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q-dependent magnetic susceptibility of a disordered linear chain*
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The q-dependent magnetic susceptibility for disordered Ising and classical Heisenberg chains is calculated.

The coupling between spins is of the form J(n) = Joe '~" ", P &0, with n the random number of
interatomic units between neighboring- spins. The cases where J is ferromagnetic or antiferromagnetic or of
spin-glass type are examined.

I. INTRODUCTION

In studying magnetic properties of physical sys-
tems the Heisenberg and Ising spin Hamiltonians
have been widely used. Exact results are scarce
in two or three dimensions. ' In one dimension,
however, the possibility of obtaining analytic solu-
tions is greater, since the mathematics involved
are less, complicated than in the two- or three-di-
mensional cases. Interest in the one-dimensional
systems is further enhanced by the existence of
some real crystals' where the dominant spin inter-
actions occur between atoms arranged in linear
chains.

Much of the theoretical study based on the Heisen-
berg model has been devoted to the periodic case.'
Recently the disordered case received considerable
attention, and the static magnetic properties of the
disordered classical Heisenberg linear chain have
been examined. ' ' The classical Hamiltonian is ex-
pected to yield results close to the quantum ones
for large values of the spin %. In addition, for the
case of a sufficiently disordered system the pres-
ent authors, "' using a specific probability distribu-
tion, have provided strong evidence that the class-
ical Heisenberg Hamiltonian can describe adequate-
ly well the quantum case even for small 5 (S = —,').
Consequently the study of the disordered classical
Heisenberg Hamiltonian is of physical interest,
and its results can be quite instructive.

In previous work" we have demonstrated that
the zero-field magnetic susceptibility of the organ-
ic conductors N- methylphenazinium- tetracyano-
quinodimethanide (NMP- TCNQ), quinolinium(TCNQ),
and acridinium(TCNQ), can be adequately
well described by the classical antiferromag-
netic S = —,

' disordered Heisenberg model provided
that the probability distribution of the coupling
constant J is of the form P(J) ~ I/J' ', that is,
it is singular at the origin for c& 1. The singular-
ity in the probability distribution of the coupling
constant has profound effects on the thermodynamic
properties of the above materials. Examination of
the response, X„of the classical disordered Hei-

senberg model, to a field of the form H(r)
=Hcos(g r), for the case where P(J)~l/J' ',
will thus be of physical importance, since it will
provide information on the outcome of neutron-
scattering experiments performed on NMP- TCNQ,
quinolinium(TCNQ)„or acridinium(TCNQ), . Ac-
cordingly, the study of the q-dependent susceptibil-
ity of the disordered classical Heisenberg linear
chain will be the subject of this paper. We also
provide results for the Ising model using the same
probability distribution.

Thorpe' has studied X(q) for a random classical
Heisenberg model considering the following two
cases: (a) Spins along a topologically-linear poly-
mer chain, that is, all sites are magnetic with the
same coupling for all nearest neighbors but the ad-
jacent monomers form random angles; (b) Spins
located on every site of a periodic chain contain-
ing two kinds of atom A and B, the exchange inter-
actions being J~„,J~ =J~„,J~~. He also examined
the spec'ial case where one of the two kinds of

atoms is nonmagnetic, but assumed that there is
a nonzero coupling between spins, only when they
occupy nearest-neighbor sites. The physical sys-
tems considered by Thorpe are not the proper ones
to describe the q-dependent susceptibilities of the
materials we are interested in since they lead to a
q =0 susceptibility which at low temperatures is
either constant or behaves like I/T, whereas the
experimentally observed q= 0 susceptibilities
of NMP- TCNQ, quinolinium(TCNQ)„or acri-
dinium(TCNQ), behave like' I/T" with a & 1. In what
follows we introduce disorder in a way that produces
the singular probability distribution of the coupling
constant required to obtain the experimental low-
temperature behavior y(q =0) ~1/T .

We consider a system of localized spins ran-
domly placed on a one-dimensional array of atoms
or molecules. We assume that we have interactions
only between spins separated by an arbitrary num-
ber of intermediate sites of zero magnetic moment.
These spins are called nearest-neighbor spins and
the distance between them is a random variable.
Denoting p to be the probability that a site will
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have one spin localized on it, we find that the prob-
ability of having a distance of n interatomic units
between two nearest-neighbor spins is given by

0 n„

Ot 0 Ot

P(n) =p(1-p)™
The interaction between the localized spins was
analyzed in detail in Ref. 10 and has the form

J(n) J8-B—(n-1 ) P )0 (1.2)

The above outlined process produces a Hamilton-
ian"

(1.3}

with J, a random variable. The probability dis-
tribution" of J for J«J, has the behavior P(J)'
~ I/t' ', where c = jln(1-P)

~
/P. We note that the

subscript i in Eq. (1.3) represents the ith localized
spin and not the ith site of the one-dimensional lat-
tice.

The structure of the paper is as follows: In Sec.
II we develop the formalism for the solution of the
problem for both the Ising and the classical Heisen-
berg chains. Section III contains the calculation of
X(q) at T =0 for the cases where the interaction
is ferromagnetic or antiferromagnetic or of spin-
glass type. The calculation of X(q) at finite tem-
peratures is presented in Sec. IV. Finally, Sec. V
is devoted to discussion of the results.

FIG. 1. Chain consisting of N+1 localized spins. The
empty circles denote sites of zero magnetic moment.

'The magnetic moment of site i is

.Tr($;e &"}
Mi =gp~ g~Tre (2 4)

We define the magnetic susceptibility X,&
by the

following formula

BM,. g p,2~

BH kTj 0
(2.5)

Mq =+X(~H~ (2.6)

Using the magnetic field given by Eq. (2.3), Eq.
(2.6} becomes

M. =H X. e'"L&=—~M, e«'~Li
i q ij qs

q
(2.7)

Fourier inversion of Eq. (2.7) leads to

where the subscript zero denotes that the quantity
is calculated for zero magnetic field. Eq. (2.5}
also indicates that X,z =X~;. For small magnetic
field we can write

II. FORMALISM

x= z,E, , 5, gu,gt((s;-
=1 s=1

(2.1)

and for the Ising case by

1
&=4 JPi-l~i —2&t"a

ml

(2.2)

with H, the magnetic field at the position of the ith
spin and o' the Pauli matrix. We consider the case
where H, has the form

H -H e'qa
q (2.3}

where L, is the distance of the ith spin from the origin
of the chain, L, =2,.,n, . Here q is in the first Bril-
louin zone of the chain of molecules, -n /a ~ q ~v/s.

The system of interest described in the intro-
duction is shown in Fig. 1. The chain consists
of N+1 localized spins. We start measuring the
spins from zero, the zeroth spin being placed at the
origin of the chain. The distance between the
i —1 and ith spins is denoted by n, . The average
distance between neighboring spins is a/P, with
a the interatomic distance. Thus the average length
of the chain we are considering is Na/p. The Ham-
iltonian of the system in the presence of a magnetic
field is given for the Heisenberg case by

e-ia'~LiX eiqaL&' N+1

Consequently the magnetic susceptibility per site
is given by

Xs
8M P e-iq'aLiX e i qaLy
8H N+1

q sf
(2.8)

in q space.
From Eq. (2.8) it is evident that the susceptibility

has off-diagonal as well as diagonal matrix ele-
ments. We further note that Eq. (2.8) gives the
zero-field susceptibility for a specific configura-
tion of the N+1 spins. In nature, however, an
isolated chain does not exist. What we have in-
stead is collection of parallel chains weakly inter-
acting among themselves. Thus to give our for-
malism physical meaning we have to study the con-
figuration average ((X;,)). In what follows, (( ))
will denote configuration average while ( ) will
represent thermal average.

From Eq. (2.8) we see that knowledge of the
quantity X,&

is essential in finding the susceptibility
((X...)). Our inability to calculate X,&

for the case
of the quantum Heisenberg model forces us to
treat the Ising and the classical Heisenberg chains.
In both the latter cases X„can be calculated ex-
actly and is given by
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max(3, j)
g'&'s(g+g) 11 tr(„') ror isj,

)(;y —
3kT gamin(i, g) 1

1 for t=g.
(2.9)

((exp[-iqa(L,.—L))]»=A~ ',

(b) i=j. In that case

((exp[iqa(L, —I,)]))= 1;

(c) i)j.

(3.5}

(3.6)

For the classical Heisenberg chain'

cobol (2.10)

((exp[-iqa(L, —Lz)]» = «exp[iqa(L, —L&)]~&&

(Ag)& l (3.7)

and 5 =S(S+1), while for the Ising chain we have"

U(j/kT) =tanh(- j/AT)

and S = —,'.
(2.11)

III. T~O'K CASE

Our aim is to calculat:e the quantity

= lim ((e-l(a'atPaaLg) &), g'p'S(S +1) X+I
(3.1)

In both the Ising and the classical Heisenberg mod-
els we have that lim r,.„U(j/kT) = sgn(- j). Using
this fact and also Eq. (2.9}, Eq. (3.1) becomes

lim, ,S S 1) ((X...(T))&
3kT

z -0 g'p. ~S S+1

Denoting A, sgn(-J') as B, and making use of Eqs.
(3.4), (3.6), and (3.7), in the thermodynamic limit,
N-~, Eq. (3.2} becomes

r opg~p2sS(S+I) ' 1+ )B [2- (B,+Bf) '

(3.8)

l. Antr ferromagnetic chain

Antiferromagnetic coupling leads to sgn(- j}=-1
and Eq. (3.8) becomes

lim, ,S S 1 ((X,(T)))
3kT

r-0 Pg'u', S S+1

(1 —p)[1 —cos(qa)] (3.9)(1-p) [1—cos(qa)]+ p[2p —1+cos(qa)]

The maximum occurs at qa =m and the minimum at
q =0, the values being 1/(1 —p) and zero, respec-
tively. For P«1 and qc0 we have

[sgn( j)]l j-Jl«e-$(e aLg eaLy)» (3 2)N+1
m, , ((X (T)» = =1+Pr-0 Pg'p', S S+1 (3.10)

for the ferromagnetic or antiferromagnetic cases.
The spin glass will be analyzed later.

A. Diagonal matrix elements

In order to calculate the average ((exp[-iqa(L,
—Lz)]» for q' = q, we distinguish the following
cases: (a) i(j. In that case

r
l~ +l

In Fig. 2 the quantity limr, [3kT/Pg'p2sS(S+ 1)]
x ((X,(T))) is plotted versus qa, for different values
of P. The striking feature is that the maximum
occurs always at q =w/a. Consider a periodic anti-
ferromagnetic spin chain where the distance be-
tween the spins is equal to the average spin dis-
tance a/p of the random chain. In this chain the
maximum will occur at q p(v/a}, which is differ-
ent from our result for the ensemble averaged
random chain. For P =1 we recapture the periodic
result, that is

and

((exp[-iqa(L; —L&)]»= Q ((exp(iqan, )))
i=41

= ((exp(iqan)»~ '. (3.3)

«(T)»=r-0 g'p', S(S+1) +~ for q =mr'a.

2. Ferromagnetic chain

(3.11)

The average in Eq. (3.3}can be evaluated with the
use of Eq. (1.1) and is equal to

((e'""» p p (1-p)" 'e "~= «, ——A„1 —(1-p)e'"
(3.12)

In this case sgn( —j)=1 and Eq. (3.8) becomes

r-0 Pg V,S 8+I +~ for q =0.

so that

(3.4) As in the antiferromagnetic case, for P =1 we ob-
tain the periodic result:
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where C,* is the complex conjugate of C, . Inserting
into Eq. (3.14) the value of C, as given by Eq.
(3.13), we obtain

lim [3kT/P g'i 'sS(S+1)]«X,(T}))=1 —P. (3.15)
T~O

For qW 0 we note that the result in the spin-glass
case is the same as that in ferromagnetic case.
At q =0, however, the spin-glass model produces
a nonsingular X,(T} in contrast with the ferromag-
netic case.

From our examination of the ferromagnetic, the
antiferromagnetic and the spin-glass-like chains
we see that in all cases limr-, T((X,(T)))= con-
stant for qo 0. Thus the behavior of ((X,(T))) at
low temperatures and for qc 0 is given by

«X,(T))) 1/T (3.16)

B. Off-diagonal matrix elements

0
~

I l

2.0 7T 4.0 6.0
2r

FIG. 2. Quantity limz 0 (3kT/g'i st pS(S+1)}((X (T))}
is plotted vs qa for an antiferromagnetic chain and for
P = 0, 0.1, 0.4, 0.6, and 0.8.

1
3kT

((X (T)))
0 for qv0,

r-o g' ii2eS( S+1 } +~ for q =0.

3. Spin-glass-like ease

Besides an antiferromagnetic or ferromagnetic
interaction among the spins, a combination of these
two former cases can exist. We assume the inter-
action to be ferromagnetic if the number n, of inter-
atomic units between the spins is even and anti-
ferromagnetic for n, odd. In this system
limr-, U(Z, /kT) =(-1)"~. The configuration aver-
age we need to calculate in order to find the dia-
gonal matrix elements of ((X...)) is given by

1. Ferro and antiferromagnetie eases

In order to evaluate the off-diagonal matrix ele-
ments of &(y...(T))) we need to know the configura-
tion average ((exp[-i(q'aL, —qaL&)])). We distin-
guish the following cases:

Case ~: i =j. In this particular case

«exp[-i(q' —q)aL, ]))= «exp[-i(q' - q)an]))'

Since

((exp[-i(q' —q)an])) =p (1 —p) 'exp[-i(q' —q)an]
n

P exp[-i(q' —q)a]
1 —(1-p)exp[-i(q' —q)a] '

we finally obtain

«e p[- (q'-q) L,]))= 1 —(1 —p}exp[-i(q' —q}a]

(3.1V)

((( 1)nelq'")) ~P (1 P}nl( eiqa)n
n

pg &aa

=-C .1+(l.—p)eqq'
=

q (3.13)

Case 2: i&j.
((exp[-i(q'L, —qL, )a]))

From this point on the calculations are similar to
that of the antiferromagnetic or ferromagnetic
cases and the result is the following:

lim [3kT/p g' p2eS(S+ 1)]((X,(T)))

= ((exp[-i(q' —q)aL&] exp[-iq'a(L, —Lz)]))

P exp[-i(q'- q)a]= q-u-q)exp[-. (q q)q])

c, I')/[1+
I c.I' - (c.+ c.")] (3 14)

P exp(-iq'a)
1 —(1 —p}exp(-iq'a) (3.18)
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p exp(-iqa)
], —(1 —p)exp(-iqa)

(3.19)

Case 3: i&j. In this case we have

((exp[- i(q'L, —qL, )a]))

= ((exp[-i(q' —q)aL, ]))((exp[-iqa(L, —Lt)]))

p exp[-i(q' —q) a]
1 —(1 —0)exp [-i(Q

' —9)a] )

that Eqs. (3.22) and (3.23) hold in the thermody-
namic limit. The same is true for the case C, =A,
In conclusion, for antiferromagnetic coupling, re-
lation (3.23) always holds.

(k) Ferromagnetic Case (J& 0). The analysis for
the cases B, =A, and Cy Ay is similar to that of
the antiferromagnetic case. We consider now the
cases B, =1 and Cy 1 which occur for q' =0 and

q=0, respectively. For the case q'=0 and for
small but finite temperatures, we have

Using the notation B,(T) = ((U(J/kT))) (3.24)

A, (q'-q)=pe "' "/[1-(1-p)e '"' "']
B~(q') =P[e ""/[1—(1 —P)e ""]jsgn(-J},
C,(q) =p[e "'/[1 —(1-p)e "'])sgn(- J), (3.20)

and also making use of Eqs. (3.17), (3.18), and
(3.19) we obtain that for qe q' the susceptibility at
T-O'K is given by

SkT' 'S(S+1)((X...(T)))

N+ 1 A~ B~ Aj 1 B~ 1

w ith U given by Eq. (2.10}for the case of the class-
ical Heisenberg model. Using Eq. (1.2) and cal-
culating the average in Eq. (3.24) we obtain that the
behavior of B,(T) at low T is given by

1 —&,kT/J, & ~»(1 —p) ~&p

1 —&,(kT/J }""~" ~ d ~ln(1 —p) ~& p

with 6„5,positive. Thus the limit of [1/(N+1)]
x l, /[B, (T) —1], allowing first N to go to infinity and
then T-O, is zero. Consequently relation (3.23} is
valid.

A similar analysis applies to the q =0 case. Ex-
amining the Ising model shows that the behavior
is the same as that of the classical Heisenberg
chain.

(3.21)

Provided that all denominators in Eq. (3.21) are
different from zero and going to the thermodyna-
mic limit, N-~, we obtain

lim [3kT/g p S(S+1)]((X...(T)))=0.
T~O

Equation (3.21}also implies that

lim (lim ((X...(T))))=0
T ~0 N~

(3.22)

(3.23)

if we allow N-~ first and then take the limit
T-O'K. Therefore, the off-diagonal matrix ele-
ments of the susceptibility are zero.

%e examine now the special cases in which at
least one of the denominators of Eq. (3.21) is zero.
From Eq. (3.20) we see that A, =1 only if q =q'.
This corresponds to diagonal matrix elements and
was examined before. For the off-diagonal matrix
elements (qeq') we always have ~A ~&1 and thus the
denominator A, —1 never becomes zero. In the ex-
amination of the possibility that one of the remain-
ing denominators is zero we distinguish the follow-
ing cases:

(a) Antiferromagnetic Case (J)0); For pe 0, 1,
B, and C, are different from zero and thus B,—1
and C, —1 never become zero. In the case where
A, =B, we note the following: Since ~A, ~

& 1 this
implies ~B, ~&1. For ~B, (&1 it is easy to prove

2. Spin-glass ease

As regards the off-diagonal matrix elements,
following the same procedure as in the ferromag-
netic and antiferromagnetic cases we find that the
relations of (3.20) change to

$(q )

1(q q} p 1 (1 p)e-&(e'-e&a &

e-'q a*"1+(1-p)e""'

e-iqaC()= p""= -'1 (1-p)"-

(3.25)

IV. FINITE TEMPERATURES

A. diagonal matrix elements

For the calculation of X, at finite temperatures
we need to calculate the quantity

D,(T) = ((U[J(n, )/kT]'e "~~)), (4.1)

Otherwise everything remains the same and thus,
in the thermodynamic limit, Eq. (3.23) holds.

In summary, from our analysis of Sec. IIIB we
conclude that in the thermodynamic limit, the off-
diagonal matrix elements of ((X...(T))), with
T-O'K, are zero for the antiferromagnetic, ferro-
magnetic, and spin-glass case.
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FIG. 3. Ferromagnetic classical Heisenberg chain
(3kT/g2)k!&pS(S+1)1((,X, (T))) is plotted vs qa, for
&T/S(S+1)JO=(a) 1.0, (b) 0.5, (c) 0.1, p=0.5 and ][!'=2.0.

FIG. 4. Antiferromagnetic classical Heisenberg chain
[3kT/gt)kgPS(S+1)] ((X,(T))) is Plotted vs qa, for
&T/S(S+1)~0 =(a) 0, (b) 10 2, (c) 10 4, p=0.2 and

P =4.0.

in terms of which we have

[D,(T)]' i for i)j,
((exp[iqa(L, —Li)]X,i» = 1 for i j=SkT

Pg'IisS S+1
[D,(T)]' ' for i(j.

(4.3)

Proceeding in a way similar to the zero-temperature case, we obtain in the thermodynamic limit, N- ~,

[3kT/pg')isS(S+1)](&X, (T)» = [1—ID,(T) I']/&I+ ID,(T) I' —[D.(T}+D.(T}D. (4.3)

D (T) is calculated numerically. ((X &) is shown as a function of qa for different temperatures in Figs. 3 and 4 for
the ferromagnetic and antiferromagnetic classical Heisenberg chains, respectively. Figures 5 and 6 are the
corresponding results for the Ising chain. From Fig. 4 it is apparent that in the antiferromagnetic case at
low temperatures there exist q fluctuations in ((X,)&, while from Fig. V we see that such fluctuations are
absent at high temperatures. In order to understand the origin of these fluctuations we examine the behav-
ior of ((X,(T)» for the limiting Case of T«Za. We focus on the classical antiferromagnetic Heisenberg
chain only, the behavior of the Ising model being similar. U(J) for the classical Heisenberg model is given
by E{I.(3.10). Using the approximation

I/x+ —,'x for 0&x & 1.5,cothx =

1 for xo1 5

U[J(n)/kT], for S=—,', becomes

J{n) I-
—', {JS{S+f)(kT]off"fornon,

kT
[kT/JaS(S+1}]e ~"—1 for n~n,

where n{) is defined by [JaS(S+1}/kT]e s'"a "=1.5. For kT«Z, so that n, » I, we have

(4 4)

(4.5)

((eiaanU[J(n)])& P P(1 P} ke aan kT, P ",, JP S+1
JeS(S+ 1) 3 „ i kT

eS{n-k & 1 Q (I p)n-&. eiaan ~ e-Sin-i & (4.6)

Since n, =(1/P) In([JeS(S+ I}/1.5kT]esj, Etl. (4.6) becomes



16 q-DEPENDENT MAGNETIC SUSCEPTIBILITY OF A. . . 3961

A~

6.0—

'vw'

+

Tc)
CV gg

C4

CL

AA

I—

2.0
+

cn

I.O
C5

2.0
ga

4.0 6.0
$71'

I i I

2.0 4.0
qa

I

6.0
2'

FIG. 6. Antiferromagnetic Ising chain [3kT/
g pzpS(S+1)] ((X,(T))) is plotted vs qc, for kT/S(S+1)Jp
=(a) 0, (b) 0.1, (c) 0.5, (d) 2.0, p=0.5 and p=2.

F'IG. 5. Ferromagnetic Ising chain (3kT/g pgpS(S+I]]
x(( Xa(T))) is plotted vs qa, for kT/S(S+1) J0=(a) 1.0, (b)
0.5, (c) 0.1, P=0.5 and P=2.0.

pe'" pkT e~ea 1 5P T i»(j--&) I /8
+ +pe NffN'f041) e-B

1 —(1-p}e"' S(S+l)J', 1 —(1 p)e'"es -S(S+1}J,
1 1 1 2 1

( —(( —P)e"' 2 e' —(( —P)e"' 3 e' —(1 —p)e'")' (4 7)

For ~ln(1- p) ~/p&1 the behavior of ((e" UJ(n)/kT)) at low temperatures will be the following:

kT 1 —(1 —p)e'" S(S+1) j,
1 1 1 2 1

1 —(I. -p}e"' 2 e —(I —p)e'" 8 e s-(].-p)e'" (4.8)

AA

C/)

Tc)"cu (g)
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FIG. 7. Antiferromagnetic classical Heisenberg chain
[3&T/gt pgp S(S+I)] ((X~(T]})is plotted vs qa, for
kT/S(S+1)JO=(a) 0, (b) 0.1, (c) 0.5, p=0.5 and P=2.0.

Since n, depends on the temperature, the presence
of the factor e'" ++" will produce strong q fluctua-
tions on the second term of Eq. (4.8}. Thus

((X,(T))}will also exhibit fluctuations, and we are
able to understand Fig. 4 which is the result of
exact calculations for p=0.2, p=4, and ~ln(1- p) ~/
p =0.0558. In the case

~
ln(1- p)

~
/p&1, the linear

term in Eq. (4."l) dominates the temperature depen-
dence for kT«Jo and ((y,(T))}does not exhibit
oscillations due to the absence of the e'"'"'
term. These arguments suggest that oscillations
of ((X,(T))) with q must occur also for the ferro-
magnetic case at low temperature, but will be
confined to the high peak in ((X,(T))) near q =0,
where the susceptibility is large. Because the
slope of ((X,(T))) with q is very large there, it
will be difficult to notice the fluctuations.

For completeness we also examine the case
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T»J, . In that limit we have

U[J(n)/kT] = ——,'[J,S(S+ 1)/kT]e

and thus

(
J n -PJ,S S+1 e'"
kT 3kT 1 —(1—P}e ee"' '

The susceptibility ((X,(T))) is then given by

1 «X,(T)})=N 1+l=f (49)
S

Equation (4.9) indicates that in the case T»J,
we get the same result as for free spins.

B. Off-diagonal matrix elements

The analysis for the off-diagonal matrix elements
at finite temperatures is essentially the same as
that of the T-O'K case. The only changes are the
replacement of B,(q') by D, ,(T) and C, (q} by D,(T).
In fact, the finite T case is much simpler since
ID,(T}

1

&1.

U. DISCUSSION

In this paper we have calculated the q-dependent
susceptibility for disordered Ising and classical
Heisenberg chains. Our investigation included the
cases where the interaction between the spins is
ferromagnetic or antiferromagnetic or of a spin-
glass type. The most interesting result of our cal-
culations occurred for the antiferromagnetic case
where at T -0 'K and also at finite T, ((X,)) exhib-
its a maximum at qa =w, instead of qa =pm which
one would expect by analogy with a periodic chain
with interatomic distance equal to the average dis-
tance of the random chain. The reason that the
maximum occurs at qa =a is that a is the most
probable distance between the spins in this one-

dimensional case. What is different in our result
from that of the periodic chain with interatomic
distance a is that our peak at qa = n exhibits a
width. .The width is due to the disorder, and its
value will depend on the amount of the latter. The
implications of this result are the following: The
scattering cross section in the quasielastic ap-
proximation is given by'~

x(e).
d(x (5.1)

Since the position of the maxima does not depend
on the amount, 1-P, of the disorder present in the
system, the scattering angles will not change with
disorder. The effect of disorder will be the intro-
duction of a width in the scattering angles.

Another interesting phenomenon is the oscilla-
tion of the susceptibility with q for the antiferro-
magnetic case at low temperatures. These oscil-
lations arise from the existence of a separation
n, (T}beyond which the exchange becomes signifi-
cantly less than T in magnitude. The oscillations
occur only when lln(l —p) l/P is less than unity,
which corresponds to the case where the probabil-
ity distribution of exchange is singular at"J= 0.
In that case there is a significant number of ex-
changes smaller than T, and n, (T) introduces a
meaningful temperature-dependent cut off into the
exchange distribution. The q =0 susceptibility
changes from nonsingular to singular behavior
as T- 0 K for precisely the same reason. "

We expect our theory to be applicable to the
case of quasi-one-dimensional disordered mater-
ials such as NMP- TCNQ, quinolinium(TCNQ)„
and acridinium(TCNQ), . However, until now,
neutron-scattering experiments have not been per-
formed in these materials. We believe that such
experiments will be the source of valuable infor-
mation.
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