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The transition temperature of the Peierls phase (TJ,) and of the superconducting phase (T,) are studied,
including a hopping-type interchain coupling and retardation effects due to finite bare phonon frequency coo.

The interactions between the electrons include large and small momentum transfers with attractive couplings
si, s2, respectively. The set of most diverging diagrams is summed and the coexistence line (for which TI = T,)
is shown to be s, = 2s, for the nonretarded interaction. For s, +2s2 the two phases exclude each other. For a
finite coo, increasing coo is shown to increase T, while decrease TI, . Higher temperatures T, are possible if (a)
coo is higher; (b) s&, s2 are stronger, but s, must stay below a critical value determined by s2 and coo (for s2 ——1,
max(T, ) co+20); (c) the commensurate case is avoided; (d) the Peierls instability is suppressed, i.e., by a
large enough interchain coupling. The dependence of Tp on coo implies a positive isotope shift which is

measurable if coo & 2m'TJ. Such high-frequency phonons are important for high-temperature superconductivity
and the isotope shift provides a method for locating them in the Peierls phase.

I. INTRODUCTION

The search for high-temperature superconduc-
tors has motivated an extensive study of quasi-
one-dimensional (1-D)conductors in the last few
years. ' The motivation is due to Frohlich' and
Little' for proposing 1-D models for superconduc-
tivity and to Weger4 for demonstrating the 1-D na-
ture of the intermetallic A15 compounds which may
contribute to their high T, .

Experimental studies involve mainly
K,Pt(CN), Br, , ~ 3H,O (KCP)' with a Peierls insta-
bility at T~= 110 K, tetrathiafulvalene-tetra-
cyanoquinodimethane' (TTF-TCNQ) with T~ = 53 'K,
and similar compounds of the TCNQ family. ' The
polymer (SN), is a superconductor below T, = 0.33 'K, '
however, it is not clear if its quasi-1D nature is
intrinsic or caused by its fibrous composition. '

Theoretically it was shown that summation of the
most diverging diagrams in a strictly 1-D system'
(parquet diagrams) leads to coexistence of super-
conductivity and the Peierls phase, and T~=T,.
Since in a 1-D system an ordered phase can exist
only at T=0, more diagrams must be summed.
Using second-order renormalization group the
transition temperatures are lowered to T =0,"but
still the two phases coexist. However, the use of
renormalization group for attractive interactions
is questionable. " In particular, exact results"
and mapping on the two-dimensional Coulomb gas"
show that the two phases do not coexist in general.

To be more specific we introduce the important
couplings as in Fig. 1. These couplings represent
momentum transfer of -2P~(g, ) where P& is the
Fermi momentum and transfer of small momentum

Q~ ++ pF(g, ). Also present are the umklapp scat-
tering (g, ) and scattering involving electrons only
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FIG. 1. Coupling constants for electron-electron
scattering. Signs + describe electrons with momenta
-+pF. In each diagram reversal of all signs is also
possible.

on one side of the Fermi surface (g, ). We are in-
terested mainly with the attractive interactions si,
s &0,

s, = -g,N(0),

s, = ger(0)-,

where N(e) is the electron density of states for both
spins, and e =0 is the Fermi level.

The exact 1-D results"' " show that supercon-
ductivity and the Peierls phase coexist only near
the line s, =2s, and apart from that only one phase
exists. The line s, =2s, is a coexistence line in the
sense that one of the response functions diverges
stronger than the other as T - 0 if s, W 2s, .

In order to describe systems with finite transi-
tion temperatures we have to introduce an inter-
chain coupling. The limit of small interchain cou-
pling was investigated near the available exact 1-D
results" or by using renormalization-group meth-

3943



~3944 B. HOROVITZ

ods. " If the electrons are restricted to move along

the chains and there is a long-range interchain in-

teraction, then it is possible to have T~WO, but

superconductivity stays at T, =0."'" The Peierls
instability corresponds to charge-density waves

(CDW's). The Coulomb interaction correlates the

phases of these waves on different chains, and so
T~c0. However, the phase of the superconducting

state conjugates to the number of electrons. Thus

interchain phase correlations can be achieved only

by electron tunneling corresponding to a Joseph-
son junction.

In what follows we deal only with interchain cou-

pling due to electron tunneling between neighbor-

ing chains. This leads to the more interesting case
with both T~ and T, finite. For small interchain

coupling it was shown' that near the special solu-
tions" (s, =0 or s, =-", ) the line s, =2s, remains the

coexistence line such that T~= T, on this line.
The case of intermediate interchain coupling can

be treated using mean-field (MF) theory. " We

quote here the main results of Ref. 16 for the

Peierls phase with s, =0.
The electronic dispersion which describes elec-

tron hopping between adjacent chains is

=e( p,-}—2t~( cosap, + cosap„), (1.2)

e(p. +pp) =-~(p, -pp} I p. l pp

then (1.2) satisfies

1
~p+ q~ = -a~p q (g~ I pgl ~pJ

with

q, = (s/a, s/a, 2'�).

(1 4)

(1.6)

The condition (1.4) leads to perfect nesting of

opposite sides of the Fermi surface in the qo di-
rection so that the MF theory is formally the same
as the 1-D MF theory. The instability corresponds
to q, which implies that CDW's on adjacent chains
have opposite phases. This can be understood as
if the system tries to minimize the variations in

density by locating a density maximum near a den-
sity minimum on the neighboring chains.

The region of validity of this theory is limited by

two effects: (i) Fluctuation effects which restrict
the MF theory to the range

t ~ ~2T~y (1.6)

and (ii) deviation from Eq. (1.3) which for e(P,)
given by the free-electron dispersion allows TPW0

where t, is the transfer integral in the transverse
x, y directions and a is the interchain distance.

The important property of Eq. (1.2) is that if e(p, )
has electron hole symmetry,

in the range

t,~2(T,T,)'~', (1 7)

where T~ is the Fermi temperature.
Since T~«T~, there is a large range of values

for f~ between Eqs. (1.6) and (1.7) for which a 1-D
MF theory is effectively valid.

In the present work we are mainly concerned
with the range (1.6}-(1.7}for the interchain cou-
pling. Using the results for small interchain cou-

pling, "more conclusions can be reached.
The summation of the most diverging diagrams

is equivalent to the summation of effectively 1-D
diagrams. Thus only the condition (1.4) is needed
and the interchain coupling does not appear in the
results. However, one should keep in mind the ex-
istence of the interchain coupling (1.2)'which is
needed explicitly in diagrams which are not effec-
tively 1-D.

Preliminary results of the present investigation
were published elsewhere. '

In Sec. II we extend the results of Ref. 16 to in-
clude all the couplings of Fig. 1 in the nonretarded
limit. The summation of the most diverging dia-
grams turns out to be different from the parquet
sum' '" and the conclusions are different too. The
Peierls and superconducting phases can coexist
only on one line which is again s, =2s, .

In Sec. III we consider the effect of a finite bare
phonon frequency u, on T~. It is shown that the

s, interaction is retarded and that Tp is a decreas-
ing function of 0 This dependence becomes im-
portant for high frequencies w, 2'~. A positive
isotope shift is predicted and may be observed ex-
perimentally if (d, ~2wT~.

In Sec. IV T~ and T, are compared in a system
with a finite coo. It is shown that for a given &go and

s, there is a critical s, such that the Peierls in-
stability dominates for higher s„while supercon-
ductivity dominates for lower s, . Thus the Peierls
instability imposes an upper limit on the tempera-
tures T,. The relevant parameters for obtaining
higher transition temperatures T, are discussed
in Sec. V. .

II. NONRETARDED INTERACTIONS

In this section we assume a nonretarded interac-
tion between electrons as described by the cou-

plings of Fig. 1. In what follows 1-D notation is
usedandq, =2P~. However, the interchain coupling
is readily introduced by Eq. (1.2) since the condi-
tion (1.4) is the only restriction on the electron dis-
persion that we need.

'The Hamiltonian of the system is
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0/2t p yq /2aCp y +0/2& C~ 4f /2gCp +0/2g+ —~ Cp ++ /2aCp +0/2fyC& q /2' Cp y & /20' +H.C

t gXJ g3'2 P 4'g /2g P yq /20 P q /2g P q /2g ~ P 4'q /2g P4 qo/2g P y~/2g P Qp/20

( 1 1+l Zc i c ~i c i c i + IJ *7)} (2.1}

The prime on g restricts momentum summation
to Ip, I& pr and p, + p, = p, + p, . Summation includes
also spins (o, o' = t or i) and cd is an electron crea-
tion operator.

The couplings g„g, represent scattering with a
small momentum transfer while g, describes the
large momentum (-q, ) transfer. For a half-filled
band a momentum transfer of 4p~ = 2w jc (c is the
lattice constant along the chain) is. possible and

corresponds to the coupling g3.
We use in this work the Nambu formalism for

both superconductivity" and the Peierls phase. "
Within this formalism the order parameters of both

phases are easily handled.
In the Nambu formalism of superconductivity"

the spinor field g&
——(cd&, c &&) is introduced. Here

we superimpose the Peierls-type correlation by de-
fining the four-dimensional field

4] (4[+4,/—2 4p 4,/. } I-pl' pp

f
(C])+4()/2[) C 4 4 /2ti CP 4 /2[) C 9+4 /2$)) (2 2)

and tt)~ is the Hermitian-conjugated column vector.
The wave vector p is restricted by IpI & pz so that

the phase space includes momenta in the range
(-2p„, 2p~}. This range is sufficient for us since
the important states are near the Fermi surface
+p~ and correspond toIpI «pz in Eq. (2.2).

The 4x 4 space is a direct product of the super-
conducting 2x2 space with 0, as the Pauli matrices,
and the Peierls 2x2 space with v,. as the Pauli ma-
trices. In what follows the direct products appear
in this order.

The H'amiltonian [Eq. (2.1)] is now transformed
into the following form:

[i+ 4 /2]})iO&7&PP
p ~

The Green's function in the Matsubara formalism
[(d„=vT(2n+ 1)] is a 4x4 matrix

G '(p, i(()„}= i(d„ll —e[, +4 /2o, 7, —Z(p i(d)„} . (2.5)

The self-mass Z(p, i(d„) can be expanded in the
].6 basis matrices. The various coefficients 6,. in
this. expansion are the order parameters of the
possible instabilities. In Ref. 17 it was shown that
there are seven possible types of instabilities.
Here we are interested with only two of these. Su-
perconductivity (singlet pairing) corresponds to a
correlation (c~ ~c 4 [) and is antisymmetric under

~P F
spin reversal. Thus 6, is the coefficient of o,1 or
o,1. The Peierls instability corresponds to
(c4 [c 4 i) and is symmetric under spin reversalPP -PP
Thus h~ is the coefficient of o,71 or 0'3T2 The self-
mass is (up to the replacements o, o, or-v, —r, )

Z = A,a,1+6 O, v, . (2 6)

In general, 6, and hp are. dependent on p and u„.
The Green's function from Eqs. (2.5) and (2.6) is

4

rtl, i „) rQ (i(r,.Z Tr[G(k, =' ))';]
i=1 k, m

;,r, Z G(), ' .)r,.}.
k, m

(2.8)

G( ~ - ) SCO 11+ 6~+q /2 3 3 $0$ EPO'371

+n+ &p+ q /2+&s+ &p
2 2 2 2

(2.7)

The next step is to obtain the equation of state
with the effectively 1-D diagrams. As shown later
on this amounts to the diagrams of Fig. 2 in the
Nambu space. Using the usual rules of perturba-
tion theory'0 we obtain

where

gr = 4(gr+gs}i 11=&3&1
1

g =4(g, -g, ), r, =o,~„
1

g, =-.(g. +g4),

g4 = 4(g'4 g2)l

I;=0,1,

14 = 173.

+ g, ','r, , y,'r, ,
(2 8)

(2.4)

where

tanh [( +en. '}'/'/2T ]
f(z )= d~

8(c +A
(2.11)

The replacements o, -c2 or r, - r, in Eq. (2.6)

Comparing coefficients of various matrices in

Eqs. (2.6) and (2.8) and summing over (d give

54= /(q(2g, g2+g, )N(0)I[(a +6j') / ] (2,9)

n, , = —A, (g, +g, )N(0)I[(b,'+A')'/'], (2.10)
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imply a phase change in the order para, meters. If

o, replaces o„ there is no change inEqs. (2.9)and

(2.10}. However, if v, replaces y„g, in Eq. (2.9)
changes sign, and the possibility with I g, l

domin-

ates. Now g, c 0 means that q, is commensurate
with the lattice so that commensurability deter-
mines the phase of the CD%. This leads to pinning

of the CD% which is a well-known effect. '
Equations (2.9) and (2.10) give nonzero solutions

for both 4~ and 6, only on the line

sx =»2 —Issl ~ (2.12)

where Eq. (1.1) is used and also s, = -g,N(0).
Outside the line (2.12}only one of the order pa-

rameters can exist, either superconductivity for
s,+2sa —Issl or the Peierls phase for si&2s2 —lssl ~

This incompatibility of the two phases was noted

by Levin et a/. 23 However, their results do not

account for the specific role of the s, coupling.
Both phases lead to gaps at the Fermi level so

that the density of states at e =0 vanishes. Thus
the appearance of one of the phases eliminates the
other phase. A demonstration of this effect is pro-
vided by pressure experiments on NbSe, ." In this
Rnd other similar compounds CD% s RppeRr Rt T co~
due to nesting of parts of the Fermi surface, and

, superconductivity may appear at lower tempera-
tures T,. As pressure increases Tco~ is lowered
but T, is raised. The pressure distorts the Fermi
surface, lowers 1'cD„, the density of states near
&=0 is increased, and so T, is raised. If the whole
Fermi surface were involved in creating the CD%,
then superconductivity at lower temperatures would

be eliminated, as is the case with KCP and TTF-
TCNQ.

The effect of g, as seen from Eqs. (2.9) and (2.12)
is to increase 7.'~ and reduce the range of param-
eters which allow T, . Thus higher transition tem-
peratures 7, are available for the incommensurate
case wit g, =o.

In the following we concentrate on the couplings

sy and s, and assume g, =0. The transition temper-
atures are obta. ined by

(2.i3)

where E, is an energy cutoff of the order of T~,"

FIG. 2. Electron self-mass corrections: (a) Direct
term. (b) Exchange term. Electron lines are in a 4&4
(Sec. H) or 2 &&2 (Secs. HI and IV) Nambu representation.

FIG. 3. (a) Equation for vertex corrections. (b) Pei-
erls channel. (.c) Superconducting channel. (d) and (e)
An effect of the superconducting channel on the Peierls
channel (d), and vice versa (e).

and Eq. (2.13) is valid for T «E, . From Eqs. (2.9)
and (2.10),

TJ, = 1.13E,exp[ -4/(2s, —s,)],

T, = 1.13E,exp[-4/s, +s,)].

(2.i4}

(2.15)

Let us now analyze the diagrams of Fig. 2 and

check other types of diagrams. By iterating the
exchange term in the direct term of Fig. 2 it is seen
that vertex corrections of the -ladder type are in-
volved. These are shown in Fig.3(a) and are given

by the equation

y, =g, TQ y,G-(P, f(o )G(p+q„i(o }g„(2.16)
P,m

y, is the renormalized vertex with transfer of
q = q, and ru = 0. Here G '(p, i&u ) =Au„- e~ is the
Green's function in the metallic phase. The im-
portant contribution in Eq. (2.16) comes from
p= -P~ so that p+go= p~. The same reasoning ap-
plies to the external legs so that only the interac-
tiong, is involved in the renormalization (2.16).
Ne define

f(T)=~(0) Q G(y, iu) )G(P+q„Au ).
P,m

(2.17)

Using Eqs. (2.18) and (2.13), a pole appears in Eq.
(2.19) at the temperature (2.14). Thus the Peierls

By using Eq. (1.4) this is the same function (2.13)
in the metallic phase, b, =0. The solution of Eq.
(2.16) is

(2.18)

The Peierls instability corresponds to the insta-
bility of the full interaction with momentum trans-
fer of q, . This is shown in Fig. 3(b) and is given
by

(2.19)
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channel of Figs. 3(a) and 3(b) is equivalent to Fig.
2 in the Nambu space. On the other hand, the su-
perconducting channel of Fig. 3(c) leads to T, of
Eq. (2.15).

Our next step is to show that Figs. 3(a)-3(c) are
more important then any other diagrams. The
demonstration is based on the concept, of effective
one dimensionality. We have seen in the introduc-
tion and in more detail in Ref. 16 that the inter-
chain coupling (2.2) leads to perfect nesting in the
q, direction. Diagrams which involve only two
electron lines at one time (or within the same in-
tegral) with relative momentum q, give the 1-D re-
sult. This is due to the accumulation of the Kohn
effect" on the whole Fermi surface with the same
wave vector q, . The effective one dimensionality
is evident also from the results (2.9} and (2.10)
which do not depend on the interchain coupling, and
only the relation (1.4) is needed.

Diagrams which involve more than two electrons
in the same integration feel the nonplanarity of the
Fermi surface and are therefore less divergent
than in the 1-D case. For example Figs. 3(d) and
3(e} behave like s'in'T as T- 0 in the 1-D case, so
that they are equally divergent as the diagrams in
Figs. 3(b) and 3(c}. Fig'ures 3(d) and 3(e} are the
lowest-order corrections of the parquet approxima-
tion" which are not included in Figs. 3(b) and 3(c).
These corrections represent the effect of the di-
vergence in the superconducting channel on the
Peierls channel [3(d)] and vice versa [3(e)]. When
the interchain coupling t~ is finite, Figs. 3(d} and
3(e) depend on both t~ and the temperature (or en-
ergy cutoff") T The expli. cit dependence is rather
complicated, but we are interested here in the type
of divergence as T -0. For T» t~ the 1-D form
s'ln'T is valid; however, for T-0 (or T «t~) these
diagrams become less divergent and behave like
s'lnT lnt~. Thus the three dimensionality of the
system decouples the superconducting and Peierls
channels. The summation of most divergent dia-
grams which gives the parquet sum in the 1-D case
reduces to Figs. 3(a)-3(c) when t v 0. These ai'e
the effectively 1-D diagrams with the results (2.14)
and (2.15).

Practically, these results are reasonable when
the interchain coupling is large enough [Eq. (1.6)].
When t~ is smaller, diagrams like 3(d) and 3(e)
become important. It turns out that these two dia-
grams give equal results. Since they represent the
mutual effect between the superconducting and
Peierls channels, it is plausible that reducing t~
will reduce T~ and T, by the same amount so that
the coexistence line remains s, = 2s, . This con-
jecture is strengthened by the 1-D results"'" and
the results'~ for small t~, as discussed above.

a= e,c,'c, + P ~;a,'a, + g ig,q,cp„c„ (3.1)

where a, is a phonon creation operator y, =a, +a~,
and g, is the electron-phonon coupling constant.

We define spinors in the Peierls space

g, = (c„,go, j,cq, g, ), I pl & p». (3.2)

We also need the phase (P) and amplitude (R) pho-
non operators"'"

a~(q) =(a, „-a,„)/&/2,'o" 'o" '
Iq

az (q) = (a. ..+ a, „)/v 2,
and the phonon fields

y, =ao(q}+ay( q),

R, = a, (q) +a„.'(-q).

(3 3)

(3.4)

Using Eq. (1.4) the Hamiltonian (3.1) is now writ-
ten in the form

p+a /2 p~s p+ eaaae

+ (dp ay g ay/ +ay g

-
~2 Z q»' »&~ 'i&~ -V»2- R» Ar. &n-

+ g Zg~ &Jr&r & g&rlgp. (3.5)

We assume &, „=up and g, , ~ p =g since the im-apha p ap+ p -p
portant states have [q(r (p) r and (p'[ «p». We also
use g, =-g, ." The last term in Eq. (3.5) is the
interaction of phonons y, with small momenta.

The electron self-mass has now the general form

Z(p, i(u„) =i&a„[1—Z„(p)]1+X„(p)7,+a„(p)v, . (3.6)

The order parameter 6„(p) represents a finite
expectation value of the amplitude mode, and ac-
cording to Eq. (3.5) is a coefficient of 7,. (The re-
placement v2 Ty would merely exchange the inter-
pretations of the p and R modes. )

We proceed to evaluate Z(i&@„,p) using Fig. 2, and
the interactions now are the various phonons of
(3 5),

III. RETARDED INTERACTIONS

Attractive interactions between electrons are due
to the retarded electron-phonon interaction. The
results of Sec. II are valid when the bare phonon
frequency is large cop»E so that E, is the only
energy cutoff in the problem. The effects of a finite
&go(or &go &E,) on T, are well known, 'o and we con-
centrate in this section with the effects on T~.

We start from the Frohlich Hamiltonian' which
includes the g, and g, =g4 type interactions of Fig.
1:
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Z(p, i&@„)=g T g '
t~ Tr[G(p', i(d )r2]Do(qp 0)

T Q ' v,G(b', i(u ) v,D~(tp —p', iv„)
2g—T Q '~,G(P', i(o ) T,D„(P P—', iv„)

—go T Q ' 1G(P', i(u )ID~(P —P', iv„),

D,(q, tv„}= -2(o,/(v'„+ (u', ). (3 6)

(3 7)

where Dz „~are the propagators of the various
phonons, v„=2qT„, and g, is the coupling of the
small-momentum phonons with the electrons. The
direct term of Fig. 2 couples only the R mode and
gives the first term of Eq. (3.7). By iterating the
direct term on itself it is seen that the phonon
self-mass corrections are already included so that
the bare phonon propagator must be used

We assume that the phonon frequency wo does not
depend on the momentum. This is reasonable near
qo and for all momenta for an optical phonon. For
acoustic modes (which must be three dimensional
near q =0 to maintain the lattice) the phonons with
momenta q~-0 contribute mainly when the trans-
verse momenta q„q„are Iarge2~ (higher-density
of states), and then &u, (q) is approximately constant.
Thus we assume a constant uo and also expect s,
—$2.

Comparing coefficients of the various matrices in
Eqs. (3.7) and (3.6) gives the equations for b, , Z,
and X. The corrections Z and y do not belong to
Figs. 3(a) and 3(b) and are not effectively 1-D.
Z and y represent the electron self-mass correc-
tions in the normal (metallic) phase and give a, di-
verging result when t~- 0. It was shown in Ref.
19 that the diverging term can be neglected for
large enough t~, as given by Eq. (1.6). Thus we
use Z =1 and X =0, and the gap equation becomes

I

b„(p) =T Q ', 2 b2 i,)
[-2g'Do(qo, 0) —kg D~(p —P', iv„)

(d~+ 6&'+ qog2 +

(3.9)

g' = s,&u,/2N(0),

go = s upo/2N(0).
(3.10)

The equation for T~ is obtained by linearizing
(3.9). Using b(&o ) =a(-ur ) and integrating e give

&„=g a (s, —s,b„)n. ,
m=0

(3.11)

At T =T~ the phase gnd amplitude modes are de-
generate so that D & and Ds are cancelled in (3.9}.
Thus the exchange term of Fig. 2 contributes only
via the phonons upwith small momenta. This is
precisely the analog of Fig. 3(a) where the vertex
g, is renormalized only by the interactions g, .

The phonon renormalizations are important main-
ly for phonons with momentum -qo so that for D~
the bare propagator (3.8) may be used. In fact, the
self-mass insertions for the y phonons lead to dia-
grams which are not effectively 1-D, and thus
should be avoided.

The couplings (1.1) are defined here by

o= g a =2 ln(1. 13E,/T).
m=O

For s, = 0 Eq. (3.11) is solved by

T~ = 1.13E,exp(-2/s, ).

(3.14)

(3.15)

T p = 1.13E,exp(-2/s, —& v's, ), (3.16)

so that the coupling s, reduces slightly the transi-
tion temperature. For &,—~, b„- 2 and Eq.
(3.11) is again of the BCS type with the result

This is the usual MF result" when only the cou-
pling sy is retained.

The coupling s, is responsible for the static dis-
tortion, hence the s, term in Eq. (3.11) is nonre-
tarded. The dependence on &, appears through the
virtual processes of the exchange term —the s,
term in Eq. (3.11).

When ~o/T-0 the repulsive s, term is minimal,
and in this limit b„=~5„. For s, 6 1, Eq. (S.ll)
is solved by

where Tv= 1.13E,exp[-4/(2s, —s, )], (3.17}

2 tan '(E,/up )
v(2m +1)

b„=--,'[Do(i v„)+ (iDvo„, „)](u,.

(3.12}

(3.13)

For T «E, we can use Eq. (2.13) to obtain

which is identical with Eq. (2.14). Thus for s, = s,
the coupling s, reduces the transition temperature
drastically.

For a finite &oo, Tv lies between the limits (3.16)
and (3.17). Owing to the large energy cutoff E„ it
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QA„„E.=0
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is obtained, where E =la 6 and

A„-=(5„+s,a„b„„)(1—s,a)

+s.s»a„.- Q arb»
A=O

a„ = (a„a )''.
(3.18)

(3.19)

T~ is the solution for det(A) =0. The results for
sy s2 s are shown in Fig. 4. The overall change
in Tp is by a factor of -exp(2/s) which is very
large if s is small.

The isotope shift parameter is defined by

d LnT~
dlnM ' (3.20)

where M is the effective mass of the vibration uo
-M ' '. Evidently z &0 and can be rather large

0.5

0.4

is advantageous to use Eq. (3.14). By iterating Eq.
(3.11) a gap equation of the form

FIG. 6. T~ compared with Tz [Eq. (3.15)] for sf s2 s.
Decrease in T& becomes important for &p & 2»z.
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04—
S =0.5 (o)

for high frequencies m„as shown in Fig. 5.
In Figs. 6 and 7 we plot the results as functions

of &u,/2vT~ It is .seen that this ratio is what mainly
determines T~/T p and ~, and the dependence on
s is much weaker.

Figure 6 can be used for an easy estimate of the
coupling s=sy s2 from data on Tp, +„and E,.
From the figure T~ is estimated and then by Eq.
(3.15) s, is evaluated. If s, c s„ the reduction of
T~ from Tp, and a, are both changed by roughly a
factor of s,/s, .

For example in TTF-TCNQ, if the C =C vibra-
tion with (do=1600 cm is responsible for the in-
stability at T~= 53 'K, then from Fig. 6 T~~= 175 K.
For E, =0.5 eV we obtainfrom Eq. (3.15) s, =s,
= 0.55. Suppose that this vibration contributes only
half of the coupling, and the acoustic phonon contri-
butes the other half. Since the acoustic phonon has
low frequency (~, &2wT p), its s, coupling is strong-
ly retarded and can be neglected. Thus s,/s, =0.5
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FIG. 7. Isotope shift parameter u for s&=s2= s. Shift
is larger for cup&2''T~
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and Tp = 80 K, s, = 0.46. If s, was ignored alto-
gether, then Tp = Tp = 53 K and s, = 0.42. Thus the
effects on the fitted value of the electron-phonon
coupling are not very large. The more significant
effect is in the isotope shift of Tp This is further
discussed in Sec. V. From Figs. 4-7 it is clear
that retardation affects the results only for high-,
frequency phonons such that &0 2' p.

In the solution of Eq. (3.18) matrices of dimen-
sions larger than &uo/2vT~ are needed. Generally
matrices with dimensions 40-100 were used. For
ru, &E, solution of Eq. (3.18}is not practical, but
then the gap equation on the real axis may be used.
Using the same procedure as for superconductiv-
ity" and assuming a frequency-independent gap
gives

equally important as the self-mass corrections.
For example, Fig. 3(e) of a phonon self-mass cor-
rection in the superconducting channel is equal to
the vertex correction implied by Fig. 3(d} (even for
t~c0}. We have seen in Sec. II that Figs. 3(d) and

3(e), are less divergent than Figs. 3(a)-3(c). Thus
if we use the Eliashberg equations (which have no

vertex corrections), we must also neglect the self-
mass corrections. These are the Z and X terms
of Eq. (3.6) which were also neglected in the cal-
culation of Tp. This approximation amounts to
summation of the most divergent diagrams which

for the superconducting channel are shown in Fig.
3(c). Thus the equation for the superconducting

gap 4„(P) at T =T, is"~'

T T2 (I +E / }s2/( 8&-s2) (3.21}

The nonretarded results Tp are obtained only for
~0»E, . Since usually &,&E„ this demonstrates
the importance of keeping both energies &, and E,
in the problem.

An interesting feature of the gap equation (3.9) is
that for T &Tp the contributions of the phase
and amplitude modes do not cancel. Since the cor-
responding frequencie s satisf y" w &

& co~, the ter m

D„-D & gives an attractive interaction. Thus the

gap at T = 0 is larger than expected from a BCS-
type equation, namely 2r, /T~&3. 5. This may ex-
plain some of the experimental observations which
give 2d.,/TJ, =8-10.' This point was further dis-
cussed in Ref. 18.

In conclusion we have seen that Tp is a decreas-
ing function of u, due to the coupling s, . This gen-
eral feature is due to two factors: (i) The s, inter-
action is attractive while s, is repulsive. (ii) Re-
tardation affects only the s, term. The factor (i)
is true also in the soluble cases of the nonretarded
interaction. " The factor (ii} is due to the coupling
of s, to the static deformation, while s, couple's
only virtual phonons. Thus it can be expected that
the general feature of the results will not change
even for small interchain couplings, when summa-
tion of more diagrams is needed.

IV. SUPERCONDUCTIVITY AND PEIERLS INSTABILITY

Superconductivity is due to virtual phonons [Fig.
3(c)] so that retardation effects are essential for
the calculation of the transition temperature T,.

In systems yrith a spherical Fermi surface Mig-
dal's theorem' enables us to neglect vertex cor-
rections. Thus inclusion of electron and phonon
self-mass corrections is sufficient and lead to the
well-known Eliashberg equations for supercon-
ductivity. ' ' " However, if the Peierls channel
diverges, vertex corrections appear which are

m=0

where 4 =~a 4 . B is a symmetric matrix defined

by using Eqs. (3.18) and (3.19)

B„=5„—(s, + s,)a„b„ (4.2}—

T, isthesolutionfordet(B}=0. For ~, »E, the non-

retarded solution (2.15) is obtained. Usually &oo

&Z, and the effects of retardation are important.
As ~,-0 the solution also satisfies T, -O.

Solutions of Eq. (4.2) were done using matrices
with dimensions 40-100. For T/uoS 10 ' numeri-
cal solutions of Eq. (4.2) are not 'practical. How-
ever for T «0, co, is in fact the energy cutoff in

Eq. (4.4) and the BCS solution can be used

T, = 1.13&go exp[-4/(s, + s,}), (T, «a&o). (4.3)

The solutions of T„Tp as functions of s= sy sg

are shown in Fig. 8. As coo becomes higher the so-
lutions for T, increase towards the broken line C
while the solutions for Tp decrease towards the
full line C. For a given wo, T, dominates below
a critical value s, (&go) while T~ dominates for
stronger couplings. The critical value s, (~0) in-

(4.1)

In Ref. 19 this equation was solved including the
self-mass corrections. The numerical results
turn out to be close to what we obtain in this sec-
tion for large enough interchain couplings [Eq.
(1.6)]. This confirms our claim that summation of

most diverging diagrams is a good approximation,
at least in the range (1.6). We emphasize that Eq.
(4.1) does not include the self-mass corrections,
which is consistent with neglecting vertex correc-
tions.

Integrating e~ in Eq. (4.1) and using 4(&u )
=4(-~ } give an equation of the form
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probably cancel the effect of the soft phonons. In
this case a self-consistent solution of the Eliash-
berg equations requires that the self-mass correc-
tions should be neglected, and phonon softening has
no effect on T,.

V. DISCUSSION

In this work we developed a model which dem-
onstrates the competition between superconductivity
and the Peierls instability, including effects of re-
tardation and interchain coupling.

Let us first examine the deficiencies of the mod-
el: (i) Only hopping type interchain coupling is in-
cluded. (ii) The interchain coupling is assumed
large enough [Eq. (1.6)]. (iii) Intrachain Coulomb
interaction between electrons is neglected. (iv) Per-
fect nesting or the symmetry (1.4) is assumed.

The assumptions (i)-(iii) enable us to obtain high-
er values for T, . As mentioned in Sec. I the hop-
ping-type interchain coupling is essential for ob-
taining T, W 0. Thus the results of Fig. 10 give the
maximal T, also in the sense that fluctuations have
a small effect on T, [assumptions (i), (ii)] and that
repulsive Coulomb interactions between electrons
are not included [assumptions (i, iii)].

The direct (intrachain) Coulomb interaction is
nonretarded, so that its effect on T~ and T, is in-
cluded in Sec. II. Separating the contributions to
the couplings s, and s, to electron-phonon type and
electron-electron type, the effective s, of Sec. III
[Eq. (3.11)]is s,(el-ph)+ s,(el-el) ——,'s, (el-el). Since
long-range Coulomb coupling is both stronger and
repulsive, (s& 0) T~ is enhanced. On the other hand,
T, is reduced by the direct Coulomb interaction. ~
Thus the effect of (iii) can be evaluated for a given
system and will lead to a lower limit on the tem-
peratures T,.

The assumption (iv) was investigated in Ref. 16.
It was shown there that deviations from the symme-
try (1.4} become important only for large inter-
chain couplings [Eq. (1.7)]. For smaller interchain
couplings the exact symmetry (1.4} can be safely
used even if symmetry breaking terms exist in the
dispersion e(p ). Thus for not too large interchain
couplings [Eq. (1.7)] the Peierls instability is un-
avoidable, and imposes an upper limit on the tem-
peratures T, .

Deviations from orthorhombic structure [as im
plied by Eq. (1.2)] lead to stronger next-nearest-
neighbor coupling which breaks the symmetry (1.4).
Eventually, for the hexagonal structure, each
chain cannot have opposite phase to its six nearest
chains. Therefore perfect nesting does not occur
and suppressing the Peierls instability would be
easier than in the orthorhombic structure.

For very low interchain couplings the 1-D re-

suits" "could be a better starting point. However,
we have demonstrated in this work the importance
of including the interchain coupling, and more sig-
nificantly the phonon frequency &0 when dealing with

real systems. Thus our model is a reasonable ba-
sis for analyzing and predicting the behavior of ac-
tual systems.

We have shown that the important parameters
which can lead to higher temperatures T, are as
follows: (a) Higher frequencies e0 (Fig. 10). (b)
Stronger couplings s„s„but s, must be smaller
than a critical value determined by s, and &u, (Fig.
9). Thus the increase of the long-range attractive
interaction s, helps more than the increase of s, .
(c) The commensurate case with the coupling g,
should be avoided. This coupling increases T~ but
not T,[Eqs. (2.9) and (2.10)) so that the coexistence
curve [Eq. (2.12}]shifts to the right in Fig. 9 and
the available temperatures T, become lower. (d)
If the Peierls phase can be eliminated, then it does
not limit the temperatures T,. This can be achieved
by increasing the interchain coupling beyond the
critical value (1.7), i.e., by pressure. Also the
soft phonons help in this case." The Peierls phase
is suppressed also by nonmagnetic impurities. "
However, experimentally it seems that T~ is not
sensitive to impurities' so that this mechanism
needs further study.

Our conclusions raise the question whether one
dimensionality helps superconductivity at all. The
conditions for higher w0 and stronger electron-pho-
non coupling lead to higher T, in usual three di-
mensional systems, "and the Peierls phase does
not interfere. The answer is that one dimensional-
ity helps to raise T, indirectly by providing sys-
tems with better parameters. The following mech-
anisms illustrate this point: (a} If the Fermi level
is near the band edge, N(0} is large and so the cou-
plings (1.1) are stronger. (b) If the interchain cou-
pling is larger but close to the critical value (1.7),
the soft phonons help to raise T, "(c)Very. high
frequencies u0 are available as intramolecular bond
vibrations in organic molecules, such as in TCNQ.
Owing to the planar structure of these molecules,
they form a crystal with a preferred direction
along the stacking axis. Thus the 8earch for high
co0 leads us to quasi-1-D organic crystals.

The mechanisms (a) and (b} may a,ccount for the
relatively high T, of the A15 compounds. But the
mechanism (c) seems to be the most promising way
for obtaining higher temperatures T,.

Owing to the importance of the high-frequency
phonons we suggest two methods for detecting the
coupling of such phonons with electrons in the Pei-
erls phase. The first method is by optical and
Raman measurements. When &0»T~, a high-fre-
quency branch exists in addition to the soft mode."
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In the Peierls phase this high-frequency branch can
be detected by both optical and Raman measure-
ments. "

It was suggested that high-frequency intramolecu-
lar bond vibrations contribute to the Peierls insta-
bility in TTF-TCNQ. "'~ A broad minimum in the
ref lectivity around 1500 cm ' was fitted to the C =-N

vibration with coo=2200 cm ' using s= 0.4. How-
ever if s is shared among a few frequencies, the
C = C vibration at co, = 1600 cm ' may cause this
minimum.

The second method for detecting high frequencies
which couple to electrons is by measuring the iso-
tope shift of T~. If the C =—N is responsible for the
transition in TTF-TCNQ, then Fig. 7 shows that
the isotope "N would increase T~ by -1%. If the
C = C mode is the important vibration, then "C
would increase Tp by -3%. If these vibrations cou-
ple by s, which is less than the total coupling s,
then the isotope shifts are reduced by a factor of
roughly s, /s. If the total coupling s is distributed
equally among many vibrations, "then "C which
changes the frequency of most of the vibrations
will shift T~ by (2-3)/g. Experimentally the temper-
ature T~ can be determined up to +0.2/~." Thus
the isotope shifts of Tp can be determined and veri-
fy whether high-frequency phonons indeed contri-
bute significantly to the Peierls instability of TTF-
TCNQ.

Another type of an important measurement is the
pressure dependence of the Peierls phase. Pres-
sure increases the interchain coupling, and above
some critical pressure the Peierls instability is
suppressed and superconductivity would appear.
In KCP, measurements were carried up to 35
kbar. ' A fit to the theory of Refs. 16 and 19
showed'6 that above 70 kbar the Peierls instability
would be suppressed. Assuming that only the
acoustic phonon is coupled, we expect superconduc-

tivity with T, = 1-6 'K for pressures above 70 kbar.
High-pressure experiments on TTF-TCNQ may

be even more interesting. Since high-frequency
phonons may be important in this system, we may
expect rather high values for T, above the critical
pre'ssu re.

A third type of a quasi-1-D conductor is
the polymer (SN)„' with T, =0.33 'K. Indeed super-
conductivity dominates at such low temperatures
according to Fig. 10. However, it is possible that
the quasi-I-D nature of (SN), is not intrinsic but
due to the thin fibers which compose the crystal. '
In such a case the interchain coupling can be rather
large, and the Peierls instability is not possible.

Data on the strongly coupled phonons are impor-
tant for determining the phase diagram (Fig. 9) and
the maximal T, (Fig. 10). If we assume that the
acoustic phonons dominate in KCP and in TTF-
TCNQ with u, -100 'K, then at the corresponding
temperatures T~= 110 or =53 'K the Peierls in-
stability indeed dominates, as evident from Fig.
10. However, if high-frequency phonons dominate
in TTF-TCNQ, then this system may be rather
close to the coexistence curve of Fig. 9. If so, a
small decrease of the electron-phonon coupling (of

s, in particular) would turn the system into a super-
conductor.

In conclusion, we have analyzed the various pa-
rameters and mechanisms which can lead to super-
conductivity at higher temperatures. Experiments
on the available Peierls systems are suggested
which may increase our knowledge on the important
parameters for superconductivity.
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