferromagnetic. If the near-
est-neighbor exchange alone were kept, the value
of T, would be much greater. According to our
estimate of the maximum |%|2,, one might say
that the magnetic energy saturates when the spins
on neighboring atoms begin to be seriously mis-
aligned. This of course is a quasisaturation:
there will certainly be a gradual further increase
in magnetic energy at higher temperatures which
cannot be disentangled from other types of energy
in the data analysis..

How literally one can take these RKKY consid-
erations remains to be seen. There certainly are
differences between the itinerant magnets and the
rare earths where RKKY exchange forces clearly
dominate. It remains an interesting aim of future
work to understand completely the questions raised
in this section.

VI. THERMODYNAMICS,
OF THE FLUCTUATING-LOCAL-BAND THEORY
A. Low temperature

In the low-temperature case the prediction of our
theory is identical to that of the old form of Fermi-

liquid theory. For the magnetization there is a
T3/2 contribution from magnons and a T2 term
from single-particle excitation (except in the case
of “strong” ferromagnets). The theories start to
differ in the terms of order 7'5/2 where several
higher-order effects come in, among them the
tilting of the electron moments away from the
local average spin direction.

B. Phase transition

Finally in this section we must come to grips
with the question of integrating over possible
values of 3, first raised in Eq. (IV.1). At low
temperatures & must be quantized. At higher
temperatures the long-wavelength parts of @ can-
not be quantized, since the angles of spin devia-
tion are large, but a classical treatment will be
valid. '

The shorter-wavelength ripples will still have
to be quantized, however. There is no definite
wave number giving a demarcation between these
two regimes, which in fact merge smoothly. The
most that can be hoped for is a region which can
be treated with equal validity by the quantum or
classical method. On the basis of neutron evi-
dence,’"® we see that for g=@,~0.25 A" spin waves
are pretty well defined, but since the quantum en-
ergy is still rather less than T, in this wave-num-
ber region, the classical treatment will also be
valid.

Before turning to the difficulties posed by this
quantum-classical transition region, let us ex-
amine what an even simpler approximation gives.
In this case we treat the entire spin-fluctuation
spectrum classically, which may not be too bad -
if thermodynamics alone is being studied. Then
we have for the free energy of Eq. (IV.1) the equiv-
alent functional integral form33

e ¥/ T f DI(T) exp<;fd?rA(VMY/T> . (VI1.1)

Not too much is known about functional integrals

of this type.” Recently, however, renormalization-
group studies based on expansions about dimension
2 are for arbitrary = (the vector character of the
order parameter, 3 in this case), have been made 3*
The prediction is made

A/To=(K*2/4m)(n-2)/(d-2), (VI.2)

where K is a cutoff wave number. Five things are
uncertain about this formula: first, the coefficient
of K92 (known only for d — 2<« 1), second, the value
of A, third, the value of K, and fourth, the degree
to which quantum effects are important. In addi-
tion, there is the problem that the spin-wave spec-
trum is not accurately parabolic, as it tacitly
assumed in adopting the form (VI.1).
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TABLE 1. Values of the exchange stiffness, zone-
boundary vector, and the ratio of T as predicted by Eq.
(VI.2) to the observed value. The exchange stiffness val-
ues are from neutron data.

Element A (mevA™) G@A™Y 41A/GT¢
Fe 14.22 1.55 1.28
Co (hep) 17.5° 1.44 1.27
Ni 6.9°¢ 1.54 1.04

2Reference 8.

bG. shirane, V. J. Minkiewicz, and R. Nathans,
J. Appl. Phys. 39, 383 (1960).

°Reference 7.

There is some indication that the coefficient is
not too bad. At least an alternative derivation
(below) gives a similar result.

The value of A clearly depends on the value of
K. Infact, for small enough K, A/K must be
constant (we take d =3,7n=3 from now on) because
we expect if the cutoff is made very small, form-
ula (VI.1) must become exact, and the result fol-
lows on dimensional grounds. This dependence of
A on K is just an example of the renormalization
of parameters as shorter-wavelength fluctuations
are integrated out in the renormalization-group
scheme.®® :

Let us take K large enough to include all mag-
netization fluctuations. We adopt the zone bound-
ary K=G as a cutoff value, although it is dif-
ficult to justify this choice in detail. In this case,
it is natural to choose A according to a formula
like (III1.8) or better yet, from experiment, using
the fact that such band-structure-dependent quan-
tities are nearly independent of temperature. We
use the low-temperature neutron value for A,
which derives from a parabolic fit to the magnon
dispersion over a wide wave-number range. Table
I gives the results, which are rather remarkable.
(In cobalt, the crystallographic phase change gives
further uncertainty.) Although the uncertainties
just discussed make the agreement rather fortui-
tous, for any one element, the correlations between
A/K and T, are probably not chance.

We next discuss the behavior of Eq. (VI.1), [or
Eq. (IV.1)] as the cutoff K is reduced, i.e., as the
short-wavelength fluctuations are integrated out.
If (VI.1) indeed holds, one has the option of re-
normalizing A, as just discussed. Alternatively,
it can be recognized that reducing the cutoff wave
number is equivalent to averaging M(¥) over larger
and larger regions. This of course makes M de-
pend on K, in such a way that it eventually vanishes
(for T=T,). In this case, one can hope to express
& as an expansion in the components M,, which is
of course nothing but the Ginzburg- Landau type of

expansion.

A formal expression for this expansion can be
given by means of the Stratonovich-Hubbard trans-
formation.3%3¢ A discussion of this transformation
has recently been given by Gomes and Lederer.*
In practice, however, the method must rely on
rather drastic approximations which, except per-
haps for the weak ferromagnets,*® cannot really be
expected to give numerically accurate results for
“nonuniversal” quantities.

In particular, this type of theory transforms
away single-particle properties in favor of time-
dependent magnetization fluctuations. This is not
a natural description, and so there is no reason
to believe in the numerical accuracy of the approx-
imations made.

According to the discussion above, a natural
type of free-energy functional to use for large
K is that given in Eq. (VI.1) in which fluctuations
in the magnitude of M are neglected, whereas
for very small K, we can use a Ginzburg-Landau
type of free-energy expression, which allows for
fluctuations in the magnitude of the magnetization.
[Alternatively, as mentioned, the magnitude fluc-
tuations can be integrated out to maintain the form
(VI.1)]. In order to pass smoothly from one form
to the other, we rewrite, approximately, the free
energy in (VI.1) as

e T/ T - exp(- f A(VM)? dﬂr/T>6(M - M,)/M?

~ exp(— %f [CME(VAIR + (M - Mo)z]/T> .

(VL.1")
Here

CM?=2A, (V1.3)

M, is the magnitude of magnetization, and x is a
susceptibility against magnitude fluctuations.

As the cutoff K is lowered by integrating out
the short-wavelength fluctuations, M, and x will
change their values. M, will become smaller,
representing the mean magnitude of the magnetiza-
tion-averaged-over-a-region-of-size-1/K, and x
will become larger, as the stiffness against magne-
tization magnitude fluctuations decreases (we re-
strict consideration to the case T'> T;). The constant
C, however, is appropriately regarded as indepen-
dent of K, as is well known in renormalization-
group theory.*® 1t is therefore nearly independent
of temperature as well, since it may be calculated
from (VI.3) for large cutoff, where we know that
A is nearly temperature independent, for T« Tg.
[The value of A as often quoted is one appropriate
to a theory with a small cutoff K, and does depend
on temperature through M. It is clearly C that
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appears in the Landau- Lifshitz equation and in the
Ornstein-Zernike expression for the static sus-
ceptibility above T,.] This discussion explains,
for the first time, the observed constancy of C

as a function of temperature.’®

The form (VI.1’) still does not pass over to the
Ginzburg-Landau form. First, the gradients of the
magnetization magnitude must be included. In prin-
ciple, this might be done by allowing x to be wave-
number dependent, and making a low-wave-number
expansion. There are, however, some unsolved
difficulties connected with the use of a sharp cut-
off K which prevent numerically accurate calcula-
tions.*

To deal with this case, we make the following
fairly extreme approximations. (a) We suppose
that we may choose the cutoff K so small that the
gradients are given as they would be in the Ginz-
burg-Landau limit, i.e., CM2(VI)? < C(VM)?.

(b) We can replace 3x™ (M — M,)? by (M 2x)"*(M?

— MZ2)? if ¥ is not too large. (c) In the short-wave-
length region, small-fluctuation theory (spin-wave
theory) should be valid, and (d) in the remaining
region the classical approximation should be valid.
By choosing K =Q,~0.25 A™ conditions (c) and (d)
are satisfied. Whether conditions (a) and (b) can
be simultaneously satisfied we do not know, but
later present evidence suggesting that these ap-
proximations are not very accurate.

The next step is to estimate the parameters of
the theory; M,, C, and x. C, being constant, we
may take from experiment. M, is the mean mag-
netization magnitude, reduced from the low-temp-
erature value by short-wavelength fluctuations,
(and assuming no long-wavelength fluctuation). We
try spin-wave approximation

M|(T) =M, ~ [ (dg)/(e“' 7~ 1), (V1.4)
with w,=Dg®. Here we have neglected thermal
single-particle repopulation. We also must cut-
off the spin-wave momentum below K.

In a similar way, we may use the spin-wave sus-
ceptibility :

x=T" [ (dq)/(e*/ T~ 1y (VL5)
We have used formulas for the reduction of M, and
for the x,, susceptibility. Here we have taken the
local z direction to be, say, in the direction of

M) = f (dq) M e®F, g<K. (V1.6)
Therefore these forms are reasonable enough for
q>>K, but break down for ¢~ K. In fact, because
of the nonlinear relation between the components
of M and the angles of M , the simple cutoff pro-

cedure specified in (VI.6) will lead to inaccuracies
near the cutoff. Nevertheless, we simply exclude
the region ¢ <K in the integrations of (VI.4) and
(V1.5) as a first approximation.

We may then evaluate (VI.4) as (approximately)

My=M,1-C,,, T*'?)+ aTK/D27?, (V1.7)

where C,,, is a well-known constant function of
D, which can alternatively be taken semiphenom-
enologically from experiment. We have introduced
a factor « for later convenience.

In the same way,

X~ (T/2mDP) K™ -K3), (VI1.8)

where K, is an upper cutoff given approximately
by K,~(T/D)*/?. This expression for X has the
attractive feature of becoming large for small K.

By this sequence of approximations, we have
achieved a Ginzburg-Landau form for the free
energy,

F[M) = [ ax [3C(VIF - a|F|2+ 3§ 4]

+ constant (V1.9)

with a=(2x)™,b=(2xM2)™. The constant term has
absorbed the quantity M2/8y.

We restrict our discussion of the thermodynamics
of this ¥ to an estimate of the transition tempera-
ture. This we estimate in the Hartree approxima-
tion, i.e., we replace the |M|* term by the best
possible quadratic.®*'*® Then we find T, is given
by the relation £2=0, where

£2=(5/3M30%) [ (dq) (Hla)+ F(-0))- 1/Cx,
a<K

(V1.10)
and
(M(q) > Mi(-q))=3T/C(g? + £2) . (VL.11)
The value of T, is then
T.=2mCM2/5K. (V1.12)
If T, is to be independent of K, we must have
dInT, 2 \am, 1
= = — ———0 —_
4nte 2o (MO) M1 (V1.13)
By use of (VI.7) we find
dinT, _ aT, 1 (V1.14)

dK ~w°DM, K

which vanishes according to (V1.12) if D=2aCM,.
Thus, we may choose « to satisfy this condition.
The degree to which it differs from unity is a mea-
sure of the inadequacy of the sharp cutoff approxi-
mation in (VI.7) and (VI.8).

We next examine (VI.12) numerically. It is
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TABLE II. Values of Ornstein-Zernike parameter C
and My/M, as defined in the text. The values of C are
ferromagnetic resonance determinations by S. M. Bhagat
and P. Lubitz, Phys: Rev. B 10, 179-185 (1974).

Element C (ev34)) (My/ M)y
Fe 3.2 0.49
Ni 15 0.61

clearly closely related to (VI.2). A difference is
that C appears, and the cutoff K is quite small.
The measured spin-wave dispersion at T =0 is dis-
tinctly nonparabolic. Therefore it is probably bet-
ter to take a value of C appropriate to long wave-
lengths rather than the larger value corresponding
to the choice of A in Table I. For K we take

0.25 A"'. Equation (VI.12) then predicts a value of
M,/M,, denoted in Table II as (M,/M,),.

The expression (VI.7), however, .does not agree
very well with this. Using the low-temperature
values for C,,, gives C3,,T,*/2=0.12 for both Fe
and Ni. Making the crude fit to the data that the
measured spin-wave spectrum for ¢>0.25 At is
given by Dg® with DTC~ 0.55D,, and setting C,,,
= 3/z(Do/Drc)3/2 gives a value for M, /M, due to
this term alone, of 0.71. Using Eq. (VI.4) gives an
unrealistically large value of the final term of Eq.
(VI.7). Even with a=1, this contribution is of or-
der 0.1M,. Thus the theory is unsatisfactory in
that (VI.12) suggests a lower value of M, than that
predicted by (VI.7). Further, this cannot be recti-
fied by use of the correction factor . However,
we found it necessary to resort to rather drastic
approximations. Furthermore, as we shall see in
paper II (hereafter referred to as II) the spin-wave
spectrum at high temperature does not have the
quadratic form we attributed to it in the above anal-

-ysis. However, our results in II cannot be readily
carried over at this stage, since it is in precisely
the cutoff region that significant uncertainties ap-
pear. Some progress has been made in this re-
gion in the context of the nonlinear Landau-Lifshitz
equation. We continue however, to be encouraged
by the fact that iron, nickel, and probably cobalt

all show quite similar discrepancies between theory
and experiment.

We finally remark that, by use of (VI.8), an esti-
mate can be made of the fluctuations in the magni-
tude of the magnetization. Using (VI.13), we find
{((M - M,)? )~ BM: where the numerical factor 8 de-
pends-on details of the averaging process.

However, B~1-K/K, which is a plausible be-
havior, as for K very small, large-magnitude
fluctuations are expected. Our derivation of (VI.9)
was based on the assumption of small-magnitude
fluctuations, so this is a source of error. Prob-
ably, therefore, the errors listed as (a) and (b)
before Eq. (VI.8) are not insignificant.

VII. SUMMARY

We have presented a theory of itinerant magne-
tism based on a classical treatment of the collec-
tive variable M. In zeroth approximation, the
state of the system is that given by band theory, or
by Fermi-liquid theory with the spin quantization
in the direction of 1.

Much can be learned without specifying how
M(T) is to be calculated. These results serve to
give a qualitative understanding of many hitherto
puzzling observations. To compute the actual ther-
modynamics of the phase transition requires aver-
ages over M(F). The machinery encountered is
that used in renormalization-group studies of the
phase transition. This machinery is not, however,
sufficiently developed to give reliable numerical
results for the nonuniversal quantities. However,

" the theory applies equally to iron, nickel, and co-

balt, and probably to the weak ferromagnets as
well. The numerical results are consistent with
this. ’
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