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Randomness is introduced in the off-diagonal elements of a tight-binding Hamiltonian. The question of
localization is examined in this model Hamiltonian using two different methods: The localization function
method and a self-consistent method based on an integral equation for the probabihty distribution of the self-
energy. It is found, using both methods, that the presence of only off-diagonal randomness leaves the states in
a finite region around the middle of the band always extended. Possible applications of this result are
discussed.

I. 1NTRODUCTION

Transport propex'ties of disordex'ed matex'1als
are closely related to the localization character
of the eigenstates of the system under considera-
tion. A considerable effort has therefore been
made to determine this character in a number of
systems represented by model Hamiltonians that
are simple enough to allow quantitative calculations
but at the same time are believed to contain the
essential physics. The localization problem has
been studied a,lmost exclusively via Anderson's
modeP of a disordered lattice. This model Ham-
iltonian is a tight=binding one,

the sites {n) forming a periodic lattice. Dis-
order is usually introduced by assuming that {&„]
are random variables and that V„=V for nearest
neighbors, zero otherwise. The role of the above,
so-called "diagonal, "disorder on the localization
of the eigenstates of H has been studied extensive-
ly. In one dimension in particular, all states are
localized no matter how small the diagonal dis-
order is.' Randomness in the off-diagonal matrix
elements {V„],"off-diagonal" randomness, has
not been studied in connection with the localiza-
tion problem up to now. There has been no ex-
plicit justification for this, but it has been sup-
posed that off-diagonal and diagonal randomness
would have similar effects on the localization
character of the eigenstates. Recent work' show's
that purely off-diagonal disorder leaves the eigen-
state in the middle of the band (and only this one)
extended in one dimension in contrast to diagonal
disorder.

It therefore became apparent that such an as-
sumption of qualitatively similar effects of dia-

gonal and off-diagonal disorder on the localization
of the eigenstates cannot be made any longer. It
also became necessary to investigate the possibil-
ity of more profound differences between the two,
for two-dimensional and three-dimensional lat-
tices. In this paper we examine the role of off-
diagonal disorder on the localization of the states
within the framework of an Anderson Hamiltonian.
In Sec. II, we discuss the modification of the lo-
calizat'ion-function method' necessary to include
off-diagonal disorder. Section III deals with an
alternative way to examine the same problem, a
self-consistent method, ' again modified to incorpo-
rate off-diagonal disorder. Section IV contains the
numerical calculations and results using the analy-
sis of the previous two sections. Both methods
give the same qualitative results. The main fea-
ture is that the states around the middle of the
band always remain extended in the presence of
purely off diagonal randomness. Discussion of
possible applications of our results and conclus-
ions are finally presented in Sec. V.

II. I.~E) METHOO

We consider a particle in the state
l 0) at f=0,

and following the analysis developed in the local-
ization function method s we examine the prob-
ability I';; of finding the particle in the state lf)
at t=. PMW0 imp1ies 1ocalized states while P@
= 0 means that the states are extended.

It can be shown that

s ~ lmG;(E - is)P@= lim-
s 0+m „2is [n;(E+ is)--&;(E-is)] '

where Q; is the diagonal matrix element of the
Green's function in the {ln)jbasis and &6(s) the
self-energy at the site 0 defined by &,(E)=E- e,
-G, '(E). From (2.1) it becomes apparent that one
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needs to examine the properties of the self-energy.
Expressing the self-energy &,(E) in a renormalized
perturbation series'"' (RPS), we obtain

&z(E)=Q vo-(E (--—&o) 'v--
n45

~0

+ g v;;,(E-e-,, -~', )-'v-..-.(E ~, ~';)-'v;;
n/0

n ~nyO

P ~I" "'(E&&
I
~"'(E)

I

«"'"'(E)j„=I

with ~ &Q & 1 and

O' V I/N
I (E) lim V& 1+ Qo QORT GonT ~ ~ ~ ~ ~ hs

(2.7}

among the T,'.""s it can be shown that a non-neg-
ative function L(E}can be defined, such that the
Mth-order term

I
M"'(E)

I
is sharply distributed

around L"(E), i.e. ,

+ 0 ~ ~ (2.2) (2.8)

&-(E)

1 1
V~~+ 0 0 ~

On n ~ nip ... ln nO

+ 0 ~ 0 (2.3)

The method discussed in this section assumes
that convergence of the BPS is equivalent to the

convergence of the renormalized perturbation ex-
pression, and focuses on the convergence of the

HPS. We therefore examine the probability dis-
tribution of

N

»»~z)=T TT '- '}v...
t"- 1

(2.4)

where e, = E-&,- 4o """' and the sum extends
over all possible terms of Mth order. Each term
in Eq. (2.4) may be represented, in a diagram-
matic way, by a self-avoiding polygon. '"6 For
a specific term j the ccntribution to 4',~(E) is

N V~(v)
0 (2.5)

If we define X,'"' as XP' = ln
I
7,'"'

I, it follow. s that

X,'."'= ln V. . . —1.n e, (2.5')

(X,'"'& = M ln(V ie),

where Vand e ark defined by

NlnV= ln V] ... (2.6a)

N Ine =g ( ln
I
c

I
(2.6b)

Under the assumption of strong correlation4'6

where 4~I is the self-energy at site n when the site
5 has been removed (ez-~). We can use (2.2) to
get &0, 6-', etc. , and reinsert back to (2.2). We
then get a continued-fraction-like expression' (the
renormalized perturbation expression)

The summation of (2.8) is over all indices

n». . . , n„restricted to all self-avoiding paths of
order M, starting from and ending at the site f:

InGO~~T " ~i-T=(inlQO&nT "'~ T&T-&lb
n& n~ ~ ~av

= (lnl(E- e-.—LH'""- ) 'I)ni RV '

(2.8)

Thus if L(E}&1 the HPS converges and the eigen-
states are localized. If I.(E)&1 the BPS diverges
resulting to extended states. L(E,) = 1 defines the

mobility edges.
The expression (2.8) for L(E) is too complicated

for quantitative calculation. First, it conta, ins an

infinite number of Qreen's functions, and second,
in general, all the 6' 1 '

& 1 cannot be calculated.
Thus Licciardello and Economou' introduced the

additional approximation (which is very good as can

be seen by explicit numerical checks'} Go.'T'"' ~ 'T-T

= G-'~-1 and finally our expression reduces to
n~

f, (E) =ZVG~T T, - (2.10)

where 6 ~( T)Eis the logarithmic average of the

n;-site Green's function with the n,„,site excluded,
K the connectivity of the lattice, and V is given by

(2.Ga).
As it has been pointed out already' there are

pathological probability distributions, for which

the expression (2.8) for L(E) fails. The assump-
ti.on of strong correlations for the T~""s effective-
ly takes into account the contributions from all
"typical" paths, neglecting contributions from a

very small number of highly "irregular" paths
(this is done in practice by ignoring the long tails
in the distribution of the T,'-""s). In most cases
the error introduced by this approximation is very
small. Nevertheless if the contribution of the
average "typical" path is zero (for some specific
probability distribution), one can no longer rely
on this approximation. As an example we con-
sider the case of a binary alloy of atoms A and B,
with the transfer integrals V~ = V» =0 reflecting
the fact that the overwhelming majority of paths
would give zero contribution to I ". However, it is
still possible for the electrons to become delocal-
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ized if they find paths of A atoms alone. 'The per-
centage of such paths tends to zero as M -~ and
they were neglected in obtaining the expression
(2.8). In such a case the arithmetic average may
provide a useful alternative to the logarithmic
one. The arithmetic average is exact in the above
described case but this is not true in general.

Returning to (2.10), for a given probability dis-
tribution for the off-diagonal matrix elements of
the Hamiltonian the calculation of V is straight-
forward. What remains to be calculated in (2.10)
is the Ga'-&(E). This quantity cannot be calculated
exactly except for the case of diagonal only dis-
order with Lorentzian probability distribution of
the &„'s.' Qtherwise some approximation must be
employed. The most successful approximation is
the coherent-potential approximation (CPA) and
its extensions. ' " Before we give a brief presen-
tation of the CPA we note that the expression for
L(E) is not actually so sensitive to the details of
the approximation for G&! ~(E) which affect only
minor quantitative features. The main qualitative
features are independent of the approximations
used for obtaining G-,'~-& since they stem from the
continuous behavior as a function of the degree of
disorder I) between the two extremes S-0 and
S-~ (in both extremes G&~-~ can be calculated

n&

without the use of any approximations).
In this spirit we introduce the effective Hamil-

tonian"' "

H, = nod n+ n Z~ (2.11)

where Z~ and Z,~ are complex quantities (diagonal
and off-diagonal parts of the self-energy) to be de-
termined self -consistently.

1he use of an effective Hamiltonian which
couples just nearest neighbors is an approxima-
tion in calculating the Green's functions. It has
been shown" that for the case of binary alloys,
wi. th the assumption V„'~ = V»V», more elaborate"
techniques produce the same G„as the simple
CPA [Eq. (2.11)j. Discrepancies exist when cal-
culating matrix elements like G„. It is, however,
expected that such weaknesses of the CPA exten-
sion used to treat off-diagonal disorder do not ef-
fect our results qualitatively. More sophisticated
techniques are expected to introduce changes in
the specific numerical results only. The details
of the CPA and the results of the numerical cal-
culations are reported in Sec. IV.

The use of the CPA leads to an explicit approxi-
mation for L(E):

L(E)=ffv
I ~a,' ~(E-~d(E) ~~(E))l~

L(E) If V 8 (E g g ) net( dl od~ mn( d$ od)

(2.12a)

(2.12b)

III. SELF-CONSISTENT CALCULATION

In this section, we describe an alternative way'
to deal with the localization problem, which
focuses on the convergence of the iteration pro-
cedure in the RPK by approximating at the same
time the RPS by its first term. Our results are a
generalization of Ref. 5 to include off-diagonal
disorder. Using this approximation, Eq. (2.2) for
the self-energy &(E) reduces to

&,' '(z) = Q V,~ [z —e~- &~ '(z)] '.
Our notation uses the symbols 6,'. ', E, &], &' in-

(3.1)

where m and n are nearest neighbors. We denote
by 9 the periodic Green's functions corresponding
to the specific lattice under consideration.

For various probability distributions for the
V„'s and different types of lattices, (2.12) pro-
vides the necessary criterion for deciding whether
the states are extended [L(E}& 1] or localized
[L(E}&1] as the energy is changed across the en-
ergy band.

stead of S„R,E„4,used in the work of Ref. 5.
Self -consistency requires that the probability

distribution for 4 be the same in both sides of
(3.1). If z=E+ig and &,'. '=4,'-i&', one can
separate the real from the imaginary parts of 4:

I Vgg I'(E- &g- &,')
Q (E ~ gl}2+ (q+ gll)2 I

I V, I'(q+ &,")~ (E- ~, —n,'.)'+ (q+ ~,")2

(3.2a)

(3.2b)

l
v„.l'(1+ e, )

Ander'son' argued that an upper limit to the
width of the probability distribution for the site
-energies in producing localized states can be
found, if the real part of the self-energy &,'- is

(3.3)

I

For regions of localized states ~," approaches zero
as q-0 except at the set of points on the real E
axis corresponding to the positions of the localized
states. There, introducing the quantities 8, = 4,"/g
and taking the limit q-0, one can write
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ignored in Eq. (3.3). Using this "upper limit" ap-
proximation we obtain for 8,.

~ ~v„~'(1+8,)E (E g)2 (3.4)

The probability distribution for 8, is then given by

f(g)= g(g gI uI(s s))
(E af)'-

Qf(8)p(;)q(V, )d dV, d8, (3.5)

where p(ef), q(V(z} are the probability distributions
for the site energies and transfer-integrals re
spectively. Using the integral representation for
the 5 function we find for the Laplace transform
of f(8():

f,(s)= fds dVI(d s)q(V)f, (s —.)s-" ld

(3.6)

Actually 4& is correlated with 8~ in such a way
that" 8& - const&&z' as 4z -~. Hence the large
values of 8, are controlled by the second-order
pole in Eq. (3.3), and as result, "f(8, ) ~8,''2 as
8 -oo.

In the approximate Eq. (3.4) large values of 8,
are dominated by (i) large values of 8( and (ii) the
shifted second-order pole if the probability for its
occurrence is nonzero. The asymptotic form of

f(8, ) is thus 8,' ~; if the pole occurs I' satisfies
the inequality'0& p&I/2, otherwise p simply
obeys the condition 0&P.

Since the position of the pole was treated very
inaccurately, the present approximation can be
considered self-consistent and acceptable only if
it predicts that the asymptotic behavior is not
determined by the pole, i.e., when P & —,

'
~ One can

then conclude that in the framework of the present
approximation those states are localized for which

P satisfying the inequality 0& P&-, exists. If f(8,)

Consequently, the localized eigenstates corre-
spond to energies satisfying the relations

V 2

K dhdVp E-h q V — =1, 0&p&g.

(3 8)

Equation (3.8), in the case of off-diagonal dis-
order only, leads to the following equations for the

mobility edge E;

K dhdVp E,-h q V — =1.V (3.9)

Equation (3.9) is the condition, within the "upper
limit" approximation that connects the mobility
edge [introduced through p(E, x)] w-ith the off-
diagonal disorder [introduced through q(V)].

One can go beyond the "upper limit" approxima-
tion to include the real part of the self-energy.
For q-0 (and therefore small n" since we are
in a region of localized states) Eq. (3.2b) be-
comes

IV(f I'nf'
i ~(E ~ gg)2

(3.10)

and 8; satisfies Eq. (3.3). We see that

8(=+A(f+QB((8f 2 (3.11a)

+II g Q/I (S.lib)

Equation (S.lla} possesses a solution if and only
if (3.11b) does not have a nontrivisl solution.
Keeping this relation in mind and considering the
joint probability distribution f(h(, b( },we get

-8,'~, then f~(s)-I-as~ as s-0; substituting in

Eq. (3.6) we obtain

V
fz, (s)=1 —aKs' dx dVP(E-x)q(v) — . (3.7)

2

f(, , k)')= fII(k;-g''", g k(' — ' ', sv((vq, sl, ks, k)))Udv~ldssdk Idks', (2.12')

where P is the joint probability distribution for the set of quantities V(&, ef, &&, '&'. We have for P

P((v„,~„n„n,"})=Qq(v, )p(~,.)f(~,', n,"). (3.13)

Combinedwith(3. 13), Eq. (3.12) leads to the following expression for the Fourier transform F(k„k,) of
f(ng egg),

2

(k„V)= kUV& f dsdkd) ssdk"g()q('V)f(II', k")sXII —Ik, d k, —sk

or, by changing variables to h=E-gf lehlf $ g+
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F(k„k,)=, dxdy dk', dk', dV dzdzds) f(z, u))5(E-e-x-z}1
11 2 2z2

V' . V'y K
x5(i-q-w)exp(-11, ——(1, , 'i p(c)q(()

dxdk,'dVq(V) P(k,')F k,', k, —, exp ik1(E x)-ik,-—,q-ik, —1 v' . , v' . v'
(3.14)

P(k1) in (3.14) is the Fourier transform of p(z&).
We examine again, as in the "upper limit" case, the behavior of F(k„k,) for small values of k, = -is.

Taking the limit of q-0 we observe that (3.14) becomes independent of k,. Thus the probability distribu-
tion for the real part of the self-energy F,(k, ) obeys the following equation:

K

F,(k, ) = 2— dxdVdk1 q(V)P(k,')F,(k1) exp ik1(E x) ik-, —- (3.15)

For small values of k, = is w-e again expand F,(k„-is) as F(k„-is)=F,(k,)-B(k,)s'I'. After some
algebra we find that B(k,) satisfies the linear homogeneous integral equation

B(k,) =K,[F,(k, )—]''~z dxdVdk1 q(V)P(k', )B(k,') — exp ik,'(E-x)-ik, —.v . , v'
(3:16)

Equation (3.16) can be transformed into a more
elegant form by introducing the functions A(x),
Q(x)'.

Kj EC where K, is an as yet undef ined multiplier:

A "=K,ZA' = Q C„K,X„%L„

A(x) -=— P(k, )B(k,) exp [ik, (E x)]dk, ,-=1 (3.17a)

A'"'= K,SA&"-"=+C„(K~„)"Z„. (3.21)

Then

A(y) K dx dVq(V) — Q y+ —A(x)
V V

(3.17b)

(3.18)

If K,' = A„(E)= max{A„} the term in (3.21) contain-
ing A„will dominate for large values of N, thus
giving

A =- lim A'"'= C„W„;N~~

A(y) = KZA(x),

where the operator Z is defined as

v' v
dV dxq()')Q(i+—

(3.19)

(3.20)

For a localized state of energy E and large values
of e= &"/q the probability distribution of 8 be-
comes" proportional to 8"' ', which implies that
the probability distribution of 6",g(rh") ~ 1}'~2. It
is thus apparent that

B(K1) 0

g~ Q I

or that (3.19) possesses the trivial solutions
only, for localized states. Denoting by {A„),
{%„)the set of eigenvalues and eigenfunctions
of 2, respectively, we attempt to solve (3.19)
via an iteration procedure initiated with some
function Ai'l =P „C„tt„and proceeding by applying

A is a solution of Eq. (3.19). Therefore, if K
&K,(E}, only the trivial solution is possible for
(3.19) in agreement to the original assumption that
tbe corresponding state is localized. A continuous
spectrum for the eigenvalues of Z implies that if
K&K,(E) a nonzero solution exists and the state is
extended. K=K, (E,) determines the mobility
edges.

IV. RESULTS

A. L(E) method

I. Caleulational detuils

As it is mentioned earlier L(E) =KVG-;&-1. We
ag

already mentioned that, using the CPA, Gz~-& can
be expressed in terms of Z~ and Z~ [see Eq.
(2.12)], where the latter defined the effective
medium.

The problem-of determining Zd and Z~ approxi-
mately has been examined in the literature. '""
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(T) =0, (4.2)

from which Z~ and Z~ are to be determined.
There are two linearly -independent equations
implicit in (4.2). We chose to satisfy them in the
combinations@9

(T"a T")= 0 . (4.3)

It should be pointed out here that the 9's as mell

as the quantities Zd, Z~ depend on the crystal
structure, the probability distribution of &, (dia-
gonal disorder) and the probability distribution of

V„(off-diagonal disorder). For real two- and

three-dimensional lattices there are no closed
analytic forms for the 9's. This of course intro-
duces numerical difficulties in the practical de-
termination of 9, Z~, and Z,~. To overcome this
practical problem many authors used model
Green's functions that do not correspond to a real
lattice but reproduce most of the important quali-
tative and semiquantitative features of the Green's
functions for the real periodic lattices. The num-

erical work is thereby greatly facilitated with a
minor sacrifice in quantitative accuracy.

Two of the most common model 9's are the

following.
(a) The so-called Hubbard model which gives

s,",(z- z„z.,)
= 2{@-Z, -[(Z-Z,)2-Z2Z2 ]»2}/Z2Z:„(4.4a)

s,', (s-z„z„)=[(z z,)s"„1]/zz„(4.4b)

(i is a nearest neighbor of the site 0). This
Green's function corresponds to an elliptically
shaped density of states:

Here we present a very brief outline of a method

which suits our purposes Starting from (2.11) we

proceed in this two-site generalization of the CPA

by considering a pair of seatterers at sites a and

b. %e ignore deviations of V from Z involving all
other sites. 'The corresponding T matrix is now

a 2&2 matrix. Using the standard techniques of
scattering theory we obtain for T

t' Vsa-Zd Van-Z~)

(Vh, -Zw Van Za -)

/ sea san) /v~-za v.~-z~) '
(4 1)

Sna & p'~ - Z~ Va -Za &

where 9„,S„are the matrix elements of the ef-
fective Green's function in the site representation.
The CPA condition requires

Bethe lattice. A Bethe lattice (or Cayley tree) is
a treelike structure characterized by the eonnec-
tivity constant K which is one less than the number
of neighbors to a given site. (Such a structure is
depicted in Fig. 1 with K =3.)

Then

P(v, ~) = (1/v)v, j[(v)~- Vo)2+ V,] (4.8a)

.P (c ) = (1/v)r/(f + r ) . (4.sb)

The Lorentzian probability distribution has been
studied extensively in the past, but for diagonal
disorder only. Thus it provides an excellent op-
portunity to compare the effects of off-diagonal
disorder with those of diagonal. In addition it is

S~,"(g-Z„Z~)=2ffj{(lf-1)(E-Z,)+ (If+1)

x[(z-z,)' 4ffzm„]'~'},

(4.6a)

SsL(S Z„Z„)-[(E-Z,)S,", 1]/ZZ, (4.6b)

which gives

s"„-'(z-z„z„)
={(z-z,) [(z-z,)'-4fcz2„]"'}/2zz'„.

(4.7)

(The square root must be taken with positive imag-
inary. part to secure the correct form of 9 as E
-~.) The real lattices Green's function can be
approximated by 9» with the same S or the same
K.

In this paper calculations were done using both

the Hubbard model and the Bethe-lattice Green's
function. This does not imply that localization is
exa,mined in the context of a Bethe lattice. Qne

develops a first-principles theory which leads to
(2.12). ft is at this level where the local proper-
ties of the specific 9 enter. As the results con-
firm, it makes little difference which specific
Green's function is used, thus indicating that our
conclusions are independent of the calculational
details.

For the probability distributions of the potential, .

we have considered the following cases:
(i) Lorentzian:

s(S) = (2/vs2V )(Z2V2-Z2P~2, (4.5)

where S is the coordination number of the lattice.
(b) The Green's function corresponding to a, I IG. i. Portion of a Bethe lattice with K =3.
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easy to deal with; the CPA Eq. (4.3) determining
Z~ and Z~ can be solved exactly giving

z, = -i(r+ v, ),
~~= Voy

(4.9a)

(4.9b)

independently of the lattice under consideration.
For this distribution V is easily calculated:

lnV= in~x~p(x)dx= —', +dx
00 v,

v „(v,-x '+ v',

—in(V2+ V2)II2 (4.10)

v=(v'+ v')' '

(ii) Semicircular:

p(V„)= (2/vV;) [V', —(V„-V,)2]'~2 (4.11)

and no disorder for the &&'s. Note that this distri-
bution does not have the long tails of the Lorentz-
ian. The CPA gives, for Z~ and Z~, '

1~d= 4Vi~« (4.12a}
j.~.a= Vo+ ~V F80~ ~

The calculation for V was performed numerically.
(iii) Binary alloy distribution: This case is

physically very interesting, because it can be
easily realized and rich in effects. For an alloy
composed of A and B atoms of concentrations x
and 1-x, respectively, the site energies can as-
sume two values zA and &B with probabilities x
and 1-x. The transfer integrals can take the

s VAAy VBBy VAB VBA depending on what
kind of atoms they connect. As it has been shown"
if V'„B=VAAVBB, the CPA equations take the simple
form

x(&„—Z )/D„+ (I-x)(e —Z )/D =0, (4.13a)

x(V~~ E~)/DL+(I -x)(VBB E»)-/Ds= o-

that predictions about the localization character
of the eigenstates can be made by considering the
quantity

P»(E) = lim —(Goo(E+ is) G„(E is-)), (4.15)
1

s O+WS

and that more generally (G(E+is)G(E is}}-deter-
mines average transport properties. The calcula-
tion of the average in (4.15) is done using CPA
or some other similar technique. Such calculations
conclude that localization cannot take place. This
is something expected since P« is a non-negative
quantity, and localization is decided on whether
Poo is zero or not. Any app roxi mation, like the
CPA, applied to a direct calculation of averages
of the form (4.15), is expected to modify the out-
come seriously. Small errors have a dramatic
effect on the final results. On the other hand the
L(E) method uses the CPA at a much later stage
of the calculation. It is not any more a question
of comparison of a non-negative quantity with zero.
It is rather the comparison of the localization func-
tion with unity. The CPA definitely has an effect
on the value of the energy where L{E,) = 1. But it
is only quantitative corrections that are now ex-
pected. The sensitivity of a direct use of CPA to
calculate expressions like (4.15}is not present any
more.

(b) The second point is the replacement of the
logarithmic average of ~G„"'-&~ in (2.10) by its CPA
analog ~8"„~-&~ in (2.12a). To first order in the T
matrix the average of any function of 6 can be re-
placed by the same function of the CPA Green's
function 9. The truth of the above statement can
be seen by considering a function of the exact
G,F(G). Expanding F(G) we get

F(G) =F(8)+ —(G-Q).~F
8G g

where

(4.13b)
To first order in T, (G- 8) = QTQ which implies
that

Dx&s)= —{ x~s& — a 00

—(VAN(ssi- E»}[{E-Ed}8«-Il»~.
(4.14)

Before we conclude this section the following re-
marks should be made concerning the use of CPA
and the L(E) formalism:

(a) We would like to clarify first the physical
interpretation of the use of the CPA. Any calcu-
lation of averages of the form (G«), (G«G«}
using CPA techniques is bound to contain errors.
In a series of papers" "various authors argued

(~(~))=~(~) (
—,'G) ~(T&~

Using the CPA condition we obtain (F(G))=F (8).
To this extent, the relationship (1n~Gp-~ ~)
= ln

~

8„"~-~
~

which was implicitly used in deriving
(2.12a) from (2.10) is justified.

2. Results

For the Lorentzian probability distribution and
the Bethe-lattice model for 8 we obtain for L(E),
by combining Eqs. (2.12), (4.6), (4.8), and (4.10),

L(E)= —,
' [1+(V /V)']'~' ~[E+ i(I'+ V )]/V, -([E~i(I'+ V )2/V ]2—4A]'12 ~. {4.16)
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Equation (4.16) is very important because it is a
simple explicit analytic expression for L(E) and,
though approximate, it is very successful in pro-
ducing the exact behavior in several limiting cases
and interpolating at least in a qualitative way suc-
cessfully in between. Thus

(i) The periodic limit V, =O, I'=0 is reproduced
exactly (K=2-1 for a Bethe lattice).

(ii) In the special case V, = 0 the localization
function becomes

L(E) =KV,/[E'+ (I'+ V,)']'~', (4.17)

which reproduces exactly the one-dimensional
(K = 1) general result. For off-diag'onal disorder
only the E=O state may be extended. All others
are predicted to be localized. ' This is not a small
achievement in view of the several approximations
used and the fact that the L(E) method is not really
designed to treat the one-dimensional case. Note,
however, that for V04 0 the one-dimensional re-
sult (the E = 0 state is extended, all others are lo-
calized) is not reproduced. L(E) has a maximum
for E=O which is lower than 1 and approaches 1
only for Vo-0 or V, -.

(iii) The I' = 0 case (only off-diagonal random-
ness) is particularly interesting. The main result
is that the states at and around the middle of the
band, E =0, are extended. This is clearly shown
in Fig. 2(a). For large values of V„we can use
(4.17) and solve for E. We find that the mobility
edges become proportional to V,:

E —~ (K ~ 1}(&~V (4.18)

Another interesting feature of Fig. 2(a) is that the
mobility edges move inwards as the off-diagonal
randomness increases from zero. Thus a neck ap-
pears in the E, curve, i.e. , as the off-diagonal dis-
order increases, more and more states become local-
ized. This can be understood if we consider the
probability of finding very small V„.'s. We there-
fore examine the probability that V,&

belongs to the
interval [-W, W] with W/V, «1, and we denote it by
P( W, W). It can b-e found that

(

I , ., J I I

-8 -6 2 4 6 8
[/:.3 I

-2 . 0
E/y

EIGENSTATES

I I I I

-5 -4 -3 -2 -I 0 I 2 3 4 5

E/ Vp

l 1 l l

P(- W, W) = P(V(() dV((

2

V~/V0

This probability possesses a maximum for

(4.19a)

V(/Vo=[1-(W/Vo) ]'i (4.19b)

If we plot P( W, W) vs V, /-V, we get the curve (a)
of Fig. 3. It is this maximum in P(- W, W) that is
responsible for the neck in the mobility edge
curve, because as the disorder increases from

FIG. 2. (a) Mobility edge trajectories E~ as functions
of off-diagonal randomness for a Lorentzian probability
distribution of width V&, centered at Vo. The Green's
functions used correspond to a Bethe lattice of K =2.
Shaded regions contain localized states. (b) Mobility
edge trajectories vs I', the width of the Lorentzian dis-
tribution for the diagonal disorder, and different values
of V&. The states inside the curves are extended. (c)
I' vs Vq, where I'~ is the critical value of I' for Ander-
son's transition.
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FIG. 3. Probability of finding the potential V~~ in the
interval [-W, lV] for (a) a Lorentzian probability distri-
bution; (b) a semicircular probability distribution. The
value of 8'is 0 ~ &Vp.

zero it becomes more and more probable to find
in the average path, V&&'s small enough to stop the
propagation of the electrons. As K increases, the
neck becomes less pronounced and moves towards
the origin, since electrons have more possibilities
to escape now.

(iv} The case where 1 e0 but V, =0 (only diagonal
disorder) is correctly reproduced (see Ref. 6).
Such a case is presented in Fig. 2(b), where we
plot the mobility edges E„as a function of diagonal
disorder I', for different values of the off-diagonal
randomness V,. The V, =O curve corresponds to
the case studied in Ref. 6. The critical value F,
needed to obtain the usual Anderson's transition
increases with increasing V„according to

r, /v, =(K [1+(v, /v, )']-']

x[1+ (V,/Vo)']'i'- V,/Vo, (4.20)

presented in Fig. 2(c). As it can be seen from
(4.20) (dI', /d V,),= -1 resulting in a neck for the
I', curve, for similar reasons as above.

Figure 4 summarizes all previous discussion.
A three-dimensional space is used there with axes
(I'/V„V, /V„E/V, ). In this space the mobility
edge is a surface E,/V, =f(V,/V„ I'/V, ), defined
by (4.16) and L(E) = l. In the interior of this sur-
face the eigenstates are extended while in the out-
side they are localized. As V,/V, -~ this surface
reduces to the cone E,=+[K'V,' (V, +r)']'~'. As
K-1 (one-dimensional case) the cone collapses
to the V,/V, axis, as it should.

The Lorentzian probability distribution was also
combined with the Hubbard model Green's func-
tions. The localization function was obtained by
combining (2.12), (4.4), (4.9), and (4.10). The mo-
bility edges behave as previously, with minor nu-
merical differences for relatively small values of
the parameters involved. We find as before that
for large V, and any fixed value of 1, the mobility

FIG. 4. Surface shows the mobility edge E~, as a func-
tion of the width V&, I of the Lorentzian probability dis-
tributions for the off-diagonal and diagonal matrix ele-
ments of the Hamiltonian. In the calculation Bethe lat-
tice unperturbed Green's functions with K=2 were used.
The eigenstates inside this surface are extended, the
ones outside are localized. All energies are normalized
with respect to Vp, the center of the distribution for the
V;~ s.

edge becomes proportional to V, : E,=+(K'
I)/V
The second probability distribution examined

was the semicircular one [see Eq. (5.11)]. Using
both model Green's functions [Eqs. (4.4) and (4.6)]
the mobility edges were found by combining them
with (2.12) and (4.12}. The calculation was done
numerically and gave the results presented in Fig.
5. The qualitative behavior is again the same as
when a Lorentzian probability was used. The re-
sults indicate that the model Green's function used
has very little effect on the mobility-edge curve,
producing minor quantitative differences for the
two cases (Hubbard model and Bethe-lattice model
Green's function}. The neck in the mobility-edge
curve is now much more pronounced. It is the

Eg(HG)
Es(CPA HG

o4)
3

XTEN

ENSTA

0 I I

-8 —6 -4 -2 0 2 4

E/Vp

FIG. 5. Band E& and mobility E~ edges as a function of
off-diagonal randomness for a semicircular probability
distribution of width V&, centered at Vp. HG indicates
the use of the Hubbard Green's function and BLG the
Bethe-lattice Green's function (see text).
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absence of the long tails in the semicircular dis-
tribution which is responsible for this enhance-
ment. Now the probability maximum for finding a
value for the potential V, &

in the interval [-W, W]

appears much more abruptly and is more pro-
nounced than it was before. [Compare curve (b)
of Fig. 3 with curve (a) which corresponds to the
Lorentzian. ] We find

sin 0 1 0 V W+V (V W

P( w, w)=(-—I( ) 1-( '
)

—(
'

) 1-( ' )

sin 1 0 sin 1 0 V )V W
1 1

and the maximum appears at V,/V, = 2[1+ (W/
V,)']'I '. This difference is also clearly shown in
Fig. 6, where the percentage of extended states is
plotted as a function of V,/V, . The pronounced
maximum of the semicircular probability distri-
bution produces a clear minimum in the fraction
of extended states, while the much weaker maxi-
mum of the Lorentzian is not strong enough to
produce such a minimum. The difference in the
asymptotic values the two curves achieve for
large V,/V, comes from the fact that the Lorentz-
ian possesses long tails, absent in the semicircu-
lar case. Localized states with large eigenener-
gies cannot exist unless the potential can also take
values comparable to the energy. (Otherwise the
Schrodinger equation is not satisfied. ) This re-
quirement can be satisfied always for the Lorentz-
ian which extends to infinity, while the semicircu-
lar distribution, being a terminating one, pos-
sesses a smaller number of such localized states.

We find asymptotically, for large V,/V»

V, /Vo -~,

lnV= ' (1—y')'~' dy+ — (1-y')'I' dy
4lnV, / 4

or, finally,

V= V, /2V~.

Qn the other hand,

gllf
1

V1/ V0 ~ ra E Zd

(4.2la)

(4.21b)

1 0
(4.21c)

Using Eqs. (4.21) together with (2.12) we get for
the localization function

L (E) =(KV,/We)[~ E+ (E'- V ')' '
~]

' V,/V, » 1.
(4.22)

Thus

lnV= ' 1- ' lnx dx
V0-V1 1

(1-y')"'ln
~
V, + V,y ~

dy,

and, for

CA
W~ I—

O j~
CA

() O
~ 4J
O OZ
~ LJ
~ I—

X
4J

I I I I

I.O

0.8
/

I

06
/

I

0 2 4 6
I I I I

8 IQ I2 14

VI/V0

FIG. 6. Percentage of extended states vs the off-
diagonal randomness V& for a Lorentzian probability
distribution (solid line) and a semicircular probability
distribution (dashed line). In both cases a Hubbard
Green' s function was used.

—' = + [(K '+ e)/2K'�](V, /V, ), V,/V, » 1, (4.23)
0

independently of the details of the lattice. As in
the Lorentzian case, the mobility edge becomes
proportional to the off-diagonad. disorder for large
values of the latter.

The L(E) method was finally applied to study the
character of the eigenstates of a binary alloy.
Equations (4.13), together with (4.4) and (4.6) (for
the two types of Green's function), were solved
numerically following the most rapidly converg-
ing iteration procedure. " The results of the nu-
merical calculations were fed into Eq. (2.12), and
the mobility edges were determined for various
concentrations x. Both the Hubbard and the Bethe-
lattice model Green's function give quite similar
results. In Fig. 7 we show the results for the
Bethe-lattice case. The mobility edges reduce to
the correct subband edges for the two limiting
cases x=0 and x=1 as they should.
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FIG. 7. Mobility edges E~ for a binary alloy as a func-
tion of the concentration x, for fixed values of diagonal
and off-diagonal randomness (~&- ~~ = i, Vzz= i.i, Vz~
=0.9). Bethe-lattice unperturbed Green's functions were
used. The shaded areas contain localized eigenstates.

I 1 I I I

(bj

B. Selfwonsistent calculation

We now present the results obtained using the
ajmlysis of Sec. III. Within the "upper limit" ap-
proximation and in the absence of diagonal dis-
order we get from (3.8)

q V V dV=1. (4.24)

For the Lorentzian probability distribution [Eq.
(4.8a)] the mobility edge is given by

E,/V =K[1+ (V,/V )']"'. (4.25)

For the semicircular probability distribution [Eq.
(4.11)] the mobility edge is found to be

c i ""'"
1 0

Vo w Vo v, (v

(4.26)

Equation (4.26) was used to calculate the mobility
edges for various degrees of off-diagonal random-
ness V,/V, . The self -consistent calculation within
the "upper-limit" approximation gives results
qualitatively similar to those of the L(E) method.
Quantitative differences exist as in the case of
diagonal disorder.

I 2 3 4 5

V/V

FIG. 8. Mobility-edge trajectories for off-diagonal
randomness only, within the "upper limit" approxima-
tion, for a lattice of K=2. (a) A Lorentzian; (b) a semi-
circular probability distribution of width V&, centered at
Vo, is used (solid lines). The corresponding curves
based on the L(E) method are reproduced for comparison
(dashed lines) ~

The .main quantitative difference is that the L(E}
method gives more localized states than the "up-
per limit" approximation to the self -consistent
approach. It is established' from numerical work
on diagonal disorder that the L(E) method is much
more accurate than the "upper limit" method. In
Fig. 8 the two methods are compared. [Solid lines
represent curves obtained within the "upper limit"
approximation, dashed lines are the correspond-
ing curves for the L(E) method. ]

Results were also obtained using the exact Eq.
(3.15) or its equivalent (3.18). In order to study
(3.18) the form of Q(y+ V'/x) must be found, so
we study first (3.15). The x integration gives

(2ma/k', )J,(-2a), khaki&0 and a= —(k,k', V')'I',
4A'1X ikey V /X~

(4va/k', )6(2a), k,k', &0 and a=(-k, k', V')'~'.

Jy is the Bessel function of the first kind. Con-
sidering again off-diagonal disorder only, the
probability distribution for the && s is a 5 function
and therefore its Fourier transform P(k', ) = 1.
Considering the probability distribution for the
V, i we examine the case q(V} = —,Xe "'"' and ob-
tain for F,(k,), after the integrations are per-

formed, the integral equation

"F,(k', )e'~iedk,'

ca F ( y)e-ikie r
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For the middle of the band, E= 0(4.2Va} becomes

F,(k', )dk',F,(k, )=(2kk, (2' kk k')'"
0 j. 1

(4.28)

Equation (4.28) can be solved exactly with solu-
tion

Fo(k, ) = 1. (4.29)

Substituting (4.29) into (3.17b) we perform the in-
tegration and obtain Q(x) = 5(x). We can now use
this form of Q(x) into (3.18) to get

A(2)=K'f A( )k(Fk+ ——2(V)dkdV
V2 V

or

y 2)e -)4 I )F I

A (2) = ' &'
2 IF)i f A— (4.30}

or

A(2)=&'2 IF)i f A(- —) V
dV.

Equation (4.30)possesses the solutionA(y) = (~y ~)'I'2
with eigenvalue K' = 1. We thus conclude the fol-
lowing: (i) The one-dimensional case is correctly
reproduCed. 1he E = 0 state may be extended, since
then K' =K= 1. (ii) For two- or three-dimensional
lattices K&1. Because of symmetry with respect
to the center of the band (E = 0} the eigenvalues of
2 must be even functions of the energy. If

d 2As'(E)
dg2

A„'(0) is a maximum and all eigenstates are predicted
localized for all degrees of off-diagonal random-
ness. We reject this possibility because it con-
tradicts the well-known result of energy bands
(extended states} in the periodic limit of large

If

d'A„'(E)
0,

0

then A„(0) is a minimum producing a finite region
of extended eigenstates around the middle of the
band for all values of X. This result agrees with
the approximate calculatiops and correctly contains
the feature of the band in the periodic limit. This
result is in agreement with the previous results,
determining the localization character of the eigen-
states, with the help of the L(E) method. The L(E)
method focuses on the convergence of the RPS and
exmnines the convergence criteria in an approxi-
mate way, ignoring the question of convergence
of the continued fraction. The self-consistent
method truncates the RPS and examines the con-
tinued fraction in the terms kept in detail. The

two methods thus each focus on a different one
of the two convergence problems arising in study-
ing localization. As the two problems of con-
vergence are quite distinct and as both yield qual-
itatively similar results for off-diagonal disorder
as regards localization, we expect these results
to be correct. Both methods agree on the fact
that in random lattices with pure off -diagonal
disorder there is no Anderson's transition.

V. CONCLUSIONS

W'e have investigated the localization character of
the eigenstates of an Anderson type of random Hamil-
tonian, when off-diagonal randomness is present. It
is found that diagonal and off-diagonal disorder have
qualitatively different effects on the localization
of the eigenstates. When only diagonal disorder
is present there exists a critical value of the quan-
tity measuring randomness such that for any ran-
domness above this value all existing states are
predicted localized. This transition to nonexis-
tence of extended states, known as Anderson's
transition, is absent in the presence of off-diagon-
al randomness alone. Qff-diagonal disorder pro-
duces localized states at the tails of the band but
not in the middle. Even though the mobility edges
may initially move inwards as the disorder in-
creases from zero, they eventually move out-
wards, becoming asymptotically proportional to
the off-diagonal randomness for large randomness.

It should be emphasized that the two methods,
namely the L(E) method and the self-consistent
method, built on quite different assumptions pro-
duce the same qualitative behavior for the mobility
edges as a function of off-diagonal disorder. They
both predict a finite region around the middle of
the band, for which the states remain extended
no matter how small or large the degree of dis-
order is. The L(E) method is rather well es-
tablished in dealing with the problem of diagonal
disorder, ""producing values in good agreement
with numerical data. " We are therefore confident
that, while the exact numbers produced in this
paper might be changed, if an exact theory is
developed in the future, the qualitative picture
presented here will still be true, containing the
basic physics of the problem. We note here that
our predictions can be checked by computer ex-
periments especially on two-dimensional lattices
for which rather accurate methods have been de-
veloped. "'" We currently investigate this ques-
tion.

The present results should have important con-
sequences on a number of physical systems ex-
hibiting off-diagonal disorder, such as the im-
purity bands in crystalline semiconductors" and

substitutional antiferromagnets. ' '" For the
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former, the results of this paper show that, at
least for uncompensated specimens, the electron-
electron correlation and not the randomness is
responsible for the observed metal-insulator tran-
sitions. Quantitative studies of this system may
provide a detailed theoretical framework to ana-
lyze the host of experimental data. The system
of mixed antiferromagnets, finally, can be re-
duced to the model of a binary alloy" allowing
again quantitative studies and direct comparison
with experiments.

The present results could be used to provide
a physical understanding of certain properties of
the spin-glass system. Such a system can be
approximated by an Ising model with random ex-
change integrals J,~. If we denote by o, the spin
in the ith site and by (cr, & the thermodynamic
average which defines the order parameter, for
low values of (o,&/KT, and within the mean-field
approximation, the (&r,&'s satisfy the matrix equa-
tion

KT(o,&= Q J„(o,). (5.1)

Equation (5.1) is identical to the matrix equation

E
I V&

=
riled& .

The analogy is obvious if we expand
l g& in terms

of the local states li):

(5.2)

FIG. 9. (a) Band-edge (E&) and mobility-edge (E~) tra-
jectories in the presence of off-diagonal disorder only,
of width V&, centered at Vp. (b) Phase diagram for the
random Ising system. Jp, J, are the center and width
respectively of the probability distribution for the J&&'s.

KT, Jg and Jp correspond to E, V&, and Vp. P: paramag-
netic phase; SP: superparamagnetic phase; F: ferro-
magnetic phase; SG: spin-glass phase.

dieted by our theory. There are three distinct
regions in'the figure. The region where no states
exist (above the band edge E,), where (5.3) does
not have a nontrivial solution, the region of local-
ized states (between the band and mobility edge
E,), where the electron wave function is nonzero
in a finite region of the lattice and the region of
extended states, where the electron's wave function
extends over the whole lattice. On the basis of
the above equivalence between the electronic prob-
lem. and the spin glass we draw Fig. 9(b). Here
we follow the traditional way of presenting a phase
diagram for such a system by plotting E/V, vs
V,/V» then using the analogy of E, V„V, to KT,
J„J„respectively. (We remind the reader that

Jp Jy are the center and width of the p robabil ity
distribution for the J',„'s.) The corresponding
three regions, discussed above, are denoted now

by P, SP, and SG+ F. In the paramagnetic (P)
region there are no solutions at all, (o,.) = 0. The
superparamagnetic (SP) region contains localized
solutions, i.e., (o,) o 0 for finite regions in the
system. Such a state can be visualized as a para-
magnetic matrix with magnetic particles of finite
extent embedded in it. In the SG+ F (spin glass
and ferromagnetic) region, we predict solutions
extending throughout the lattice, to be identified
with the existence of long-range order.

Detailed theories" "of the spin glasses produce
the line separating the SP from the SG+ F region
with very similar shape as the one presented here.
Such theories predict in addition the line AB which
separates the spin-glass phase from the ferro-
magnetic phase. The ferromagnetic region cor-
responds exactly to the region of extended states
of the electronic problem ((o,& o 0 throughout the
lattice). However for the spin-glass system the
fully averaged moment ((o,»z is zero. The quantity
((o,»'z& 0 and defines the order parameter. (( )~
denotes the configurational average. ) It is this
quantity now that is the long-range order param-
eter. It should be emphasized that the present
analysis is not a substitute for a detailed theory
of spin glass; it merely reproduces qualitatively
some of the real features and thus it contributes
somehow to a better understanding of this com-
plicated physical System.

Eli&= g v„ (5.3)

The analogue of E is KT and J,~ takes now the
place of V,z.

Figure 9(a) shows the electronic case as pre-

For our tight, -binding Hamiltonian, we find by set-
ting the zz's equal to zero:

ACKNOWLEDGMENTS

We would like to thank M. H. Cohen and S. Kirk-
patrick for pointing out to us the relation between
the present result and the mean-field spin-glass
problem. We also thank M. H. Cohen for numerous
fruitful discussions during this investigation.
Reference 8 was brought to our attention by
A. Theodorou.



16 ABSENCE OF ANDERSON'S TRANSITION IN RANDOM. . . 3781

*Supported in part by NSF Grant No. DMR75-13343 and
the Materials Research Laboratory of the NSF at The
University of Chicago, by grants from the IBM and
Xerox Corp. to The University of Chicago, and by NSF
Grant No. GH-37264 at the University of Virginia,
Charlottesville.

~Work started when one of us (E.N. E.) was visiting The
University of Chicago.

'P. W. Anderson, Phys. Rev. 109, 1492 (1958).
E. N. Economou and Morrel H. Cohen, Phys. Rev. B 4,
396 (1971).

G. Theodorou and Morrel H. Cohen, Phys. Rev. B 13,
4597 (1976).

4D. C. Licciardello and E. N. Economou, Phys. Rev.
B 11, 3697 (1975).

5R. Abou-Chacra, P. W. Anderson, and D. J. Thouless,
J. Phys. C 6, 1734 (1.973).
E. N. Economou and Morrel H. Cohen, Phys. Rev. B 5,
2931 (1972).

~P. Lloyd, J. Phys. C 2, 1717 (1969).
N. Pottier and D. Calecki, Solid State Commun. 9,
1489 (1971).

E-Ni Foo, H. Amar, and M. Ausloos, Phys. Rev. B 4,
3350 (1971).
J. A. Blackman, J. Phys. F 3, L31 (1973).
J. A. Blackman, D. M. Esferling, and N. F. Berk,
Phys. Rev. B 4, 2412 (1971).

' F. Brouers and J van der Rest, J. Phys. F 2, 1070
(1972).

3C. Papatriantafillou, E. N. Economou, and T. P.
Eggarter, Phys. Rev. B 13, 910 (1976). The calcula-
tion is performed for one dimension, but it holds for
any dimensions.

~4A. R. Bishop and Abhijit Mookerjee, J. Phys. C 7, 2165
(1974).

'5R. Haydock and Abhijit Mookerjee, J. Phys. C 7, 3001
(1974).

'GA. R. Bishop, J. Phys. C 8, 3317 (1975).
' A. R. Bishop, Philos. Mag. 27, 1489 (1973).
' A. R. Bishop, Solid State Commun. 15, 1447 (1974).
' A. R. Bishop, Phys. Lett. A 49, 5 (1974).

E. N. Economou, Phys. Rev. Lett. 28, 1206 (1972).
'J. T. Edwards and D. J. Thouless, J. Phys. C 5, 807
(1972).
D. C. Licciardello and D. J. Thouless, J. Phys. C 8,
4157 (1975).
N. F. Mott, Metal-Insulator Transitions (Taylor and
Francis, London, 1974), and references therein.
W. J ~ L. Buyers, T. M. Holden, E. C. Srensson, R. A.
Couley, and R. W. H. Stevenson, Phys. Rev. Lett. 27,
1442 (1971).

5S. F. Edwards and P. W. Anderson, J. Phys. F 5, 965
(1975).
D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35,
1792 (1975).
J. M. Kosterlitz, D. J. Thouless, and R. Jones, Phys.
Rev. Lett. 36, 1217 (1976).


