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The resonance of the Raman scattering by E,, A,r, E;;, and E,; phonons, and several second-order
features, has been studied for ZnO for photon energies between 1.6 and 3 eV. The results are interpreted
with a dielectric theory based on the first and second derivatives of the dielectric constant. By combining our
results with absolute scattering cross sections previously determined by Arguello et al. at 2.41 eV absolute
values of the deformation potentials of the band edge can be determined. The difference in strength between
the longitudinal and the transverse modes provides the signs of these deformation potentials. The
antiresonance around 1.6 eV suggested by the earlier work of Callender et al. and attributed to a
cancellation of the deformation potential and electro-optical contributions to the Raman tensor is confirmed.
The deformation potentials of the 4; phonons at the band edge have been obtained from a pseudopotential
calculation. While the sign of these deformation potentials agrees with the experimental determination, their
magnitudes do not agree. This fact is attributed to difficulties with the pseudopotential of the 0’ ion. An
estimate of the deformation potentials from the dependence of the band edges on uniaxial stress is also made.

I. INTRODUCTION

ZnO, the mineral zincite, crystallizes in the
wurtzite structure (space group C%) which pos-
sesses four atoms per primitive cell.! The dis-
persion relations of phonons (and also of elec-
trons) along the A direction (hexagonal axis) can
be approximately derived by folding those of the
corresponding zinc-blende crystal (two atoms per
primitive cell) along the [111] direction.? Thus
one finds at k=0 (T') two sets of infrared- and
Raman-active modes, A, (singlet) and E, (doublet),
which correspond to the optical modes of zinc-
blende.*** Besides, as a result of the folding,
additional infrared-inactive modes appear at T,
as shown in Fig. 1. They are two sets of E,,
Raman-active doublet modes and two Raman-in-
active singlets (B). Raman A,, E,, and E, modes
have been recently observed by Arguello ef al.?
and identified according to their polarization selec-
tion rules. The infrared-active E; and A, modes
can be seen to split into E,; and A, (L, longitudi-
nal; T,transverse) for propagation perpendicular
to the ¢ axis and E,,, A, for parallel propagation
as a result of the polarization which accompanies
longitudinal infrared-active excitations.® For
propagation at an angle other than 0° or 90° to the
¢ axis mixed modes are obtained. Neutron-scat-
tering data, confined mainly to the low-frequency
branches of the dispersion curves, have recently
complemented our knowledge of the lattice dynam-
ics of ZnO,* ¢ and provided a basis for param-
etrized calculations such as that shown in Fig. 1.

In spite of the interest in ZnO and of a con-
siderable number of calculations,”™® the knowledge
of its electronic bands is rather imperfect except
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for the details of the lowest band edge at k=0
(which is usually used as an experimental fitting
parameter for calculations! ). The Korringa-Kohn-
Rostoker (KKR) calculations” yield the wrong posi-
tion for the 3d core levels of the Zn while the
empirical pseudopotential work® is not able to re-
produce the details of the optical-absorption spec-
trum, a fact believed due to difficulties in setting
up a local pseudopotential for O2-.

However, the experimental picture concerning
the lowest direct edge (actually excitons) seems
clear. At room temperature there is an edge at
3.32 eV polarized perpendicular to the c axis,

(A, B) with a parallel polarized counterpart (C)
at 3.36 eV.° The (4, B) exciton exhibits a very
small negative spin-orbit splitting'® which only
becomes observable at low temperatures. The A,
B, and C excitons correspond to the so-called E|,
edge. Note that the E, edge in ZnO is smaller than
that of ZnS (3.7 eV)," a fact which has thus far
escaped theoretical understanding. The Raman-
scattering efficiencies are expected to resonate
when the laser frequency approaches E,. These
resonances have been investigated for a number
of zinc-blende-type semiconductors.? They can
be used to study the details of the scattering
mechanism and to determine electron-phonon
coupling constants or deformation potentials.
Work of this sort for ZnO has been rather limited
because of the awkwardness, from the point of
view of laser technology, of the region in which
E, occurs (3.3 eV=3750 A). A study™ at 4.2° K
of the Frohlich-interaction-induced 2E, ; scatter-
ing, using a pulsed dye laser in the region from
3.28 to 3.36 eV, has been published but unfor-
tunately this type of scattering is difficult to in-
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terpret quantitatively.'* A study of the E,,;, E,,,
A,,, and E, resonances in the energy range 1.92—
2.57 eV has appeared more recently.'> While this
range is still quite far from the E; edge of ZnO
one can already identify in it resonance effects.
In fact, by extrapolation of the observed E,; reso-
nance the data of these authors suggest the exis-
tence of an antiresonance in the scattering by E,
phonons at about 1.6 eV. They attribute this be-
havior to a destructive interference between de-
formation potential and interband Frohlich inter-
action (i.e., electro-optic effect) scattering.

In this paper we investigate resonance Raman
scattering of all modes mentioned above for ZnO
plus a few second-order structures at room tem-
‘perature in the 1.6-3 eV region which approaches
sufficiently the E, edge to clearly distinguish
resonance effects. On the low-photon-energy side
our experimental region reaches the energy of the
suspected E,; antiresonance and we are thus able °
to confirm its existence. In Sec. II we discuss the
experimental details. In Sec. IIl we present the ex-
perimental data and we fit them with expressions
based on derivatives of the dielectric constant.

By normalizing to the values of absolute scatter-
ing efficiencies given in Ref. 3 for 2.41 eV it is
possible to present our data as absolute effi-
ciencies. In Sec. IV we discuss the results in
terms of deformation potentials and electrooptic
coefficients. We present the results of a pseudo-
potential calculation of the deformation poten-
tials of the A, modes for the E, gap of ZnO.
While this calculation predicts the sign of the
deformation potentials extracted from our Raman
" data (by comparison to the sign of the electro-
optic coefficients!®) the calculated magnitudes do
not agree with experiment.

We also make an estimate of the A,, E,, and E,
deformation potentials from the observed depen-

dence of the E; gap on uniaxial stress along sev-
eral directions.!?

II. EXPERIMENTAL DETAILS

The measurements were performed at room
temperature on a 2X 2 X 10 mm ZnO single crystal
with all faces polished and the long dimension
along the ¢ axis. We tried to etch the crystal with
phosphoric acid, but such procedure, as well as
the use of cleaved surfaces, resulted, for fre-
quencies above the gap, in a strong luminescence
which largely obliterated our Raman spectra.
Since the measurements discussed here are con-
fined to a region in which the crystal is trans-
parent we do not think etching is necessary. The
x and y axes were perpendicular to two long faces;
a distinction between x and y is not necessary for
our work. The symmetries of Raman active pho-
nons and the corresponding Raman tensors for the
C,, point group are®

-
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The A, and E, phonons are infrared active and
hence they split into transverse and longitudinal
modes (A,;,A, . E,;,E ;). There are therefore
two independent sets of Raman tensor components
a, b, and ¢ (a;,a,,b;,by,cp,cp). The scattering
geometries used in our experiments, the corre-
sponding phonons, and the scattering efficiencies
S in terms of the parameters of Eq. (1) are (in
standard notation)

x%(22)X~A,p; S=b
x(2x)y=E 1, E,; S=%cz7*x %CzL )
x(yy)x"AlrsEz; szazr, az.

The purpose of the present work is to determine
the dependence of a,, b,, c¢;, ¢, and d on ex-
citing wavelength and to interpret this dependence
theoretically. We found no convenient configuration
yielding the parameters a;, or b, (see Refs. 3 and
15).

The spectra were excited with all the lines of
Spectra Physics models 164, 165, and 185 lasers
(Ar*, Kr*, and He-Cd, respectively) and analyzed
by means of a 3-m SPEX double monochromator
with Jobin-Yvon holographic gratings (1800 lines/
mm) and a RCA C-31034A photomultiplier. The
data were then corrected in the usual way (by com-
parison with the scattering from a CaF, crystal)
for the throughput function of the spectrometer and
the w* factor so as to obtain data which can be re-
lated to the square of the transition susceptibility
or Raman tensor.? Corrections for the absorption
and the reflectivity!®?° were only needed for the
data at 4067 A (3.05 eV); they changed the scat-
tering efficiencies by only 20%.

III. RESULTS

Typical spectra obtained with 4880 A (2.54 eV)
excitation wavelength are shown in Figs. 2(a)-2(c)
for the three configurations of Eq. (2), respective-
ly. These spectra agree basically with those re-
ported earlier.®2! The arrows in Figs. 2(a)-2(c)
indicate the position of the phonons and two-phonon
structures whose resonance is shown in Figs. 3-5.
In addition to the phonons shown in Fig. 2 we ob-
served for 4067-A laser excitation the E, 1 bhonon
in the forbidden configuration x(zz)x. This is a
standard occurrence for ir-active phonons which is
believed to be due to intraband Frohlich interac-
tion.!? Similarly, we detected for this wavelength
aweak A,, phonon at 574 cm™! in the z(xx)Z al-
lowed configuration. We were not able to see this
phonon at longer wavelengths.

We have also performed some measurements
with the 3638 A (3.41 eV, Ar*), 3507 A (3.53 eV,
Kr*), and 3250 A (3.82 eV, HeCd) laser lines. In
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FIG. 2. Raman spectra recorded at room temperature
with 4880-4 excitation wavelength for the x (zz)x (a),
x(yy)x (b), and x(zx)y (c) configurations. The arrows
indicate the position of the one-phonon and two-phonon
structures whose resonance is presented in Fig.s 4—6.
In the shadowed regions of (b) the Raman intensity has
been divided by 2.

all these cases we observed, like in previous
works,'®*?% up to six overtones of the E,; phonon of
intensity decreasing with increasing order and in-
dependent of polarization configuration. This last
fact may be due to the poor quality of the polished
surfaces and the strong absorption coefficient in
this region (= 10° cm™!). However, we saw in this
region no traces of the A,; mode or its overtones
in spite of having seen it for 4067-A excitation.

In Fig. 3 spectra similar to those of Fig. 2(a)
are presented for several exciting wavelengths.
It is worth noting that the 2E, L beak is resonantly
enhanced with respect to the rest of the spectrum
already at photon energies ~1 eV below E,. More
details about the 2E,, resonance can be found in
Refs. 13 and 23.

The integrated scatterering efficiencies ob-
served for the two E, phonons [ d? coefficients of
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Eq. (2)] and for the A,, phonon (a2 coefficient) are
plotted in Fig. 4 as a function of photon energy.
Absolute values of these scattering coefficients
(in units of cm~!sr-!) are given; they were ob-
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FIG. 4. Absolute Raman efficiency vs exciting fre-
quency for the A {xx) ©), E, (437 cm™?) (), and E,
(101 cm™!) (@) phonons obtained in x(yy)x configuration.
The full symbols (e, A, ®m) represent data taken from
Ref. 15. The results have been normalized to the abso-
lute values of the Raman cross section for w=2.41 eV
given in Ref. 3. Note that the w dependence has been
removed and thus the absolute values of the cross sec-
tion in the sense of Eq. (8) are obtained by multiplying
the strengths shown in the figure by (w/2.41)%. This
also holds for Figs. 5 and 6. The dashed and solid lines
are the least-squares fit to our data with Eqs. (3) and
(4), respectively. The corresponding values of the A4,
B, A’ and B’ coefficients are listed in Table 1.

tained by normalizing our data to the absolute scat-
tering cross sections measured by Arguello et al.?
at 2.41 eV for the a% coefficient of the A,, phonon.
Note, however, that the w* factor has been re-
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FIG. 5. Absolute Raman efficiency vs exciting wave-
length for E, O) and E;; (A) phonons in x(zx)y configura-
tion and for 4 (22) (O) in x(zz)x configuration. (Note
that the A (zz) data are shifted two decades downwards
for display purposes.) The dashed and solid lines are
again the fits of Eqs. (3) and (4), respectively. The full
symbols (e, A, m) are data taken from Ref. 15. The
triangle marked with an arrow is an upper-limit esti-
mate of the E;; Raman cross section at 1.65 eV.
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FIG. 6. Absolute Raman efficiency vs exciting wave-
length for the second-order structures shown in Fig. 2(a)
in x(zz)% configuration. The full triangle has been taken
from Ref. 23. The dashed and solid lines are the least-
squares fit to thedata with Egs. (6) and (7), respectively.
The corresponding C, C’, D and D’ coefficients are
listed in Table I. The ordinate scales of the different
curves have been shifted for display purposes.

moved from the scattering efficiency of Figs. 4-6.
The experimental points of Ref. 15, also re-
normalized in this manner, have been included

in Fig. 4. They show substantial agreement with
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our data except for a slightly smaller slope.

The dashed lines in Fig. 4 represent a least-
squares fit to the experimental scattering effi-
ciencies I with the expression

2
I=A (% +B ) , 3)

which is based on the dielectric theory (see Sec.
IV). The frequency derivative of the dielectric
constant (in eV~?!) has been obtained by differen-
tiating the data of Refs. 24 and 25. The constant
B represents a nonresonant contribution to the
Raman tensor. The values of A and B required
for the fits are given in Table I. We have also
performed a fit to the data of Fig. 4 (solid line)
with the expression

I=A'[ -g(x)+B’]?
with

gx)=x"2-(1 =22 = (1+2)1/?] @
and

x=w/w, ,

w, being the frequency of the E, gap. The function
g(x) is one of a family of functions used in the theo-
ry of dielectric properties of three-dimensional
energy bands extending to infinity.?%#2” It repre-
sents the derivative of the dielectric constant with
respect to the energy gap w, under the assumption
of a density of states mass independent of w,.?”
This function is used often to represent the reso-
nance of the first-order Raman tensor near three-
dimensional critical points.?” It is easy to show
within the model of parabolic bands that for w
close to but below w, the following equation holds:

TABLE I. Coefficients resulting from the least-squares fit to the experimental Raman cross
sections with Eqs. (3), 4), (6), and (7). A and A’ have been normalized so as to obtain at
2.41 eV the absolute cross sections given in Ref. 3. Units are 1072 eVZem~lsr for A, 1078
em tgr! for A’ and C’, eV ™! for B, 1078 eViem™lsr for C, and eV™? for D. B’ and D’ are
dimensionless. For the purpose of comparison with B we have tabulated B’ +-i‘- instead of B’

[see Egs. (4) and (5)].

First order A B A’ B’ +-i"-
a} 1.86 0.66 3.85 0.34
b2 0.02 12.02 0.03 9.31
ck 1.45 0.28 2.03 0.24
ci 1.25 -0.08 3.03 -0.15
d? 437 cm™Y) 2.94 0.90 6.96 0.49
d? (101 em™} 0.07 4.46 0.09 4.05
Second order C D c’ x102 D'+1
208 cm™! 0.54 0.31 0.39 14.17
332 cm™! 2.15 —0.24 1.70 6.80
541 em™! 2.50 —0.50 1.90 3.68
1160 cm™! 7.77 —-0.22 6.30 6.63




3758 J. M. CALLEJA AND MANUEL CARDONA 16

%z-K[g(xH%]. _ (5)
While ZnO has strong excitons at E,, the parabolic
bands expression [Eq. (5)] should be valid in our
experimental region (x < 0.9) as can be seen by
examining Eqs. (58) and (60) of Ref. 26. The value
of K? evaluated from the mass parameters of ZnO
is 0.6,%° in reasonable agreement with the ratio of
A and A’ shown in Table I.

The resonance in the scattering efficiencies of
the E,; (¢}), E,, (¢%), and A, , (b%) phonons is
shown in Fig. 5. The absolute cross sections were
determined by fitting to the measurements of Ref.
3 at 2.41 eV. Fits with Eqs. (3) and (4) are also
represented in this figure, which includes the data
of Ref. 15, by dashed and solid lines, respectively.
The efficiencies of E,; at 1.65 and 3.05 eV have
not been included in our fit since they are affected
by considerable uncertainty. In fact, the E,; point
at 1.65 eV, indicated by an arrow, is only an upper
limit for the Raman cross section, since we could
not detect any signal in that case. Our data for
E,, clearly indicate the existence of an antireso-
nance at ~1.6 eV, corresponding to a cancellation
of the resonant and nonresonant terms in Eqs. (3)
and (4). The A,, mode hardly shows any resonance
at all; the corresponding values of the resonating
terms are zero within the experimental uncertainty.

In Fig. 6 we present the resonance behavior of
the main second-order structures of Fig. 2, the
2E, structure at 1160 cm™ and the weaker struc-
tures at 541, 332, and 208 cm™. Since these fea-
tures seem to resonate more strongly than their
first-order counterparts (except for the behavior
of the E, ; mode in Fig. 4 which can only be ex-
plained as an antiresonance), we have chosen to
fit them with the second derivatives of the dielec-
tric constant

d*e 2 ‘
I= C(Twé* D) (6)
or, corresponding to Eq. (4),
I=C’[(1—x)'3/2+D']2. (7

We have left in Eq. (7) only the most dispersive
part of the derivative of g(x). The parameters C,
C’, D, and D’ required for the fits of Fig. 6 are
also given in Table I.

IV. DISCUSSION

We have already mentioned that Eqgs. (3), (4),
(6), and (7), which have been used to fit the exper-
imental resonance data, are based on the dielec-
tric theory of Raman scattering. This theory con-
tains several assumptions:

(a) The phonon frequency Q is always much

smaller than w - w, (w is the laser frequency, w,
that of the E, gap) so that the phonon can be treated
as a quasistatic perturbation. Under this assump-
tion it is easy to see that the efficiency for Stokes
scattering per unit length and unit solid angle is
given, in units of sr™*bohr™, by!?

%)= (&)

where j and & are the directions of the incident
and scattering fields, y the susceptibility tensor,
u; the atomic displacements associated with the
ith phonon, n;, its Bose occupation number, and
¢, the speed of light in vacuum. Equation (8) is
written in atomic units (i.e., e=77=m=1, ¢,=137).

(b) We assume that 9y,,/du; has two contribu-
tions, a strongly dispersive one arising from the
lowest gap E, and a contribution from all higher
gaps, represented by B and B’, which is nearly
constant below E,. The.E, contribution can also be
split into two components. The most strongly dis-
persive of these components originates from a
modulation of the E, gap (or any of its three com-
ponents A, B, C) by the phonon displacement ;.
This type of contribution exists for the A4, , (this
phonon modulates the conduction and all the va-
lence bands which have E, symmetry). The other
type of contribution is usually less dispersive very
near the gap. It corresponds to changes in the
transition matrix elements due to interband mixing
of wave functions. To this type belongs the effect
of the E, , phonon which couples the A, B valence
bands with the C band. Both types of effects which
occur in ZnO cannot be distinguished if the three
valence bands are degenerate, i.e., if w,,~0, or
equivalently if w, < w;- w for the experimental
region of interest. This condition is well fulfilled
in our case (w,-w=0.3 eV, w,,=0.036 eV) and
therefore we only have one type of E, contribution
which can be written in terms of derivatives of y
with respect to energy gaps:

2
X KRS TATRIEN (8)

ou,

9 ) dw 3 9
Xsu_ OXse 0% ., _ OXjr 0% 9)

The replacement of dy;,/dw, by -dx,,/dw in Eq.
(9) strictly speaking requires the addition of a less
dispersive function which is omitted since it can
be lumped into the constants B and B’.

The dispersionless background B (or equivalent-
ly B’) is dominant for the A, , mode in (2z) config-
uration [b7% coefficient of Eq. (2)]; in this case the
resonant term is nearly zero within the experi-
mental error. The background is also large for
the E, mode although in this case a resonant con-
tribution clearly exists.

We now proceed to give explicit expressions for
the A’s of the various Stokes modes in terms of
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electron-phonon. interaction constants or deforma-
tion potentials, i.e., of derivatives of the energies
of the various states forming the gap with respect
to the phonon displacements ;. Using Egs. (3),
(8), and (9), we can write

n;+1

A=—2—03)

2
167%c} ’ (10)

Bwo
ou

where %'/2 is the zero-point vibration amplitude
of the phonon under consideration and »; the Bose-
Einstein factor. For A, phonons we take as u(A))
the change in length of a ZnO bond parallel to the

¢ axis. It is then customary to introduce the di-
mensionless parameter 6(4,) which is the vibration
amplitude divided by the bond length 3¢ (c and a
are the lattice constants). We thus find

V3m(A, )+ 1)a?
18mciucQ(A, 1)

2

it 3 (11)

a6(4,)

A, D)=

where u is the reduced mass of the Zn and O
atoms. (Note that Eq. (8) has the explicit w* de-
pendence, whereas in Figs. 4-6 and in Egs. (3)-
(7) this dependence has been removed by normal-
izing our data to the absolute cross sections given
in Ref.3 for w=2.41eV. Thus, for using the A’s of
Table I in Egs. (11)-(13), they must be multiplied
by (27.2/2.41)*, 27.2 being the factor to convert eV
to hartree, and by 5.3 X10™ in order to convert
cm™ to atomic units.) For the E, mode the vibra-
tion is perpendicular to the ¢ axis. We thus use
as a normalization for %(E,) the component of an
oblique Zn-O bond perpendicular to this axi
(a/V3). We obtain ‘

3V3n(E, )+ 1)c
1287%ciuQ(E, p)

2

At (12)

36(E, 1)

AE, )=

where 8w, represents the matrix element of the
electron-phonon interaction between the A and the
C valence-band states.

For the E, modes an additional complication
arises due to the fact that there are two modes of

this type. Thus their eigenvectors are not deter-
mined by symmetry, but by the solution of the cor-
responding dynamical matrix. However, since
they are well separated in frequency (101 and 437
cm™) it is reasonable to assume that the low-fre-
quency mode is due exclusively to vibrations of
the heavy Zn sublattice while that at 437 cm™ in-
volves only oxygen vibrations. This fact explains
why the low-frequency E, mode does not resonate
at E,: The vibrations of the zinc sublattice do not
modulate much the A, B, and C valence-band
states of ZnO, composed almost exclusively of
oxygen 2p wave functions. We thus write for the
E, (437 cm™) mode the expression

3V3(n(E,) + 1)c| dw,

AlB(43T em™) )= rara(E,) |35y |

(13)

where 3w, represents the matrix element of the
electron-phonon interaction between the A and the
B valence bands and M is the mass of the oxygen
atoms. A similar equation could be written for

the E, (101 cm™) mode. The derivatives in Egs.
(11)-(13) shall be referred to as the deformation
potentials d,(4,), d,(E,), and d (E,), respectively.
The values of these deformation potentials obtained
from the A’s of Table I with Eqs. (11)-(13) are
listed in the first column of Table II. There are
two deformation potentials for A,, one in the (xx)
configuration corresponding to a% of Eq. (2) and
another for the (zz) configuration corresponding to
b%. As already expected, d [A,(zz)]=0. It is not
possible to determine from our data for {ransverse
phonons the sign of d,. This sign can be determined
for the ir-active phonons by analyzing the strength
of the corresponding longitudinal modes.®. In fact,
the A’s for these modes contain instead of |d,|?
the square of a linear combination of d; and the
corresponding electro-optic coefficient d,;,. Since
the signs and magnitudes of these d;;, are

known,'> 16 one can in this manner determine the

TABLE II. Deformation potentials for ZnO in eV corresponding to the A5 (xx), A{p(22),
Eir, and E, phonons. The first column contains the values obtained from the A’s of Table I
and Egs. (11)—(13). The signs have been evaluated (Ref. 15) from the electro-optic ‘coeffi-
cients given in Ref. 16 for the A 7 and E; phonons. The values obtained from Eq. (14) and
the results of the pseudopotential calculations are listed in the second and third columns, re-

spectively.
From resonant From piezo- Pseudopotential
Raman work optical work calculation
A (xx) +0.73 +1.84 +1.41
A r(22) -0.07 - =0.02 —4.39
Ep —0.66 -2.12 cee
E, 437 cm™?) 0.54 +1.2

E, (101 cm™}) 0.05

cee eee
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FIG. 7. Pseudopotential form factors v4 and v S (in
rydbergs) for ZnO obtained from Ref. 35, vs the square
of the reciprocal-lattice vector (G).

signs of dy(A,) and d,(E,). The signs so deter-
mined!® are given with the experimental data in
the first column of Table II. We have made an at-
tempt to calculate d [A, (xx)] and d,[A,(zz)] with the
pseudopotential method.® This calculation is par-
ticularly simple since the A, phonons preserve the
symmetry of the crystal: this is not the case for
the E, and E, phonons. The results of this calcu-
lation, performed with the pseudopotential form
factors of Fig. 7, are given in the third column of
Table II. The calculation predicts the signs of d,
observed experimentally, but fails to reproduce
the nearly vanishing d,[A,(zz)]. We believe this is
due to inadequacies with a local pseudopotential
for the O?” ion. This ion has no p-core states and
hence the corresponding pseudopotential cannot be
smooth near the core. We have thus made an at-
tempt to relate the d;’s to the deformation poten-
tials C,,...,C, obtained in Refs. 17 and 28 for
ZnO under uniaxial stress. A connection between
both types of deformation potentials can be made

by noting that upon application of a uniaxial stress

the unit cell of wurtzite does not deform uniformly
but there are additional relative displacements of
the various atoms. Hence the effect of the stress
can bé decomposed into a uniform deformation of
the unit cell plus various phonons producing the
relative displacements.?” It has been noted?” that
for zinc-blende-type crystals the effect of a [111]
stress on the valence bands at I' is produced ex-
clusively by the phonon component. By making the
same assumption for ZnO and assuming also that
the bonds do not change length upon uniaxial de-
formation,?® it is possible to relate the C;’s to the
d .

0°

S 1
dy[A,(xx)]==(C,+C,) + 2-§1§ (C,+C,) -35 ch,
33 33
2S 1
do[A,(z2)]=- (Cl+ slscz‘gs_clixl> ’
33 33
(14)

dy(E,)=-3C./2V2,
dy(E,)=Cs;,

where S;; and S,; are the elastic compliance con-
stants® and C* C} the hydrostatic stress deforma-
tion potentials for the (A, B) and C excitons, re-
spectively, taken from data of Ref. 34.

The values of the d’s obtained from Refs. 17
and 28 with Eqgs. (14) are listed in the second col-
umn of Table II. Their signs agree with the ex-
perimentally determined ones. The d,[A,(22)] so
calculated is very small, in agreement with the
experimental value. The other d,’s so obtained
are larger than the experimental ones. In spite of
the crudeness of our assumptions this raises the
possibility of a systematic error in the absolute
efficiency measurements of Ref. 3. Much better
agreement with the various deformation potential
calculations would be obtained if the measured ef-
ficiencies were about one order of magnitude
smaller than the true ones. This possibility is
supported by the fact that the magnitudes of the
electro-optic coefficients determined from the
scattering efficiences in Ref. 3 are also about 2
times smaller than the directly measured ones.

The antiresonance of the E,; mode at 1.6 eV,
and the corresponding negative value of B, must
be due to the electro-optic contribution as sug-
gested in Ref. 15, since it does not happen for the
E, r phonon. We note that in other wurtzite-type
materials (CdS, ZnS) antiresonances have been
observed for the transverse modes.3%3! 1t is re-
markable that no such antiresonances occur in
ZnO. We point out that the elastro-optic constants
of CdS exhibit an antiresonance as the gap is ap-
proached, with a large contribution of the back-
ground.?® The same constants also have an anti-
resonance in ZnO, but with a much smaller back-
ground contribution. This reflects the same trend
as the disappearance of antiresonances in the
A, r,E, 4, and E, modes in going from CdS to ZnO.

The second-order resonances of Fig. 6 have been
fitted with the second derivative of the dielectric
constant according to Egs. (6) and (7). There is
some arbitrariness in this choice: The structure
at 208 cm™ can certainly be fitted equally well with
Eq. (3). The 2E,, resonance, however, canbe fit-
ted better with Eq. (6) and thus we assume it is the
result of an iterated process involving the Froh-
lich interaction.®® Two iterated first-order pro-
cesses would also have to be involved for the other



second-order structures if the choice of a second
derivative fit proved to be of the essence. A first
derivative fit would imply a process involving

one single-electron—two-phonon vertex.*

Finally, by looking at Fig. 1 we can make a
tentative assignment for the second-order struc-
tures whose resonance is presented in Fig. 6. The
structure at 208 cm™ corresponds to the frequency
of 2E, (101 cm™) at I': as shown in Fig. 1 the dis-
persion relation is very flat around this point.
This structure could also contain a contribution of
the lower TA branch around the M point; the cor-
responding K-space multiplicity would enhance
this contribution. The peak at 332 cm™ should be
ascribed to two phonons from the K-M-Z around
160 em™. Both structures just mentioned are seen
in (xx) and (zz) configurations. The structure
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around 541 cm™ is stronger in the (2z) configura-
tion and corresponds to phonons from the region
between the T' and M points around 270 cm™. The
peak at ~1160 cm™ is known to arise from two LO
zone-center phonons.

Note added in proof. We have recently mea-
sured (M. H. Grimsditch, private communication)
the A, (2z) mode of ZnO with respect to diamond
(6.1x1077 cm ™! sterr™!, M. H. Grimsditch and
A. K. Ramdas, Phys. Rev. B11, 3139 (1975)) and
confirmed the original values of Ref. 3. Hence the
discrepancy between the two first columns of Table
IT cannot be attributed to an error in the deter-
mination of the absolute cross section. We feel the
problem must lie in the oversimplification involved
in attributing piezooptical deformation potentials
solely to their phonon component.

*Supported in part by the Alexander von Humboldt Foun-
dation, on leave from the University Autonoma de
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