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Some effects of structural disorder on phonon lifetimes
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A calculation in the long-wavelength limit of the damping of a plane wave due to structural disorder is
presented. Two contributions are found to be important: the first is incoherent and leads to a mean free path
proportional to the fourth power of the phonon wave vector. The strength of the scattering, when estimated
using available parameters, is sufficient to account for the thermal conductivity of glasses in the region of the
plateau. The second contribution comes from coherent scattering and appears to be unique to strongly
scattering systems such as amorphous substances. An estimate of its strength is very difficult because it
depends on the magnitude of fourth-order elastic constants. However, it appears to be more than sufficient to
account for a substantial part of the phonon mean free path at very long wavelengths.

INTRODUCTION

While the concept of a phonon is clear for cry-
stalline materials, the problem of the normal
modes of an amorphous substance has not yet been
solved in a satisfactory way. Nevertheless, it has
been shown that at long wavelengths a Debye-type
description provides an adequate basis with which
to account for the thermal conductivity at low tem-
peratures. ' Thus a Debye or continuum descrip-
tion should be adequate for long wavelengths. The
question to be considered in this paper concerns
the effect of the structural disorder on the lifetime
of a propagating plane wave in this long-wavelength
limit.

It will be found that fluctuations in density and
force constant lead as might be expected to "Ray-
leigh" scattering, i.e., an inverse mean free
path that varies as the phonos frequency to the
fourth power. However, it will also be found that
the strong scattering leads to another effect:

When summing the squared scattering amplitude
there are two contributions, ' one that arises from
the squared amplitude for individual scatters, and
another that consists of the products of the ampli-

tudes from different sites. Normally, the second
contribution can be neglected because it leads to a
& function in the forward direction. However, be-
cause the scattered wave is also attenuated, the
volume over which the integration is performed
should not exceed a dimension on the order of a
mean free path. Restricting the volume broadens
the & function. When the mean free path (mfp) is
very small the & function is broadened sufficiently
for a significant contribution to the total scattering to
result. This contribution rapidly becomes important
because it is proportional to the square of the num-
ber of scatters which outweighs the fact that it is
small-angle scattering, confined essentially to
angles less than (Ak) ', where A is the mfp and k

the phonon wave vector.
It has also been demonstrated experimentally'

that local oscillators contribute to the lifetime at
long wavelengths. It is likely that these are also
a consequence of structural disorder, however,
the present work makes no contribution towards a
microscopic model for such oscillators.

The Hamiltonian for a structurally disordered
monatomic solid insulator can be written in stan-
dard form:

H= +— B ~ r;-r& u„s -u j u ~ i -u ~ j
P' (i) 1

a M 2

+ —ggg ggC« „.(r; —r&)[u~(i)-u (j)][u .(i)-u ( j)][u -(i)-u -(j)]6 a n

+ ggg PggD~ ~ ~ (r;-r&)[u„(z)-u (j)][u i(i)-u„(j)][u„.(i)-u ~ (j)][u„-(i)-u z.(j)], (I)24

where u (i) and P (z) are Cartesian components of the displacement and momentum of the atom at i. The
B ., C ~ - D ~ - -. are second, third-, and fourth-order force constants. The expansion is continued
to quartic terms for reasons which will become clear below.

The conventional solution to the normal mode problem involves the transformation of the Hamiltonian
using plane waves. This is difficult for structurally disordered systems because, as Morgan has dis-
cussed, it is not clear how to choose an appropriate set of vectors. This difficulty may be circumvented

16



D. WALTON 16

if long wavelengths alone are of interest. In this case, a Debye approximation is adequate: writing

pg))=« '~'Q ) „(k)e '"',

and in turn expressing P„(k) and ugk) in terms of the phonon annihilation and creation operators a~(k) and
a~ (k), and only keeping the quadratic part, the Hamiltonian becomes

B=g g her~(k)[a~(k)a~(k)+-,'] -g g h-,'&u~(k) e~(k)g (k')ge'~
PvP' k'&4

x [a~(-k)a~~.(k') + a~~ (-k)a~.(k') ] .

(2)

In this expression, &u~(k) is the frequency associated with wave vector k and polarization P, and e is the
polarization vector

B» (-k, k') = —g e' " ~'& gg g e~(-k, p}e (k', p')B (r&-r,)(l- e' &'& ''&&}.
n a'

The first term in Eq. (2) is the familiar phonon
Hamiltonian, the second contains the effect of den-
sity fluctuations. It cannot, however, include
force-constant Quctuations because the force-con-
stant & is harmonic, and, in this approximation,
cannot depend on changes in interatomic distance.
The effect.of force-constant fluctuations is con-
tained in the anharmonic terms C and D.

We choose to neglect density fluctuations because
they should also scatter light, which many glasses
do not to any great extent. In any case, the ratio
of a fractional force-constant change to the asso-
ciated fractional density change is on the order of
a Gruneisen parameter. Therefore, scattering
should be stronger by a, factor on the order of the
GrGneisen parameter squared, so force-constant

, changes should dominate for most amorphous sub-
stances.

A more important source of scattering lies in
'the atomic displacements themselves. The changes
in elastic constant are determined by the individual

displacements. The density fluctuations are an
average of the displacements over some volumes
and the force-constant fluctuations are seriously
under estimated if they are obtained by multiplying
the density fluctuations by the appropriate Gr6nei-
sen parameter as Jmckle' has done.

For these reasons, density fluctuations are prob-
ably an unimportant source of scattering and thus
the physical basis for a simplified calculation by
Walton' is probably incorrect.

Thus, the scattering is ascribed to the changes
in force constant resulting from the departure of
the nearest-neighbor distance from the average.
There also exist large variations in bond angle, '
but these are more difficult to estimate and will
simply be ignored here. The Hamiltonian is now

H =H~+H',

where, including the polarization index in the
wave vector

B,=Q h)d(k)(a, a~t + —,'},

B'=gg +Pe' 'i g e~(k)e .(k'}AB„.(r, -r,)(1—e' '& 'i )'
yvsa' a,e™

x (1 e -iv (r, —r,&)(a~a~t. +al,.a~~)

where

nB«i(r, -r)=— C ~ «(a}(r,-r, -a)„-+ gg D i -„~(q-r,-a) «(r, -r, -a) «,
CK 12 ~N ~slf

(4)
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ja j
is the average nearest-neighbor separation,

and a is parallel to r, —r, .
The attenuation and energy shift of the phonons

can be obtained from the imaginary and real parts
of the self-energy

~ = H'+ H'GH'

where G is the propagator corresponding to H.
More explicitly, these quantities for a phonon of

wave vector k are given by the real and imaginary
parts of

& k j vjk& =&k jH'GH'jk&.

Since H' is quadratic in phonon operators, there
is no diagonal contribution from H'.

In general, it is plausible that the Green's func-
tion G.may be approximated by'

G(rq, r~; u&) = G (r&, r ur}e (5)

where A(tu) is the mean free path of phonon &u, and
Go is the unperturbed function, corresponding to
Ho.

The physical meaning of this approximation is
just that the phonon will be attenuated in propagat-
ing from i to j. Assuming that the attenuation is
only a function of phonon frequency, and that the
solid is isotropic, Eq. (5) is obtained.

Thus, a self-consistent equation can now be
written for A(u&), since A(&u) = r(&u) V(&u), where r((u)
is the phonon lifetime and V(&o) the phonon group
velocity. 7 '(&u} =(2s/8)1m'(u), and, therefore,

A '(&u) = Imp g Q &k jH'(8„) j k'&G, (k', &u, ) g &k' jH'(ft~ ) j k& eV(gk
m see

(6)

fVhen I=j and m =I, or when j =I and m =I, Eq. (6) becomes a direct relationship for A (u) yielding the in-
coherent contribution to the mean free path. This is just Rayleigh scattering A 'ak~. For i+jA ' must be
determined self-consistently. This is the coherent contribution and yields quite a different behavior,
A 'ak.

INCOHERENT SCATTERING

There are two contributions, the first comes from the terms in Eq. (6) for which i =I. In this case the
exponential damping factor drops out. The second comes from terms in which i and l are interchanged, since
4B« =- 4B&i. Again, the damping factor and the phase factor are unimportant since Bi& is the nearest-
neighbor distance.

The expression for A ' becomes

A ' =[8'V(&u)(2v)'] 'II d'k'gg [j&k'jH'(r;, ) jk& j'+2j&k jH'(r„) jk'& &k'jH'(r, &} jk& j] 5(&u~- &o,.},
~ i&l k

where 0 is the volume of the solid.
From Eq. (S)

j&k'jH'(r~) jk) j= g e~(k)e i(k') " ' ' (1-e'" ' «)(I-e ~ '&)

CX, CX' Me~

Since

MuP, =- g g e (k)e„~(-k)B„„.(A&,}(l-e' '"s)(1-e '"'"u),
a, a'

and 4B and B are short ranged, for the case where k is a longitudinal phonon, straightforward algebra
yields

SVok4 2 &n B2 „) 4 &AB2 & V, ~ 16 &AB2 .& Vg 4 &AB2 & V,

(8)

where && and V& are the longitudinal and transverse
velocities of sound.

The first two factors in the brackets are due to
scattering into a longitudinal mode, whereas the
last two correspond to the scattered phonon being
transverse. Taking & s B~~~&/&„' ~ -&b.B~~&/B'~
and ignoring terms in V, /V, ,

SVO &nB ) 2 16 V,
8w 32 5 15 V,

+ k

Similarly, if k is a transverse phonon
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Now

Shook' (AB' ) V,

CK CX t

AB ~ lnB 4A 8 inca 4B

AB/B -6y(AR/R},

where y in an average Gruneisen parameter ob-
tained from thermal expansion. For vitreous silica
y--9 at 4'K and' (b,R')/R'-10 '

The mean-square fluctuation, calculated in this
way is very large. The Griineisen p ghtchisap-
propriate is not necessarily that obtained from
thermal expansion. However, bearing these res-
ervations in mind the following values are ob-
tained:

A;„', (kg) -1.9&ok~

and

A~,'(k„}-1.0@ok'.

&, is the volume of a molecule which for vitreous
silica is 3.76& 10 "cm'.

Using the resultant values for the mean free path
in a standard calculation of the thermal conductivi-
ty, good agreement is obtained with experimental
values in the plateau region.

A recent estimate of structural scattering by
Zaitlin and Anderson' yields a mfp an order of

magnitude too high. It is not quite clear why this
is so because the expression used is one suggested
by Zeller and Pohl, ' and the latter authors obtain
good agreement. In this model, the physical me-
chanism for the scattering was taken to be, in ef-
fect, the fluctuations in interatomic distance. The
results obtained here, depend on quite a different
mechanism, namely, the changes in force constant
resulting from the fluctuating atomic displace-
ments.

JKckle' has calculated the scattering due to den-
sity fluctuations, and has included anharmonic ef-
fects. His scattering is roughly two orders of
magnitude weaker than the result obtained here.
The reason for this is that he uses the mean-
square force-constant change over a small volume,
obtained by multiplying the mean-square density
fluctuation by a squared Griineisen constant. This
seriously underestimates the interaction, because
the resultant average is not the mean-square
force-constant change, but the mean-square fluc-
tuation of the average force constant in the chosen
volume.

COHERENT SCATTERING

The contribution from terms for which i &l will
now be estimated.

With Eqs. 7 and 8, Eq. (6) becomes, for scatter-
ing of a longitudinal phonon into another longitudin-
al phonon,

1 g k(g) gBQ gBfm
A(g)h(~)=, &'k' gg " cos'8 g g cos'8 e ' "&~e'

RVg (2w)' 2N ] ~g 3~~ fA mWf f ~aa
2g

(&4 —~d ') ~

(10)

where 8 is the angle between k and k'.
Replacing 4B" and 4B by their average values and converting the sum over i and j into an integral

2

d g(ra)=(V)dg ) f d g'( ) ll(w -w )cos g g(g)e~~" g '
e ) )d g

Bna

where g(R) is the probability that an atom will be
found at A if there is one at the origin. Performing
the integration over R, letting g(R) =1,

d'k'(~)' " cos'81 aB
V &2~ B

1

(1

where Q= )k-k'(=k'+k"-2kk'cos8.
Scattering involving mode conversion can prob-

ably be safely ignored since Q is never zero in that
case and the denominator in (11) remains large.

Since (Aq) ' is small it is clear that the impor-.

tant values of k' are confined to the forward direc-
tion. In that case, letting cos8=1, sin8= 6},

1 zB ' edge
Bw B„„(—'k 'A '+82}2 '

whence

aB ~1

1 &Sp 1 ao
2 B
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Again, the fluctuations in B are taken to be due
to fluctuations in interatomic separ'ation. The
third-order term is linear in AR and yields zero.
The first nonzero contribution comes from the
quartic term. One way of estimating its magni-
tude can be obtained from the change in the y with
volume. D»» for vitreous silica has been mea-
sured by Graham" at room temperature; he
obtains D»» 110& 10' kbar.

Using

»»
B 12 C» R'

A-'b(&o) = 5 x 10 'k .
From Brillouin scattering" A '-10 'k, of which

Golding' has shown that interaction with "two-lev-
el systems" accounts for roughly half the scatter-
ing, so the above overestimates the scattering by
about an order of magnitude. This is not surpris-
ing considering the difficulty in estimating fourth-
order constants.

Because of this uncertainty, an estimate of the
mfp for transverse phonons is not presented here.
It has been calculated and yields a similar result.

Naturally, the appropriate contribution due to a
mechanism such as the one outlined above should
be amenable to direct measurement. However,
this is not a straightforward experimental question:

If ultrasonic techniques are used, the coherent
contribution will appear as a temperature-indepen-
dent background. If this background is rejected, of
course this coherent effect will most certainly
be discarded too. Also, at low frequencies the
mfp becomes larger than the sample size. ' In this
situation the above treatment is not appropriate,
and in any case the coherent contribution would be
difficult to untangle from the diffraction broaden-
lIlg.

At the present time the best estimate of the co-
herent contribution can come from Golding's mea-
surements: he finds that when he extrapolates the
mfp measured at 0.59 GHz to higher phonon fre-
quencies the "two-level systems account for be-
tween 30%%uo and 80% of the total. " However, as he

points out, this assumes an energy-independent

density of states, and even a weak energy depen-
dence would modify these figures considerably. It
would be desirable to perform the same experiment
at higher frequencies. Probably the best measure-
ment of this sort could come from the temperature
dependence of the Brillouin linewidth between 2
and 0.5 K in backscattering.

SUMMARY AND CONCLUSION

Beginning with a microscopic Hamiltonian for an
amorphous solid the effect of structural disorder
on the lifetime of low-frequency phonons has been
calculated. It is found that there are two contri-
butions:

The usual incoherent contribution, 5'ek'. In
contrast to other published estimates'&' it is found

that the mfp is approximately equal to that ob-
tained from the thermal conductivity.

In addition, coherent scattering must be consid-
ered. The reason it is important is that the mfp is
short. Scattered waves should not be able to in-
terfere if they come from sites separated by a dis-
tance greater than a mf p. If this distance is short,
interference is no longer complete. Inclusion of
what is essentially a multiple-scattering effect
leads to g'o.'k. This dependence on k also accounts
for the temperature dependence of the thermal
conductivity at low temperatures. While a k de-
pendence of this nature can be accounted for by in-
teraction with two-level systems, it appears at
present that these account for very roughly half
the scattering.
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