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There are many restrictions on using the white-noise approximation to describe the line shape of radiation
emitted by a Mossbauer atom experiencing paramagnetic relaxation. Using a resolvent operator method we

have obtained an expression for the line shape without making such an approximation. As a result the
relaxation matrix depends on the hyperfine frequencies as well as on correlation functions of the bath
variables. The situation has been illustrated for the case of spin-spin relaxation of a "rigid lattice" using an

exponential form for the correlation function. The calculations have been utilized to analyze the Mossbauer
relaxation spectra of Cs,NaYbClt; measured using the 84.6-keV transition in "Yb. The analysis permits us to
deduce the dipolar field and the correlation time for the spin bath in this material.

I. INTRODUCTION

In the past several years, there have been a
number of theoretical approaches to the study of
Mossbauer line shapes in the presence of para-
magnetic relaxation effects. ' " In the stochastic
method, developed by Blume and co-workers, ' '
one considers the hyperfine interaction between
the nucleus and surrounding electrons, when this
system is placed in a fluctuating environment. It
is assumed that fluctuations driven by the bath,
which are described by a 5 function in time, cause
transitions between different states of the elec-
tron-nuclear system. The form of the interaction
between the electron-nuclear system and the bath
is not specified in this approach, but the time dis-
tribution of the bath pulses is treated within a
stochastic model. In most other approaches, an
attempt is made to specify the total Hamiltonian
which is made up of an electron-nuclear (or ion}
part, a bath part corresponding to the external
environment, and an ion-bath interaction. 'The line
shape is then calculated within perturbation-theory
approximations (with the details of the calculation
varying somewhat among various authors) and is
found to be dependent on certain spectral density
functions for the bath variables. "The stochastic
model approaches have the distinct advantage of
not relying on perturbation-theory arguments,
whereas the ab initio calculations have the advan-
tage of treating the interaction between the ion
and its surroundings, and hence the details of the
relaxations mechanism, on a microscopic basis.

Thus the two approaches are complementary to
each other, and in fact yield line-shape expres-
.sions that are closely related. '

A more subtle problem, common to both ap-
proaches described above, arises from the as-
sumption of the so-called "white-noise approxi-
mation" (WNA). In this approximation, one as-
sumes that the fluctuations driving the relaxation
occur at frequencies v, which are much greater
than the unperturbed frequencies of the electron-
nuclear system. That is, if v, = I/v, is a corre-
lation time for the fluctuations, and A is a mea-
sure of the hyperfine energies of the electron-
nuclear system (for example, the magnetic hyper-
fine coupling parameter}, the WNA assumes hv,
»A. In the existing stochastic models, this ap-
proximation arises because the bath pulses are
assumed to be 5 functions and hence their width

v, is zero." In other theories, the WNA is not a
part of the starting assumptions, but in practice
has always been invoked by assuming that the
spectral density functions J(v) are frequenoy in-
dependent over the range of hyperfine frequencies
and so can be replaced by J(0)."' As a result of
applying the WNA, the ab initio and stochastic ap-
proaches come on a much more equal footing, and
practical calculations in both cases become great-
ly simplified.

Owing largely to the advantages gained from the
great reduction in complexity, the WNA has been
used in virtually every calculation performed to
present, and applied in the evaluation of every
experimentally measured Mossbauer line shape
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modified due to spin-relaxation effects, although
its limitations have been realized. ""Qften it
is easy to predict whether the WNA is applicable
to the experimental situation investigated. For
example, given the hyperfine energies in most
situations encountered in Mossbauer experiments,
the WNA should be valid in cases of a paramag-
netic impurity coupled to a conduction-electron
bath. Here ~, is the lifetime of an electron at a
paramagnetic spin [r, -h/(Fermi energy)- 10 "
sec], which is short compared to h/A for virtually
all systems. Two-phonon spin-lattice processes
such as Raman, Orbach, etc. (~, of the order of
the high-energy phonon lifetime), belong to the
same class. However, in one-phonon, processes,
especially in Kramer's ions where the degenerate
ground state is split'only by the hyperfine inter-
action, the validity of the WNA is not clear, since
7, is determined by the lifetime of phonons with
energies comparable to hyperfine energies. ' In
cases of spin-spin coupling where energy conser-
vation is maintained by dissipation to the phonon
bath, the WNA is probably valid. However, in
rigid-lattice spin-spin systems, where energy
conservation is maintained among the dipolar
coupled spins alone, some problems may arise.
Here one may crudely estimate the value of &,
by calculating the rms dipolar field of the spin
bath. For d transition systems, because of the
smaller values of A compared to those for rare-
earths and actinides, the WNA should be valid in
most situations. In dipole coupled rare-earth and
actinide systems, the WNA may frequently be in-
valid. Numerous bits of experimental data falling
in this category have been published. There is,
therefore, a peed to consider the effects of the
failure of the WNA in more detail than has pre-
viously been done.

In Sec. II, we present a theoretical formulation
of the line shape of radiation emitted by a Moss-
bauer ion in the presence of spin relaxation without
making any explicit assumptions regarding the
WNA. Our approach here is similar in many re-
spects to the approach of Gabriel et al. ' However,
we have avoided the use of projection operators. It
also differs from the calculations of Hirst' or Hart-
mann-Boutron, in that it utilizes a resolvent-oper-
ator method such as used by Fano" in pressure-
broadening problems of atomic spectroscopy. In
Sec. III, the "relaxation matrix" containing the
dynamics of the bath and its effect on the ion is
calculated explicitly. In Sec. IV, the theory is
applied specifically to relaxation via spin-dipolar
coupling. A number of spectra are calculated for
0-2 nuclear transitions with an electron spin
S= —, in a cubic dipolar field, using a simple as-
sumption for the spin-correlation functions. In

Sec. V, data are presented for the 84.6-keV Moss-
bauer spectra of '"Yb in the cubic compound
Cs,NaYbCl, The WNA is shown to be invalid for
this material and the data are explained using the
approach developed here. In Sec. VI, we conclude
with a summary of results obtained. 1he essen-
tials of this work were previously presented in a
letter form. "

II. CALCULATION OF THE LINE SHAPE

P(v) = Re dt exp(i vt —I' t)

&&Tr( pM ~e' 'M), (2)

where M is the electromagnetic multipole operator
associated with the Mossbauer transition, I' is the
natural width of the resonance level, and X" is a
Liouville operator" based on the total Hamiltonian
of the system. 'The trace is performed over the
equilibrium properties of the entire many-body
system, governed by a density matrix

p e sz/Tr(e BK)

where P = I/kT, k being the Boltzmann constant and
T the temperature of the bath. Equation (2} can be
formally integrated to give

@(v)= Re Tr[ pM'U(v}M],

where U(v) is the resolvent operator

U(v)=(I' —iv iK") '-.

(4)

(5)

We will now assume that X~«K, +X, and seek a
solution in which X, is treated perturbatively. Ex-
panding Eq. (5) and solving iteratively, one then
obtains

U(v) = U'(v}+ U'(v}G(v)U'(v),

where U'(v) does not contain K, and is given by

U'(v}=(I' —iv —iX," —iX,") '.

(6)

'The interaction terms are collected in the opera-
tor

(8)

Since the bath does not influence directly the radia-
ting system (i.e., [X„SC,]= 0), and assuming Kr

As described in the introduction, let the Hamil-
tonian of the entire system be given by

o+ +r+ s.
Here, K is the local ion Hamiltonian, K, de-
scribes the bath outside the central ion, and K~
gives the interaction between the two. 1he Moss-
bauer line shape of radiation emitted by a system
with the above Hamiltonian can be written"'
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Using the fact that M operates only on nuclear
states, Eq. (4} can now be explicitly written

qb(v)=Re g (i Ip, Ii)(i IM If&(f'IMIi')

(10)

i,ii, U v
' 'i,'i 'i,' i, p, i,

s'

Here, the elements of the Liouvil le operator for
the entire system are labeled by eight indices gov-
erned by Eqs. (10). Following Fano, "we obtain

i, p, i, i,ii, U v 'i",i'i,'
&s&s

= (fi
I
[I' —iv —i3C, +R(v)] '

I
f 'i'), (12)

which has all the bath parameters contained in a
relaxation matrix" R(v) given by

R (v) =Q —(G (v)&[-(r- iv —m,") '(G (v)&]",
n= 0

with

(G (v)) = Q (i,
I p, I

i, ) (i, i, I
G (v)

I
i,'i,') .

js&s

(14)

The formal expression for the line shape is thus
given by

P(v)=Re g &iIp. Ii&&iIM'If&

x (fi I[F-iv-i3C„"+R(v)] 'If'I )

(15)

«kT, the density matrix can be expressed as a
product of density matrices corresponding to the
local ion and the bath. Thus,

p =pop, = [e t~o/Tr(e ~~0)] [e ~~t/Tr(e t~t)] . (9)

Because of this, it is convenient to use a repre-
sentation in which X, and X, are simultaneously
diagonal . We thus define the ion and bath eigen-
systems through

with R(v) given by Eqs. (8), (13), and (14). Since
X, and X, are diagonal, the matrix elements of

X," are given by

( fi I3c,
I f 'i') = (8, —E')6tt, 6;;, , (16)

and the matrix elements of R (v} are discussed in
Sec. III. We note that Eq. (15}is formally identi-
cal with several other results, except for the ap-
pearance in the present case of a frequency de-
pendence in the relaxation matrix R(v). In the
resolvent operator approach, however, the result
is obtained with a minimum of difficulty with re-
gard to limits of integration, time ordering of
operators,

etc�

. As Fano" notes, the assumptions
used here are very weak, primarily in the form
of the Hamiltonian, Eq. (1), and in the factoriza-
tion of the density matrix, Eq. (9). In addition,
there is an implicit assumption that the series of
Eqs. (8) and (13) converge. This relies on the
physical assumption that the bath has a very large
number of degrees of freedom. As a result, the
eigenvalues of H, will cover a large range of val-
ues. On the average, U'(v) [Eq. (7)] will be small
compared to 3C z, and the product U'(v)3C& will
be effectively small. " Given that, however, R(v)
can be cal cul ated to any degree of approximation
desired. In Sec. III, we will calculate R(v) to sec-
ond order in X~

III. CALCULATION OF THE RELAXATION MATRIX

Combining Eqs. (7), (8), (13), and (14) gives
R(v) to second order in 3C t as

R (v) = —( G (v))

isis
x (i,i, I3Cz" (I'- iv —i3C, —i3C,

"
)

x 3c," Ii,'i,'), (I'7)

where we assume without any loss of generality
that the first-order contribution vanishes, (3C z&

0. Making use of the properties of Liouvil1 e op-
erator s,"the matrix element of the relaxation
matrix can be expressed in the integral form

«e'" "'*.'. 2 e*" ~ " ' "&f&. 13' I
f "i"&& f"i"I3C.«}

S S fit gt t
S

+ 5ff 6g g
e'" o o ' " i'i,' XI t i"i," i "i,"XI ii,

(18)
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where

~ (t) s(3c()t~ s in-~t

We next assuage that the coupling between the bath and the local ion can be written

(19)

(20)Xq(t) = QK~F~(t),
a

where K' depends only on operators of the local ion and F'(t) describes the bath variables. Equation (18)
then becomes

-e"'-*'"'"&f I)&" If'&('I)&'I(&) . (21)

It should be pointed out that the bath enters in
above the expression only through the correlation
functions which are assumed to be symmetric in
time and are defined by

(F'(t)F' (o)) =».[p. F'(t)F~ (o)] . (22)

For any assumed form of the correlation function,
one may then use Eqs. (15), (16), and (21) to cal-
culate the line shape. Compared to previous theo-
ries, the form of the relaxation matrix appears
rather complicated, being dependent on the hyper-
fine frequencies, but its relation to previous work
is clear. One may suppress the v dependence of
R(v) in two possible ways. The first is to adopt
the secular approximation, whereby one includes
the intensity only in the vicinity of a transition,
and thus little is lost if we take hv = E,' —E,. Then
Eq. (21) becomes equivalent to the results of Hirst'
or of Hartmann-Boutron and Spanjaard. " More
stringently, and what has always been done in
practice, is to make tbe zohite-noise approxima-
tion This is equ. ivalent to saying that (F'(t)F' (0))
fluctuates with frequencies much greater than the
unperturbed hyperfine frequencies; i.e., there
exists a correlation time 7, such that v, = I/r,

»(Eo~ E,')/h-In th.at case, the time integrals in
Eq. (21}are strongly dominated by the rapid de-
cay of the correlation functions and we may ap-
proximate, for example,

dt exp[- Ft+ i vt+ i(EO -Eo)t/k](F'F+ (t)}
0

(F'F'(t)) dt -=J„.(0), (23)
0

(F'(0)F' (t)) = (F'F''}e ""'
Then Eq. (21) becomes

(24)

where J„.(0) is a spectral density function evaluat-
ed at zero frequency. Equation (21) then reduces
to results previously obtained. '~"

In general, Eq. (21) cannot be cast into a more
useful form without an explicit assumption con-
cerning the form of the correlation functions. Very
few specific calculations of the correlations func-
tions exist. For illustrative purposes, we will
adopt the stochastic approach of Kubo and Toyabe. "
We presume that the random variation of the bath
parameters is stationary, Gaussian, and Markof
fian, and take

(f
I

&( & ) If ' )= I:&F.&~& (~n I, ~.. (f" ')&f I)&' If"
& &f

' I)&"If '&

+Off, D ~ ', i" i' K~ i" i" K i

where

0,.&f', )(f I&'lf'&&(''I&" I&& -&, (f &'&&Jl&" If' &('I-)&'I
&)

(25}

D„,(f, i) = [I'+ a„,—iv —i(E, —E,')/k] '. (26)
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The WNA is recovered here by taking D„.(f,i)
= I/X„., or J„,(0) = (F'F~)/X„, .

IV. SPIN-SPIN INTERACTIONS IN CUBIC SALTS

'The above formalism is applicable to a wide
variety of mechanisms. W'e will consider here
the case in which the Mossbauer atom is in a con-
centrated paramagnetic salt at low tempera-
tures, where the dominant relaxation mechanism
arises through the dipole-dipole coupling. Further
we assume a "rigid lattice" so that the phonons
do not modulate the dipolar coupling. 'Thus, the
energy conservation is achieved within the dipolar
coupled spin system alone, rather than through
energy transfer into a phonon bath, conduction
electrons, etc. In such a system, X, contains the
local hyperfine and Zeeman energies, K, contains
the spin dipolar and Zeeman energies for the rest
of the ions (outside the local ions), and K, is the
dipolar energy between the local ion and its neigh-
bors. This last term can be written

X,(t) = S h(t)
I

=S,h, (t)+ z[S,h (t)+S h, (t)], (2V)

where S is the electronic angular momentum of the
ion and h(t) is the time-dependent field set up by
the neighbors, with components

2

h, =g ~, z [(1—3cos'8&)S,,——,
' sin8&cos8&

8„$,) are the coordinates of the jth neighbor with

respect to the central ion. We recognize that the
form of Eqs. (27) and (20) are the same with the
K' being components of S and the E' being com-
ponents of h. Thus the relaxation matrix involves
matrix elements of S and correlation functions of
h(t).

Direct evaluations of the correlation functions

(h, hj(t)) are not presently available. Calculations
have been published" utilizing the "truncated" di-
polar Hamiltonian, but these are not applicable
here. We should point out that in KPR and NMR
discussions of spin-spin interactions, it is com-
mon to retain only the first term in each compon-
ent of Eqs. (28). This "truncated" Hamiltonian
arises because only those terms are energy con-
serving in the preyence of the external magnetic
fields. However, for the case of zero-field relaxa-
tion or in situations where external magnetic fields
are small compared to the dipolar field, it is im-
portant to retain the full spin-spin Hamiltonian of
Eqs. (28). In the absence of calculated correla-
tion functions in. our case, we shall assume them
to be of the form of Eq. (24). In addition, we shall
make certain assumptions which are valid for the
cubic system at high temperatures (see Appendix

A), viz. , that the spins along different directions
are uncorrelated, that the rms values of the di-
polar field in all directions are equal, and that a
single correlation frequency v, —= X,& applies in all
directions. Thus we have

x(e '~~S~. + e'~&S, )], (2Sa)
(ap~ (t)) = 5,~ (ap, (t)) = —.'(a') e-""5„,, (29)

'"z [--,'(1 —3 cos'8 )S

-3 sin8& cos8,.e'~&S&,

—-', sin'8, e"~~S, ], (28b)

(28c)

Here g is the electronic gyromagnetic ratio of the
central ion, g~ that of the jth neighbor, and (r~,

(h,h, (t)) = (h,(t)h,), (30)

where q=x, y, z. Equation (30) assumesthecorre-
lation function to be symmetric in time. The re-
laxation matrix [Eq. (25)] then becomes

where (h')= (h2)+ (h2)+ (h', )=3(h2). We furthermore
require

(31)

where W = (h', )/v, = 3 (h')/v, . (33)

D(f, i) =[I'+ v, —iv —i(E~~ —E~~)/h] ', (32)

and K'=S' for q =x, y, z. We note that for this
cubic case, the WNA merely replaces D(f, i) by
v, ', which can be factored out of the large paren-
theses in Eq. (31). Thus the bath variables enter
only through a single "relaxation frequency"

Equation (31) then becomes identical with results
obtained assuming the WNA." In the following,
we will consider line-shape calculations using
Eqs. (15) and (31) for specific values of (h2) and

v,. In order to demonstrate the influence of a full
theory without the WNA, we shall compare cal-
culations with and without the WNA.
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Q*=AI ~ S -ggsSQ„, , (34)

where A is the hyperfine coupling constant, g is
the gyromagnetic ratio for the 1",-state, and S = 2.
A similar Hamiltonian without the hyperfine term
exists for the nuclear ground state so that the
Liouville operator X," canbe formed. 'The static
features of the Mossbauer hyperfine spectra for
this case have been discussed by us previously. "'"

Figure 1 shows spectra calculated using Eqs.
(15) and (31) with H,„,=0, A = -699 MHz (= -10.28
mm/sec), I' = 95 MHz (= 1.4 mm/sec), and (h', )
= 4.62 x 10' MHz'. Three spectra shown by the
solid lines correspond to different values of v,. For
instance, in Fig. 1(a), v, is 2039 MHz. The spec-
trum is a typical two-line pattern for a '"Yb, I',
level case with slight distortions in line shape
and relative line intensities (from those expected
in the static situation) due to relaxation effects.

I I I I I I I

We now use the above formalism to calculate re-
laxation spectra, using parameters which are per-
tinent to the data to be discussed below. We con-
sider the 84.4 keV, 0'-2' resonance in "'Yb. We
take the Yb' ion to be in a cubic crystal field with
the ground state being a well-isolated I', Kramer's
doublet. " In the presence of a small external field,
H,„„the local ion &amiltonian for the nuclear
excited state is

An identical spectrum can be obtained using the
WNA with W=206 MHz. This value is very
close to (h2)/v, = 226 MHz. Thus in this case
where v, =3A, the WNA is nearly valid. In
Fig. 1(b), we have v, =2A, and the line shape
cannot be well reproduced using the WNA unless
the values of 8' and A are made parameters. The
line shape, for example, can be reproduced in
the WNA by setting W= 287 MHz (compared to
(h', )/v, =340 MHz), and A = -795 MHz (compared
to -699 MHz). Thus the WNA analysis of data with
v, =2A will result in relaxation and hyperfine pa-
rameters which are not physically correct. Fi-
nally, in Fig. 1(c), we consider v, =A. Here the
dashed line represents the best approximation to
the line shape using the WNA theory. Qne sees
that the detailed structure of the true spectrum
is considerably more complicated, and cannot be
reproduced by a WNA calculation.

The solid lines in Fig. 2 show the spectra cal-
culated using no WNA, with a fixed value of v,
= 680 MHz (v, =A) for different values of (h',). The
best approximation to these spectral shapes using
the WNA is shown by the dashed lines, and dis-
crepancies are clearly visible in all the cases.

Figure 3(a) shows the static hyperfine pattern
calculated for the case of an external magnetic field
of 450 G. The presence of the field removes the
degeneracy of the hyperfine levels and causes sub-
stantial line splitting as described previously. "

(b

(c
UJI—

I

-30 -20 90 0 IO 20 30
VELOCITY (mm&sec)

FIG. 1. Mossbauer relaxation spectra for the 0 2
transition in Yb for, S= ~ in a cubic symmetry, cal-
culated using the relaxation matrix of Eq. (31), with A
=-699 MHz, 7=95 MHz, and (h )=4.6x10' MHz'. (a)
v~ = 2039 MHz; (b) v~ =1359 MHz; and (c) v~ = 680 MHz.
The dashed line in (c) represents the %NA line shape.

I I I I I I

30 -20 -IO 0 IO 20 30

VELOCITY (mm/sec)

FIG. 2. As in Fig. I, but with v~ =680 MHz, and for
(hg2) values of (a) 9.2x10 MHz (b) 2.8x10~ MHz ~

and (c) 5.5x10 MHz . The dashed lines represent the
WNA line shapes.
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I l I

I—
CA

LU

l l l I l I I

-30 -20 10 0 IO 20 30
VELQCITY (mm/sec)

FIG. 3. As in Fig. 1, but with H~t=450 G andg
=2.585 (Ref. 23). (a) v~=0; (h )=0; (b) @~=2.0x105
MHz, (h ) =6.1x10 MHz ~ (c) v~ =2.0&&10 MHz, (h )
= 6.8&&10 MHz . The dashed line in (c) represents the
WNA line shape.

+czr = W[~(04+ 5O.)+ (I 1 —"l)(O —210 )], (35)

where the notations from Ref. 18 have been used.
The Hund's ground state I', &, of the 7b" ion is
split into three electronic levels corresponding to
the irreducible representations 1„ I'„and 1",.
Point-charge model calculations of the parameters
W and x in Eq. (35}predict the ground state to be
a I', doublet with an effective spin S = &. This has
been confirmed from the analysis of the suscep-
tibility" and Mossbauer studies" on this material.
The first excited state (I',) is about 400 K above
the ground level, "'"too high to make significant
contributions at low temperatures. The hyperfine
interaction Hamiltonian is hence given by Eq. (34}.
Previous work" has measured A by electron-nu-
clear double resonance (ENDOR) for '"Yb in
Cs,NaYbCl, . Converting their value to "'Yb, we
obtain lA l

=699 MHz. The negative g value for the
I', state however makes A negative. Hence A
= -699 MHz will be fixed in all our data analysis.

Spectra obtained at 4.2 K in external fields of
0, 350, and 450 G are shown in Fig. 4. The data
with 8,„,=0 [Fig. 4(a}] has been analyzed using
the WNA, and A= -699 MHz. The result is shown
by the dashed line in the figure. Two problems
arise here:

(i) The fitted curve does not agree in detail
with the data. The discrepancy cannot be re-

Notice that some of the hyperfine frequencies oc-
cur at rather large energies of 2000 MHz (30 mm/
sec}. Figure 3(b) shows intermediate relaxation.
spectrum with v, -300A. In this case, the WNA is
certainly valid, and the line shape shown was
exactly reproduced with such a WNA calculation.
Figure 3(c) shows the spectrum with roughly the
same value of (h',)/v„but with v, =3A. The dashed
line is the closest line shape obtained with the
WNA. We would like to point out that v, =3A was
sufficient to allow the WNA for the case with
H„,= 0 spectrum [Fig. 1(b)]. However, here, due
to splitting of hyperfine levels by the external mag-
netic field, one has hv, approximately equal to the
hyperfine transition energies, and hence a notice-
able discrepancy.

QQ—

Ql—

0.2—

—0.0
Ql—

I—
0 2 (

~ 0.3—
~) 0.0

mQl—
"02- '

I & I t I ~

l
& I & I & I

V. ANALYSIS OF RESULTS FOR Csea YbCI&

We now report the Mossbauer spectra of
CsPIaYbC1, measured with and without an external
magnetic field using the 84.3-keV 0'-2' transition
in "Yb, and discuss the line-shape analysis using
the theory developed in Secs. I-IV.

The compound C82NaYSClg has the ideal cryolite
structure, in which. the Yb" ion sits on a site of
O„symmetry. " The cubic crystalline electric
field experienced by the YkP' ion can be described
by the Hamiltonian"

Q4—

I l I & I I I & I i I i I

-30 -20 -l0 0 IQ 20 30
VELOCITY (mm~sec j

FIG. 4. Experimental spectra of Cs2NaYbCle measured
at 4.2 K in external magnetic fields of (a) 0 G; (b) 350
G; and (c) 450 G. The solid lines are least-squares fits
to the data using the relaxation matrix of Eq. {31)and
the dashed lines represent the fit with the WNA in the
relaxation matrix.
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I } I } I

I i I } I i I } I i I } I

-30 -20 -IO 0 IO 20 30
VELOClTY (mm/sec)

FIG. 5. Mossbauer paramagnetic hyperfine structure
measured with a source of Tm in Cs2NaYC16 against
a single-line absorber of YbA13. 'The Spectrum has been
plotted with the absorber velocity convention.

moved by including absorber thickness effects, '4

or the dispersion term previously observed for
the '"Yb resonance. "' As we have previously
discussed, " if we allow A to be a variable, then
an improved fit to the data is obtained with A being
7% greater than the ENDOR value, and even 4%
greater than the free ion value -This i.ncrease in
A is nonphysical, since we know of no mechanism
in an insulator to increase A above the free-ion
value for the rare-earth ions.

Another test of whether the A anomaly is related
to relaxation effects is to measure in a situation
identical to the ENDOR experiment, viz. , per-
forming the Mossbauer experiment on the dilute
impurity of Yb in Cs,NaYC1, . This was done as
a source study in which we doped Cs,NaYCl, with
0.1% radioactive "'Tm. The spectrum measured
against a single-line YbAl, absorber is shown in
Fig. 5. The analysis gives the value of A = -(685
+40) MHz in excellent agreement with the ENDOR
work. In addition, we see no relaxation effects
at all as to be expected for a Kramers doublet in
a nonmagnetic host at low temperatures.

(ii) As shown in Sec. IV, the WNA leads to de-
scription of the spectrum in terms of a single pa-
rameter W= (h', )/v, . The dashed line in Fig. 4(a)
arises from a value of %'= 212 MHz. In the Appen-
dix A, we calculate (h',)= 2.99 x 10' MHz' using a
dipolar sum. This permits us to estimate v, = (h',)/
W =1400 MHz. Indeed, v, =2A, and as discussed
in Sec. IV, the WNA is not valid for such a case.
The solid line in Fig. 4(a) shows a fit with the form-
alism of Sec. IV using the relaxation matrix of
Eq. (31). Here we have fixed A to the ENDOR val-
ue and made (h', ) and v, parameters in a least-
squares-fitting procedure. One sees that the line-
shape discrepancy is now resolved. The fit yields

TABLE I. Values obtained for the dipolar bath param-
eters in Cs~NaYbC16 at 4.2 K and various external fields.

(kOe) (10 MHz ) (103 MHz) ~
(a,') /vc
(MHz)

W
(MHz)'

0
350
450

2.8 +0.0
3.3 +0.7
4.1+0.7

0.8 +0.2
1.1 +0.2
1.3 +0.2

336 + 150 187 +15
308 + 100 100+ 15
305 +70 114+15

Obtained from data using frequency-dependent relaxa-
tion.

Obtained from data assuming a white-noise approxi-
mation.

(h', ) = (2.8 + 1.0) x 10' MHz', in agreement with the
calculated value, and a spin-correlation frequency
v, = 830+200 MHz.

Data taken in small external fields comparable
to the dipolar fields in this salt (253 G, see Appen-
dix A} are shown in Figs. 4(b} and 4(c}. Again, the
dashed lines show the WNA fits, and the solid-
lines the fits using the frequency-dependent re-
laxation matrix, in both cases keeping A equal to
the ENDOR value. The results for the relaxation
frequency W obtained from the WNA fit, and the
dipolar bath parameters (h,') and v, from the fits
using the frequency-dependent relaxation matrix
of Eq. (31) are summarized in Table I. The gen-
eral features visible from the table and the figure
are the following: (a} As the external field in-
creases, the hyperfine transition frequencies also
increase" and become more comparable with v, .
As a result, the line-shape distortions from the
WNA calculations become increasingly more pro-
nounced. (b) The values of W obtained by utilizing
the WNA differ by a factor of 3 from the values
estimated using (h,')/v, found when a more correct
line shape is employed using Eq. (31). (c) The
value of (h',) is found to be nearly field independent
for the values of H,„,used, since g p,~H,„,«kT,
and in agreement with the calculated value. (d)
The value of v, appears to be weakly field depen-
dent.

Although the present theory gives marked im-
provement to the line shape over a WNA approach,
some discrepancies are still visible in the mea-
surements with the external magnetic field. . This
is partly due to the specific form of the correla-
tion function that we have assumed [Eq. (29)]; in
particular, to the assumption that the correlation
function is isotropic even in the presence of the
external fields. The present development, how-
ever, allows one to now begin a detailed considera-
tion of such assumptions and to test the theoretical
results against experimental spectra.
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VI. CONCLUSIONS

We have considered the question of the white-
noise approximation in the context of the calcula-
tion of paramagnetic relaxation line shapes in
Mossbauer spectroscopy. An expression for the
line shape was developed using a resolvent opera-
tor method. This avoids some of the complications
of the other approaches to the problem and explicit-
ly displays the manner in which the relaxation ma-
trix is to be calculated from the ion-bath interac-
tion Xl. This matrix was calculated explicitly to
second-order in Xl, and then applied to a discus-
sion of spin-spin relaxation in a ' rigid lattice. "
In the absence of more concrete information, an
exponential form was assumed for the spin-spin
correlation functions and the resulting expressions
were applied to illustrate the influence of the fre-
quency-dependent relaxation matrix on the line
shape. Finally, the theory was used to explain
the spectra for '"Yb in the cubic compound
Cs,NaYbCl, . Discrepancies which were present
if the while-noise approximation was assumed
were resolved. The detailed analysis yielded
values for the mean-square dipolar field in this
material which was in agreement with calculation.
The spin-correlation time &, was found to be
(1.2 +0.3}&& 10 ' sec. The present work constitutes
the first direct application of Mossbauer spectro-
scopy to a precise measurement of spin-correla-
tion times.

APPENDIX A: CALCULATION OF MEAN-SQUARE

DIPOLAR FIELD COMPONENTS

In evaluating the correlation function of Eq. (22),
we must consider the bath averaged quantities
(h,h, , ) where the components are given by Eqs.
(28). If H, «kT, and gpsH, „,«kT, (hp, )is pro. -

portional to some static spin correlations at in-
finite temperatures. Using latin indices to de-
note lattice sites and greek indices to denote Car-
tesian components of the spin vector, we have
for jWk,

&S,„S,.)= (S,„)&S,.)=0

and

(S,„S,„)= (S„S„)= (S'„)5„„=-', (S')5„„. (A1)

+ 2 sin 8g cos 8~((Si)+ (S~))]
2

=-,'g'p~sS(S+ I}g g,' (1+3cos'8,.). (A2)

A similar procedure for the other components
yields

(h', ) = (h', ) =+g' psS(S+ 1)g,' (5 —3 cos'8,.) (A3)

and

(h, h,) = (h„hg) = (hp~) = 0 . (A4)

For the case of I', state in Cs,waYbCl„we have
g= --,', 8 = —,', and the distance between the near-
neighbor ions is 7.54 A. Carrying out the lattice
sum to the third-nearest neighbors in the cryolite
structure yields (h'„) = (h'„) = (h', ) = 2.99 x 10' MHz~.
We may define an rms dipolar field H„by

H, = S((h'))'" =g q,SH„

where (h') = 3(h,'). This gives H, = 253 G.

(A5)

In the second line of Eq. (Al}, we have used the
translational invariance and the infinite-tempera-
ture properties of the spin correlations.

Using these relations, it follows from Eq. (28a),
2

(h',) = g' p~s g,' [(I —3 cos'8~)'(S', )
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