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The molecular-field-type approximations when applied to the Ising ferromagnet yield inaccurate and
sometimes incorrect behaviors at the transition temperature. We have advanced the mathematical

approximation of the cluster variation method, which is the generalization of the molecular-field-type

approximation, a few more steps so that the four- and six-body correlations are taken into account. Some
remarkable features became. apparent from preliminary calculations for fcc Ising ferromagnets: (i) The
transition temperature is predicted within a few percent of the exact value. T,(4-body) = 0.83545, T,(6-
body) = 0.83394, T, (exact) = 0.81627, with T,(Weiss) = 1.00000; (ii) When closed-form equations for the
low-temperature specific heat are expanded into infinite series, all of the known exact coefficients are
reproduced; (iii) The extent of mathematical analysis and the amount of numerical computation are
considerably less than those involved in diagram enumeration methods.

I. INTRODUCTION

It has been widely known that the Bragg-Williams
approximation of order-disorder theory of binary
alloys when applied to the Ising ferromagnet yields
the Weiss molecular-field approximation and
describes qualitative features of the second-order
phase transition. When examined more closely,
however, the molecular-field approximation en-
tails many detrimental drawbacks; an over-esti-
mation of the transition temperature, no tail of the
specific heat on. the high-temperature side, and
most crucially, inability to predict correct crit-
tical-point exponents. Description of the second-
order transition is substantially improved when the
effect of the nearest-neighbor pair correlation is
included. The next higher- order approximation is
not necessarily unique. One of the possible
choices would be the equilateral triangle approxi-
mation which is appropriate only for the fcc
lattice. This approximation has been attempted
but does not seem to yield any critical tempera-
ture. An algebraic equation for the transition
temperature in this approximation, however, yields
a complex solution which is an improved value if
the small imaginary part is ignored. A remark-
able advance in the theory of cooperative pheno-
mena has been accomplished by Kikuchi. ' The
approach is called the cluster variation method
and is applied, in particular, to the square lattice
of the two-dimensional Ising ferromagnet. This
approximation is found to be equivalent to the
Kramers-Wannier' variational solution of the
eigenva1ue formulation of the two-dimensional Ising
ferromagnet and the order of approximation is
often referred to as Kramers-Wannier-Kikuchi ap-
proximation.

In spite of its rather remarkable success and its

subsequentimprovementby Kurata, Kikuchi, and
Watari, ' the cluster variation method, in its
original form has not been widely used as a method
of formulating the theory of second-order phase
transition because the method requires a statistical
ensemble consideration each time a new cluster
is added. This is accomplished by means of com-
binatoric analysis and hence the problem of book-
keeping becomes quite tedious. A rather exhaustive
review of Kikuchi's cluster variation method and
its applications to other lattice systems is given
by Burley. ' In order to overcome the aforemen-
tioned formulational complexity the cluster vari3;
tion method has subsequently been reformulated
and generalized by Morita. ' In this generalization
it is shown that (a) the cluster variation method
ip based on the exact variational principle of equi-
librium statistical mechanics; (b) the method is
applicable to quantum-statistical systems as well
as to classicai systems; (c) the exact cumuiant
expansion of the entropy in terms of the reduced
density matrices is accompiished; (d) the order
of approximation is decided at the moment when
the cumulant expansion of entropy is truncated,
hence, no ensemble formulation is repeated; (e)
the Weiss molecular-field approximation, the
Bethe pair approximation, and the Kramers-
Wannier-Kikuchi approximation. are special cases
of the generalized cluster variation method. Quite
recently, Tanaka and Libelo' applied the cluster-
variation method to an fcc Heisenberg ferromag-
net in which the nearest-neighbor tetrahedral spin
correlation is taken into account and found a value
of the critical temperature which is within one
percent of the exact value of the power-series
result. ' This encourages us to attempt establish-
ing some conjectures concerning criteria for at-
taining and improving approximations in the cluster



variation method when applied to the general form-
ulation of second-order phase transition.

The spin-3 fec Ising fex romagnet treated in the
present investigation yielded the transition tem-
perature to within a few percent of the exact value,
and all the known coefficients, 29 in number, of
the low-temperature series for the specific heat
were reproduced. The cluster var iation method,
which is designed originally for the purpose of
obtaining various correlation, functions in closed
form, seems to serve as a means of producing
rigorous power series for the correlation func-
tions without ever enumerating the numbers of
ways to fit various diagrams into the lattice. The
physical system studied in the present investiga-
tion is the spin-& Ising ferromagnet for the fcc
lattice. In order to eleaxly exhibit the effect of
including higher-body correlations, the above
system will be treated, successively, in the %eiss
(one-body), the pair (two-body), the triangle (three-
body), the tetrahedron (four-body), and the
octahedron plus tetrahedron (six-body) approxima-
tions. The results of the triangle and tetrahedron
approximations are previously available~ and only
the last approximation (six-body) is new.

R„=z (1+x,) and R„=z (1 x,).
The free energy E can now be written,

E/Nk 7= zJ'/(2kT)x, +-,'(1+x,) ln(1+ x,)

+p (1—x,) ln(1 —x,).

(2.6)

(2.7)

Minimizing E with respect to x„one obtains

0= -z(J/k7')x, + z In(1+x,)/(1-x, ) . (2.6)

Note that x, = 0 is always a solution of (2.8). How-
ever, for 7& zJ'/k there isanother, nonzero, solu-
tion for x, : this nonzero solution is called the
ordered solution and corresponds to a lower free
energy as can be seen by expanding (2.7). Further
the ordered solution goes continuously to zero as
& approaches zZ/k. x, may, therefore, be treated
as an order parameter. In. this way, the Weiss
approximation predicts a second-order phase tran-
sition and the critical temperature is given by

&.(i x,i2~,i.) =»R'"'(i „i.. . .i „)
x lnR '"'(ig,i. ~ . ,i.) (2 6)

n= 1,2, . . . ,~.
The density matrices 8'"'s are all diagonal for
the Ising model, and the diagonal elements of
R"'(1) are given to be

II. %KISS APPROXIMATION

The energy per lattice site is given, by

E/N= —.
' zJx„ (2.1)

r, =zJ/k.

For fcc (z =12), T, (Weiss) =12J'/k.

III. PAIR APPROXIMATION

(2.9)

-8/kÃ =gi(1), (2.3)

where g, (1) is the one-body cumulant part of the
entropy. The general cumulant parts, g's are re-
lated to G's by

(2.4)

where G„ is expressed in terms of the reduced
density matrix Z'"' as

where x, =(p, p,,) is the pair-correlation function,
p, is the spin variable, s is the coordination num

ber of the lattice, and N is the total number of
lattice points. In the gneiss ayproximation all cor-
rections are absent, and so the pair-correlation
function, x„ is approximated as the product of
the long-range order, x, =(p,). Hence,

(2*2)

The entropy per lattice point in this approximation
is given by

The entropy per lattice point in this approxi-
mation. is given by

-8/kN =g, (1)+ & zg, (1,2), (3.1)

where the coefficient of g, represents the number
of neax'est-neighbor pairs yer lattice point. Using
(2.1) and (2.4) with (3.1), the following expression
for the free energy is obtained:

Nk T 20T
x +~zG ]., 2 —z-1 G~ 1 . 3 2

The diagonal elements of the one-spin density
matrix R'" are given by (2.6). The four diagonal
elements of the two-spin density matrix R'2'(1, 2}
are calculated as

R = ~ (1+2x, +x 2),
R 2=~ (1—2x~+x2), (3.3)

R„=-,'(1 x,),
with multiplicities 1, 1, and 2, respectively. G's
are related to density matrices through (2.5). The
minimization of the free energy leads to the fol-
lowing relations for thermal averages x, and x,:



APPLICATION OF THE CLUSTER VARIATION METHOD TO. . . 8965

x, : 0=3 ln[{l+2x,+x,)/(1 2x, +x,)]
—~z (z —1) ln[(1+x,)/(1- x,)],

zJ,
1

(1+2x,+x,)(1 2x, +x,)

(3.4a)

(S.4b)

At a temperature slightly'below the critical tem-
perature T„x,has a very small n.onzero value.
Therefore, Eq. (3.4a) reduces to

x, = 1/(z - 1) at T= T

Consequently, Eq. (3.4b) gives

zJ 1 1+x2
2kT

= —In
1

' =- ln
C

1+ 3xl+ 3x2+ x3 1 + xl x2x1. 0= 3 ln
1 —3x1+ 3x2 —x3 1 —x1 —x2 + x3

I

1+2xl+x2 13 1+xi
1 —2x +x 2 1-x(, .) (,)

BJ (I.+ Sx~+ 3x3+x3)(1—x~ —x3+x3)x, : =3ln
k T (1—Sx, + 3x, —x,)(1+x, —x,- x,)

1+ 3x1+»2+x3 1-x1-".+x3
1 —3x, + 3x —x 1+x —x —x

with multiplicities 1, 1, 3, and 3, respectively.
Here x, = ( p, p3g3) is the triplet correlation. Using
(2.5), the following minimization conditions are
obtained:

So, the critical temperature T, in the yair approxi-
mation is given by

T, = 2/[z ln(z/(z 2)}] (in units of zJ/k) .
For fcc, z = 12. Hen. ce

From these equations one finds, by neglecting
squares and higher prowers of x, and x„

(1+Sx,}'(1—x,)
(1+x,)' (4.6)

T,(pair) = 0.91414 T, (Weiss}.

IV. TRIANGLE APPROXIMATION

(3.5) where x, are the solutions of

26x', —9x, + 1=0 . (4.7)

S/kN= g, + Bg,-+ Bg, (4.1)

where the numerical coefficients of g, and g, rep-
resent the numbers of nearest- neighbor pairs and
equilateral triangles, per lattice point, respective-
ly. Using (2.1} and (2.4) with (4.1) the following
expression for the free energy is obtained:

F/NkT=- (6j/kT)x3+13G, —18G,+ BG, . (4.2)

The elements of the one- spin density matrix R"'

and the two- spin density matrix R"' are the same
as given before by (2.6) and (3.3). The eight non-
zero elements of the three- spin density matr ix
R "' are found as

R„=—,
' (1+ 3x, + 3x, +x,),

R33= 3 (1—Sx, + Sx3 —x3), (4.3)
R = —, (1+x, —x.—x,)

1
R34 3(1—x3 x+x)

As is stated in Sec. I the result of this section
is not new. However, the cluster- variation method
as reformulated by Morita' and used in this paper
is entirely different from the one originally in-
troduced by Kikuchi' and Kurata, Kikuchi, and
Watari4; we shall present the full account of the
triangle approximation. In this formulation all
terms of the cumulant entropy are immediately
determined at the moment when the structure of
the largest (basic) cluster is decided. In the
triangle approximation these are: the equilateral
triangle (g,), nearest-neighbor pair (g,), and
the single-site cluster (g,).

The entropy per lattice yo int is given by

Since (4.7} does not have a real root, (4.6) does
not yield a real critical temperature. If one goes
ahead and evaluates x, and T, as complex numbers,
one finds

x, = {0.173 08, 0.092 23),

T, = (0.841 70, -0.05914) .
(4.8)

A critical temperature as a complex numbe r is un-
phys ical. If one looks at the real part of it, how'-

ever, it is a substantial improvement over its
value in the pair approximation (3.5}.

S/kN =g, + 6g, + Bg-, + 2g, , (5.1)

where the coefficients of g„g„and g4 represent
the numbers of nearest- neighbor pairs, equilateral
triangles, and regular tetrahedra per lattice point,
respectively. Qne may note the fact that the en-
tropy (5.1) has an additional term which is con-
tributed by the tetrahedron when compared with
the entropy (4.1) in the triangle approximation. In
Kikuchi's formulation each time an additional

V. TETRAHEDRON APPROXIMATION

This approximation is also discussed by Kurata,
Kikuchi, and Watari, however, the full account of
the new formulation is presented in thi. s section in
order to demonstrate its simplicity.

In this approxim ation, the four- spin mother
cluster is chosen to be the smallest tetrahedron.
Thus each diagram which is a part of the nearest-
neighbor tetrahedron will contribute to the entropy
term. Consequently, the entropy per lattice point
is given by



and x4=(pgpgpgpg ~ (5.4)

x, is the triangle correlation and x, is the tetrahe-
dron correlation, respectively. Using (2.5), the
following minimization conditions for I' are ob-
tai.ned:

0 1 «n, 41 +ln 43 31n 21

+ 2 Ln

41 42 3 In 21 22

kT 8' R'
23

x, : 0= in(R„/R~) —ln(R„/R„),

x4: 0= '8 ln[R4, R~R~, /(R~R4~) ] .

(5.5b}

(5.5c)

(5.5d)

At a t;emperature slightly below the critical tem-
perature T„x, and x, are nonzero and very small.
Therefore, from Eqs. (5.5a) and (5.5c) one finds
that x, = 5 or 3. It will be shown in Sec. VIII that
the reduced susceptibility in the present approxima-
tion has the closed-form expression,

)|= (1+3x,)(1+x,)/(1 —3x,)(1-5x,) . (5.6)

At infinite temperature all correlations vanish,
and hence x, = 0 and y has its high-temperature
value of unity. As the temperature decreases, the
correlations increase, the value 5 of x, will be at-
tained at some finite temperature. Below this
temperature (5.6) is not valid. Therefore the
value 3 for x, must be rejected in favor of x, = 5.
Substituting the value of x„(5.5d) reduces to the
cubic equation

cluster is included the statistical ensemble con-
sideration must be repeated. There is no such
complication in, the present formulation. Using
(2.1) and (2.4) together with (5.1) the following
expression for the free energy is obtained:

Z/~or = -(ar/or}x, + 2G, —6G, + 5G„(5.2)

6, and 62 are the same as in the pair and-triangle
approximations. The 16 elements of the four-spin
density matrix R "are calculated as

R~~= —' (1+4x,+ 6x2+4x, +x~),

R~= —' (1 —4x, + 6x2- 4m~+x, ),
16

R„=—' (1+2x, —2x, x,), (5.3}

R~= —' (1—2x, +2x, -x,),
16

R„=—' (1—2x, +x,)',

with multiplicities 1, 1, 4, 4, and 6, respectively.
Here

which has only one positive root between 0 and 1,
namely, x4= 0.07992. Using the values of x, and

x, in Eq. (5.5b), 7', is calculated as

T,(four-spin) = 0.835 45T, (Weiss) . (5.7)

+ 12g,(3, 5, 6, 7)+ 6g, (1,2, 3, 5, 7)

+ g,(1,2, 3, 5, 6, 7), (6.1)

where the numerical coefficients of g2's through g6
represent the numbers of nearest-neighbor pairs,
equilateral triangles, isosceles triangles, regular
tetrahedra, squares, tetrahedra of the type 3567,
pyramids, and octahedra per lattice point, re-
spectively. One may again note the, fact that six
terms, which are contributions of the octahedron
and its subelusters, are added to the entropy of
the tetrahedron approximation, yet no change
of the numerical coefficients of tetrahedron, terms
is required. Using (2.1) and (2.4) together with

FIQ. ].. Octahedron
pIUS tetx ahedron.

VI. OCTAHEDRON PLUS TETRAHEDRON APPROXIMATION

The next higher-order approximation would,
naturaQy, be the octahedron approximation, how-

ever, one again finds no real critical temperature
as in the triangle approximation. ' This means that
one has to go either to a still Larger cluster or to
a combination of two parent clusters. In the ease
of the triangle approximation one cannot choose
the triangle and pair both as parent cluster because
the pair is a part of tr'i. angle. Since the regular
tetrahedron is not a part of octahedron both
clusters can be chosen as the parent clusters. One

should note the fact, however, that this approxima-
tion is still different from the one in which a single
cluster, which is a combination of the regular tet-
rahedron and octahedron, is used as the parent
cluster. Such an approximation would certainly be
better, that the one which is developed in this sec-
tion. An approximation developed in this section
will be called the octahedron plus tetrahedron ap-
proximation. In this approximation, each diagram
which is a part of tetrahedron or octahedron will
contribute to the entropy. Consequently, the en-
tropy per lattice point is given by (see Fig. 1.)
-S/kN =g, (1)+6g, (1,2)+ 3g, (1,6) + Bg,(1,2, 3)

+12g,(1,2, 7)+2g, (1,2, 3, 4)+ 3g4(2, 3, 5, 7)

625 x43- 75x24+ 515x4- 41 = 0,
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F/Nk T = (6Z—/k T)x2+ G8(1, 2, 3, 5, 6, 7)

+ 2G4(1, 2, 3, 4) —8G3(1, 2, 3)

+ 6G,(1,2) —G, (1) . (6 2)

(6.1), the expression for the free energy is found

to be
( i(j i22i(7) 1 xo ( ii2P3i'i5t 7)

7 ( i 3P5l '6i 7) & 8 (i 2I 3i 5W6i 7)

9 (Pli2l 3i 5l 6i7) 1 io (i li 6)'

(6.6)

Using (2.5), the minimization of F leads to the
following set of ten equilibrium conditions:

Note that G, does not appear in the expression for
entropy. In the general formulation of the cluster
variation method, this situation is expressed in

geometrical terms by saying that any diagram
which is not a common part of two neighboring
parent clusters does not contribute to the entropy. '
In the present case, a pyramid is not shared by
two octahedra. For similar reasons, G,(2, 3, 5, 7),
G,(3, 5, 6, 7), G,(1,2, 7),and G, (1,6) are absent from
the entropy.

The elements of the one-spin density matrix
R"'(1), the two-spin density matrix R"'(1,2), the
three-spin density matrix R"'(1,2, 3), and the
four-spin density matrix are, respectively, given
by (2.6), (3.3), (4.3), and (5.3). The six-spin
density matrix has sixty-four elements (only dia.—

gonal) and these are found as

X2 ~

X3:

0=»n ""+Sin 63" +21n
R R, R R 1 R

+ln " —31n

+31n
R

--ln

2T i6 Ro+68 R66

41 42 3 ln 1 32

21 22

P=-'ln " --' ln +-'ln

(6.7a)

(6.7b)

81
= 8( 12+ 12)

R«=No(Si2-L12) ~

R63 No(S34+ L34) 1 6

R84 No(S34 L34) ~
6

R8, =No(S, 8+ L5$, 12

R66 =No(S, —L,8), 12

R87
=N(1(S 78 + L 78)

R68 No(S78 L7,), 3

R69 =No(1 —3xio+ 3xo —xo), 8

R«=No(1 —45(2+x(9 —x, +4@ —x ), 12

(6.3)

where No is the normalization factor, —', multi-
plicities of these elements are indicated at the end

of each line, and the S's (short-range part) and
L's (long-range part) are given by

X4 ~

—ln 3 —ln + 3 ln

0 = —,
' ln(R„R„)—2 ln(R«R44) + —,

' 1nR„,

(6.7c)

(6.7d)

0= —' ln " ——, ln " + ' ln ", (6.7e)
R R

R66 16 R68

x6 ' 0= —' ln(R„R8,) ——' ln(R«R„)

—,—' ln(R„R«) + —' lnR„+ —,', ln(R8+88)

lnR60 (6.7f)

X7:

X8 ~

Q= ln 1 62 —ln 63 64 6 7g
6 68 60

O= 11n 61 —'ln 63 66 + 3 ln . 67

(6.711)

x, : 0= —' ln(R„R«) ——' ln(R„R«)+ „—', ln(R„R«)
» = 1+ 12x2+ 3X1o+ 3X6+ 12x7 9,

S34 1 + 4X2 + X10 X6 4X7 X9 7

Sse= 1 X1o X6+ X9

78 4x2+ xlo+ 3X6 4X7+ 9

L12 = 6x1+ 8x3+ 12x5+ 6xs

L34 = 4x1 —4X

L56 = 2x1 —4x + 2x

L78 = 2, —8x + 4x, + 2x .
Here newly introduced x's are defined by

(6.4)

(6.5)

+ 3 ln(R R ) ——' lnR89 ——lnR89& (6.7i)

+ —' ln(R„R„)——' lnR„+ —' lnR„. (6.7j)

In the immediate neighborhood of the critical
temperature, the quantities x„x„x„andx, are
very small and may be set equal to zero. Then
(6.7a), (6.7c), (6.7e), and (6.7h) are trivially
satisfied. The solution of (6.7b), (6.7d), (6.7f),
(6.7g), (6.7i), and (6.7j) can be obtained at each
temperature by a computer program calledMWMAX-
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The critical temperature is found by observing
the singularity of the reduced susceptibility:

T,(six-spin) = 0.833 94 T, (Weiss) . (6 8)

e = tanh(Z/k T) . (7.2)

gneiss approximation

At a temperature higher than the critical tem-
perature, the only solution of Eq. (2.8) is x, = 0.
So, Eq. (2.2) leads to x, = 0. Hence in the Weiss
approximation (V.1) reduces to

(kT/Z)2c„(cu) = 0. (7 3)

Pair approximation

Since x, = 0 above the critical temperature, Eq.
of (3.4b) reduces to

UII. HIGH-TEMPERATURE SPECIFIC HEAT

The expression for the high-temperature specific
heat is given by

(kT/8)'c, (w) = z z(1- ur') (7 1)
QK

and x9+xx0=2xe. (7 8)

In accordance with the fact that at infinite tempera-
ture, the thermal averages x»x4, x6, xvyxsyxyp ap-
proach the value zero, the following form of series
expansion is assumed for the x's mentioned above:

x = @~AU (V.9)

Substituting x's in the form (7.9), (Eqs. (6.7b),
(6 Vd), (6.7f), (6 Vg), (6.Vi), and (6.7j) yield

x2 = so+ 4' + 22')3+ 136go~ + 88(he + 5908so6+ ~ « ~,

x4= 3m2+ 16&@3+108so4+ 744~ + 518~ +

x, =x, = 2' + 16sv'+ 108so + 736 + 5144+ + ~ ~ ~ 2

(V.10)
x9 = as+ 72&@4+528&v'+ 3858ce6+ ~ ~ ~

&

xj0 4' + 24&@3+ 144se4 + 944ms + 6432ses+ ~ ~ ~
~

Octahedron plus tetrahedron approximation

For T& T„Eqs. (6.7a), (6.7c), (6.Ve), and

(6.Vh) are satisfied identically as x, =x, =x, =x, = 0.
Equations (6.Vf), (6.Vg), (6.Vi), and (6.Vj) can be
manipulated to yield

or

(Z/k T) = z ln(1+ x,}/(1-x,) = tanh 'x, Using the series for x, in (7.1}, the high-tempera-
ture specific heat is found to be

x, = tanh(J'/kT) = m.

Therefore, Eq. (V.1) ,gives

(kT/Z)'c„(tu) = z z(1 —cv') .
For fcc (z = 12),

(kT/J)'c„= 6- 6~'.

(7 4)
(V.11)

+ 26 844m4+ 229 584ce'+ 2 OQ6 '736m'

+ 17809 008' + ~ ~ ~ . (V. 12)

(kT/8)'c„= 6+ 48&v+ 390w'

+ 3216ms+ 260 04to4+

The exact power series result gives'

(k T/JPc, = 6+ 48m+ 390w'+ 3216tv~

Tetrahedron approximation

Eqs. of (5.5a) and (5.5c} are satisfied identically
as x, = 0 and x, = 0 for T & T,. Noting the fact that
as T goes to infinity, x, and x~ tend to zero, one
writes

where b's and d's are to be determined. Sub-
stituting the above expansions in Eqs. (5.5b) and
(5.5d), the expressions for x, and x4 are obtained
as

Thus the six-spin approximation reproduces the
first four of the eight known terms exactly.

VIII. HIGH-TEMPERATURE SUSCEPTIBII ITY

In the presence of a small external magnetic
field H, the equilibrium condition corresponding
to x~ is modified so that its left hand side is re-
placed by mH/kT. This results in nonzero values
for the expectation values of some x's (which other-
wise should have been zero) even at temperatures
higher than the critical temperature. The reduced
susceptibility per spin" is given by

x~ = m+ 4tH+ 20se3+ 116m~+ ~ ~ ~

x4= 380 + 16Nj + 87$U + ~ a ~ . (7.6)
Weiss approximation

(8.1)

This leads to the following expression for specific
heat:

Equation (2.8) when modified, results in the fol-
lowing exprepsion for the susceptibility:

(kT/J)'c = 6+ 48m+ 354m'+ ~ ~ ~ . (7.7} g=1/(1 zg/kT) = 1+12co+ 144m&'+ ~ ~ ~ . (8.2)
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Pair approximation

The susceptibility is given by

X = (1+x,)/[1 —(z —1}x,]
= 1+zx2+ z (z —1)x22+ z(z —1)'x,' y ~ ~ ~ .

x=1 —u Pa„u", a w0,
0

where a's and a„'s are to be determined.

Weiss approximation

(9.3)

Using (7.4) and z = 12, this reduces to

y = 1+ 12w+ 132w + 1452w + ~ ~ ~ . (8.3)

Substituting expression (9.3) for x, in Eq. (2.8)
and comparing the coefficients of lnu on both sides,
one finds

Tetrahedron approximation a=gz (9.4)
Modified equations (5.5a) and (5.5c) are expanded

up to first powers in x, and x,. The resulting linear
equations are solved to give

mH (1+3x,)(1+x,}
k T (1 —3x,)(1 —5x2)

x, = 1 —2u' + 2u'+ ~ ~ ~,

which on using (2.2) and (9.1) yields

(9.5)

A further comparison of coefficients of different
powers of u in Eq. (2.8) leads to

which by using (8.1) results in (5.6). Substituting
from (7.6) for x„one obtains

g= 1+ 12w+ 132w'+ 1404w'+ 14 676w + ~ ~ ~ . (8 4)

(kT/J)'c, (u) =4z'u'~' 16z'u'+ ~ ~ ~ .
For fcc (z = 12),

(k T/J )'c,= 576u —2304u' + ~ ~ ~ . (9.6)

Octahedron plus tetrahedron approximation

Modified equations (6.7a), (6.7c), (6.7e), and
(6.7h) in the linear-response region to find an ex
pression for x„ in terms of H. Then using (8.1)
and (7.10), the following expression for suscepti-
bility is obtained:

y = 1+ 12w+ 132w'+ 1404w + 14 652w

+ 151116w'+ 1546668w + ~ ~ ~ .

The exact power series result" gives

y = 1+ 12w+ 132w'+ 1404w'+ 14 652w'

(8.5)

+ 151116w'+ 1 546 332w + 15 734 460w

+ 159425 580w'+ 160998770w + 16215457188w"

+ 162 961 837 500w" + 1 634 743 178420w"

+ 16 373 484 437 340w" + ~ ~ ~ . (8.6)

IX. LOW-TEMPERATURE SPECIFIC HEAT

The low-temperature specific heat is given by

Thus the six- spin approximation reproduces the
first six coefficients exactly and the seventh one
within 0.02/0.

Pair approximation

The following u expansion for 1 —x„1—x„and
1 —2x, +x, are assumed in Eqs. (3.4):

,x= 2uig „a"u, a, gp,
0

1 —x, =4u 2 Q b„u", b, wp,
0

2x, +x, =4u-. g c„u,, wp.
0

(9.7)

A comparison of the coefficients of lnu in Eq. (3.4)
leads to

0- -3a3+ —aj, —1=a, —2a (9.8)

o.', ~ min(a„a, }, (9 9)

with equality holding only when a, = a, . Equations
(9.8) and (9.9) have a unique solution:

The set (9.8) by itself is undetermined for find-
ing a unique solution. Another physical restriction
is imposed by thefactthat 4 (1 —2x, +x,) is the prob-
ability of some configuration and the leading term
in its u expansion governs its sign. Mathematically
it means

k T 2 d(1 —x2)
c~ = 2zu (9.1) a, =6, a, =6, a3=11. (9.10)

where

u = exp( 4J'/k T) . - (9.2)

Feeding back information (9.10) in Eq. (3.4), a
further comparison of the coefficients of higher
powers of u yields

At zero temperature, the thermal averages of all
the correlations are unity. Consequently all
the x's in the equilibrium conditions are replaced
by expansions of the form

x, = 1 —2u (1+ 12u~ —13u + 198u'0+ ~ ~ ~ ),
(9.11)

x, = 1 —4u (1+ 1lu' —13u' y 176u'0+ ~ ~ ~ ) .
The expression for the low-temperature specific
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heat is given by

(k T/J)'c, (u) = 576u'+ 1l 616u"

]4 97@g~2+ 270 336g~6+ ~ ~ ~ (9.12)

(5.5), the following series for the low-temperature
specific heat is obtained:

(kT/J)2c = 576us+ 11616u" 14976u' +28 800u'

Tetrahedron approximation

Following the same procedure as in the pair ap-
proximation, an underdetermined set of equations
similar to (9.7) is obtained. This set can be uni-
quely solved, if the results (9.10) are assumed to
be known. Feeding back this information in Eq.

+ 172 032u'6- 554 880u'7+ 374 976u~s

+ 138624u'9+ 768 000u'0+ ~ ~ ~ . (9.13)

Octahedron plus tetrahedron approximation

In this approximation, the series for specific
heat reads

(kT/Z) c„(u)=576u + 11616u"—14976u' + 28800u '+172032u' —554880u' +374976u'8+138624ui9

+ 78720Pg20+ 889 056gP~ f2 568 5]2g22y 20 465 952gg23 4 564 224@ + 8 220000m ~

29235 648gpe '180931 968u' y 633 948 672u -558 773 856@2'+ 125 758 080uM+ ~ ~ ~ . (9.14)

This series reproduces all the terms given by
Baker' and agrees perfectly well with the latest
results. " The details of the calculations in the
last two apprximations have been omitted for their
length; they are nontrivial and require some
manipulational skill.

X. CONCLUSIONS

The spin-& fcc Ising ferromagnet treated in the
present investigation brings out the following re-
markable features.

(a) The transition temperature is predicted to
within a few percent of' the exact value:

T,(four- body) = 0.83 545,

T,(six-body) = 0.83 394,

T,(exact) = 0.81627'"',
where

T,(Weiss) = 1.000 00.

(b) All the known exact coefficients of the power
series for the low-temperature specific heat are
reproduced.

(c) The high-temperature specific heat expan-
sion reproduces four out of the eight known exact
coefficients.

(d) The high-temperature susceptibility expansion
reproduces six out of the 14 known coefficients ex-
actly and the seventh to within about 0.02%.

(e) The extent of mathematical analysis and the
amount of numerical computation are much less
than those involved in the diagram methods.

(f) In the process of obtaining low-temperature
specific heat, series for the expectation values of

correlations were also obtained. In spite of the
fact that these series are not available in the cur-
rent literature, except the equilateral triangle cor-
relation, "they are listed in Table I. Agreement
with the available result for the triplet correlation
is again excellent.

(g) It is confirmed in this formulation that all the
odd order parameters have the same critical-point
exponent, the fact used in determining the critical
temperature. This assertion seems to be sup-
ported by the diagram method of power series for
the triplet order parameters. "

Seemingly our results are not as good for the
high-temperature expansions as for the low-tem-
perature expansions. This may be interpreted
as follows: The minimum conditions for the free
energy with respect to the long-range order param-
eters are trivially satisfied at temperatures higher
than the critical temperature. This means that
the number of self-consistency conditions is re-
duced, i.e. , the number of paths through which ef-
fects of feedback are transmitted is reduced. While
on the low-temperature side 'of the critical tem-
perature, the long-range order parameters are
determined consistently in conjunction with the
short-range order parameters and hence the free
energy is minimized under more-stringent con-
ditions.

The cluster variation formulation was designed
originally for the. purpose of obtaining various cor-
relation functions as solutions of coupled non-
linear equations, however, as has been demon-
strated in this investigation the method may be
used as a means of producing rigorous power series
expansions for the correlation functions without
ever enumerating the numbers of ways to fit vari-
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TABLE I. Coefficients of power series for correlation functions. (123)= (p fp2p'3),
(see Fig. 1).

etc.

C orrelation
function u' u" u" u"

(1&

(16&
(123&

( 1234&
(235V&
(35ev&
(235ev&
( 12356V &

(1&

&1e&
&123&

( 1234 &

(235V)
& 356 V&

&2356V&
(1235ev)

(12&

& 123&

(235V&
(35ev&
(2356v&
(1235ev&

(12&

& 123&
(124&
( 1234)
(235V&
(35ev&
(2356 V&

(1235ev&

u"
—252
—448
-488
—588
—636
—672
—784
—728
-828
-888

u"
-1008
—1 764
—1664
—2 068
—2 296
—1 720
—2 832
—2 276
—2 288
—1 904

26

26 694
46 852
57484
65 010
70 274
86 856
85 144
86 048

103 838
123 876

—8
—10
—12

720
1360
1 504
1920
2 064
2400
2688
2 544
3088
3 312

22

12 924
23 804
26 312
32 496
35300
39048
45088
42 020
49 788
55 752

27

153536
279 216
302 048
369 136
404 368
418 528
511424
464 624
536 416
579232

—24
~4
—48
—60
—64
—72
—80
—76
—88
—96

18

—438
—868
—964

—1 298
-1386
—1 720
—1 896
—1 816
—2 334
—2 860

u23

—19536
—37 076
-41648
—52 932
-57 256
-67 224
—'75 568
—71428
—88 240

—103488

u28

-507 948
—943 376

—1 057 024
—1308 588
-1425 780
—1609 440
—1 847 296
—1 726 960
—2 086 524
—2 387 904

26
52
56
78
82

104
112
108
138
168

u"
—192
—304
—368
—384
—416
—480
—48Q
-464
—512
—528

u24

3 062'

7 924
8 660

13818
14 786
19 528
22 520
21480
29 822
38 956

u29

406 056
802 836
908 432

1 185 348
1 286 640
1 541 112
1 746 736
1 649 564
2 090 952
2 511840

—48
—80
—96

-104
—112
-128
—128
—128
—144
—160

20

—984
—1 640
—1 896
—2 088
-2 264
—2 448
—2 624
—2 544
—2 856
—3 144

—8 280
—13 700
—15 072
—16 500
-18 112
—16 632
—20 240
—19 108
—20 472
—22 224

u30

—78 972
—174 664
—184 296
—268 050
—291 684
—318 704
—413 872
—387488
—515 116
—669 456

ous diagrams into the lattice. For this reason, the
cluster variation method may be regarded as
another way of finding rigorous critical behaviors
of the Ising ferromagnet when combined with the
Pads approximant method.

It is generally observed that the larger the clus-
ter, the better the approximation is. For ex-
ample, for fcc, the tetrahedron approximation

improves upon the results of the pair approxima-
tion, and the octahedron plus tetrahedron as
mother clusters improve upon the results of the
tetrahedron approximation. However, the mother
cluster cannot be arbitrarily chosen. This can
be illustrated by selecting a three-spin nearest-
neighbor linear chain as mother cluster (not de-
scribed in the text). Not only is the same value
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for critical temperature obtained, but the high-
temperature expansions for specific heat and
susceptibility are also exactly the same as those
in the pair approximation. Clearly a large linear
cluster does not necessarily give a better result.

It seems that the mother cluster should be spat-
ially compact. A better critical temperature is ob-
tained in the tetrahedron rather than in the square
approximation though both of them involve four-
spin mother clusters. The critical temperature
seems to be inherited from some smaller clusters.
For example, the octahedron approximation appa-
rently does not yield a critical temperature, but
the octahedron plus tetrahedron approximation im-
proves upon the critical temperature of the tetra-
hedron approximation. A further conclusion is
that the mother cluster should preferably reflect
the dimensionality of the lattice. For example, the
equilateral triangle approximation loses the crit-
ical temperature, which is regained in the tetrahe-
dron approximation. In summary the present in-
vestigation indicates that the mother cluster should
be (i) large, (ii) spatially compact, and (iii) re-
flecting the dimensionality of the lattice. These
criteria agree more or less with those proposed by
previous authors4" except for minor details.

Finally, the critical. exponents predicted by the
cluster variation methods should be classical if
worked out only with the closed form expressions

for the correlation functions. However, when the
cluster variation method is used as a means of
creating power series for various correlation func-
tions in conjunction with the Padb approximant
method, the critical exponents of nonclassical na-
ture can be predicted.

For further work on these lines, for the fcc
lattice, an approximation in which the seven-spin
capped octahedron (1234567), which contains the
tetrahedron and octahedron as subclusters, is
suggested.

An important and useful direction for further
study will be to include the next-nearest-neighbor
interaction and try to reproduce the phase diagram
for magnetic systems. The lattice gas model can
be studied in a better approximation. Most of the
studies for these systems have so far been re-
stricted to the Weiss approximation.
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