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Wave functions and optical cross sections associated with deep centers in semiconductors
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Analytical impurity wave functions associated with deep levels in semiconductors (e.g., GaAs:0, GaP:0)
are calculated, using a pseudopotential scheme in which a realistic and convergent model is employed to

represent the host-crystal band structure and the impurity potentials. The effects determining the form of the

wave function are studied with a view to establishing a relationship between the position of a deep level in

the gap and the localization of the wave function. It was found that the localization is not a sensitive

function of the impurity energy measured from the nearest band edge. The optical impurity-to-band cross

sections involving deep levels are computed as a function of photon energy and temperature. The electron-

phonon interaction is taken into account within the strong-coupling model of Huang and Rhys. A relatively

simple formula is derived which can be applied to interpret optical cross sections associated with deep centers

dominated by a short-range potential. Numerical results are presented for state one and two of GaP:0, and

the threshold energies, the magnitude of the Franck-Condon effect, and the temperature dependence are

determined. A brief discussion is given of optical cross sections associated with deep centers in GaAs and Si.

I. INTRODUCTION

Photoexcitation has been widely used with suc-
cess to study shallow and deep impurities in semi-
conductors. The main features responsible for
this success are the speed, sensitivity, and the
spectroscopic character of the technique. In con-
trast with standard conductivity measurements of
the thermal-activation energy of the Hall constant,
the optical method provides data for the relevant
transition-matrix elements. The spectral distri-
bution of the optical cross section can be deter-
mined at a number of photon energies and in a wide
range of temperatures. Thar's to the great sensi-
tivity of the technique, the spectral distribution
can be accurately assessed over several orders of
magnitude. Hence it is possible to study the broad-
ening of the signal due to the electron-phonon inter-
action in some detail. In brief, the information
provided by a well-planned experiment of this kind
may yield the position of the impurity level in the
forbidden gap, the character and magnitude of the
coupling between the impurity and lattice, the
properties of the impurity wave function, and the
temperature dependence of the impurity level. Ac-
cordingly, the method has recently been refined in
several directions. For example, the technique of
photocapacitance spectroscopy has been developed
which allows the deep levels within the space-
charge layer of a p-n junction or Schottky barrier
to be studied directly. " This technique has been
demonstrated by Henry and collaborators' to be a
fine tool for the study of deep levels. A quasi-
equilibrium spectroscopic method which use@ two
light sources and a differentiated photocapacitance
signal has been developed by White et al.' ' Grim-
meiss et al.' have pioneered a method which is

based on the fact that the occupancy of an xmpurxty
level is not changed during illumination with pho-
tons of different energy if the photocurrent is kept
constant. As a result of this lively development a .

great deal of experimental data has been made av-
ailable. The Strong overlap of this information with
that provided by related methods, e.g. , lumine-
scence, optical absorption, etc. , further enhances
the value of the above-mentioned efforts. Un-
fortunately, the interpretation of the experimental
data concerning the optical cross section is not
always straightforward and a theoretical. model is
an essential ingredient in any event. Although the
processes associated with shallow impurities seem
well understood, this is not the case for deep chem-
ical impurities and defects. Indeed, a truly quanti-
tative analysis cannot be hoped for at the present
time because our general understanding of the deep
level problem is still poor. Yet it may seem de-
sirable to make use of the existing insight and aim
at producing a general prescription which would
enable us to extract as much information as possi-
ble from a given experimental data.

Recently, we have performed calculatiohs of im-
purity energies associated with chemical impurities'
and lattice defects' in III-V semiconductors. In some
cases we also computed the wave functions associated
with deep states. In Sec. II we extend this calcula-
tion with a view to establishing a relationship be-
tween the position of the level in the forbidden gap
and the localization of the wave function. In the
past the localization of the impurity wave function
has been assessed by relating the argument of the
exponential "tail" of the wave function to the impur-
ity energy defined with respect to the nearest
relevant band edge. As a result the localization
becomes a sensitive function of the position of the
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impurity level in the gap. This approach has been
shown correct in the case of "shallow" impurities,
i.e., those impurities whose nature is determined
by a prevailing role of the long-range Coulomb po-
tential. Our calculations indicate that the position
of a deep state in the gap may not necessarily be a
good indication of the degree of localization. This
result can be understood if we study the formation
of the impurity energy and wave function in terms
of the individual contributions associated with var-
ious parts of the wave-vector space. In general,
numerically significant contributions can be found
even from bands lying farther from the principal
gap. The position of the impurity level in the gap
is a result of a delicate cancellation process in
which all these contributions play a part. Con-
sequently, the "depth" of the level is not simply
linked to the degree of localization of the corre-
sponding wave function. Since the impurity energy
defined in this way is really a difference between
large terms of opposite signs, it is not surprising
that it is a sensitive function of the strength and
symmetry of the impurity potential. The impurity
wave function appears to be highly localized and
the degree of localization is not so sensitive to the
strength of the potential. Both these observations
seem useful. In particular, they allow us to simp-
lify calculations of the optical matrix elements.
In Sec. III we deal with photoionization cross sec-
tion ar(hv) as a function of photon energy hv and
temperature T. The electron-phonon interaction
is accounted for within the strong coupling model,
in the quasicla, ssical approximation. "" We arrive
there at a simple prescription which allows us to
deduce from a set of experimental data the position
of the level in the gap, the magnitude of the
Franck-Condon effect, the temperature dependence
of the impurity level, and to a large degree, also
the symmetry of the impurity wave function. In
Sec. IV we apply our model to a set of data con-
cerning GaP:O. We also comment on optical prop-
erties of similar states in GaAs and Si. We em-
phasize there the need for studies of temperature
dependence of the optical cross sections, without
which any data would seem to be incomplete and its
interpretation at least to some extent ambiguous.

II. IMPURITY WAVE FUNCTIONS ASSOCIATED

WITH DEEP LEVELS IN SEMICONDUCTORS

Recently, we have reported detailed calculations
concerning energy level, s associated with "deep"
chemical impurities and lattice defects in GaAs
and GaP.' The most obvious aim of such calcula-
tions is to predict the positions of the impurity
levels in the forbidden gap. Indeed, the impurity
energy is often the only observable that is available
from experiment. However, with the advance of

various techniques of optical and capacitance spec-
troscopy some additional data, e.g. , carrier capture
or photoionization cross sections, is becoming
available. In most cases, such an information can-
not be processed and made use of in the absence of
a reliable description of the impurity wave func-
tion. It is, perhaps, characteristic of the state of
art in this field that very little is known about the
wave functions associated with levels lying further
within the band gap. One might expect, as usual in
quantum theory, the wave function to be a more
sensitive indicator of any inadequacies of a model.

It has been shown in the early days of solid-state
theory that the wave functions of the so-called shal-
low impurities can be thought of as a. product of an
envelope slowly varying smooth function, and a
periodic function derived from the lowest-lying
band minima. " It was also. shown that such an ap-
proximation must break down if the, dominant part
of the impurity potential becomes more localized.
If we then expand the impurity wave function g in
terms of the complete set of eigenfunctions P„;of
the perfect crystal Hamiltonian H„'""

g(r) = Z A„„-p„f(r),
the coefficients A„-„associated with bands and wave
vectors farther from the absolute band minima or
maxima may still be numerically significant. [In
(1), n, k label bands and reduced wave vectors,
respectively. ] The simple separation of the impur-
ity wave function into the envelope and periodic
parts is no longer possible and the wave function |t
must be calculated numerically. We can, for in-
stance, compute the impurity energy and coeffici-
ents A„-„following the methods of Refs. 8 and 9 and
output tI(r) of Eg. (1) at some real space points r, .
As we shall see later, such a procedure reveals.
some interesting properties of the wave function.
However, it might be more convenient to generate
g directly in an analytic form as a solution of the
Schr5dinger equation with the proper Hamiltonian
and impurity energy.

It is borne in mind that a small angular-varia-
tion, and a nodal structure extending far beyond
the nearest-neighbor distance may not be relevant
if we choose to deal with a deep state of A, (T,
group) symmetry. '" Indeed, one expects a car-
rier with an energy near the middle of the gap to
be well localized within the volume comprising the
impurity and its nearest neighbors. In such a
case only a few parameters may be sufficient to
capture the most important features of g and pro-
vide a useful analytic function which is well be-
haved for large values of r and has a correct norm-
alization.

Let us begin by choosing a trial function
y'=a, f, +a, f, , (2)



3696 M. JAROS 16

where

f —(~ )-1/28-er f —(~ )-1/2 (] +p")8 e-r

and define p, N„and N, so as to ensure

f f, f/r dr=6'/.
0

(8)

(4)

The function Po must satisfy the Schr5dinger equa-
tion

(H, +h}P=eg, (5)

A„.gf, I 4„.2)+ Q a,
Its f=l

(g, z lb I f,)(f/I $„,2)

nst

the sums can be readily computed following the
procedures in Refs. 8 and 9, and the parameter ~
can be determined from the condition Det=0. '4

Finally, the coefficients a„a, can be calculated
and P of Eq. (2) rewritten

(8)

yO-"1/2 (]+y&) a-er (9)

To test the reliability of the wave function P de-
fined in (9) we can invoke a consistency condition
based on Eq. (6). If we compute a coefficient Ao'2
from

A'„,;=-(@„„-'llIP)/(E„,g- e), (10)

then

O

X

X ( a.u. )

FIG. 1. Sketch of x (1-0.68m) exp(-1.7~).

where h, E represent the impurity potential and
energy, respectively, and are assumed to be known
from our earlier calculations of e."We may write

(Ho- C)ZA„2 Q„2+her'=0, (6)

and substitute for P from (2), multiply by P*„," and
integrate to obtain

($»p. Ihl f&)
(V)

f ~ g n22k

M"ltiply by (f, ~ g» .„), and Z„, ~ gives

X (a.ltL)

FIG. 2. s y(s)g*(x) of Eq. (11) for the trial-function
parameters +=0.86, )/=-0. 68 (solid line) and d =0.50,
y =-0.55 (interrupted line).

(ll)
should be indistinguishable from tp.

As we indicated earlier our procedure might have
the best chance of success if applied to what is
basically an s-like state. Calculations of the im-
purity energies concerning a substitutional donor
oxygen in GaP and GaAs have been performed' and
deep levels obtained. Therefore the above pro-
cedure was applied to compute P and y for GaAs:0
ground state. We find y=-0.68 and o' =0.86, in
atomic units (the energy & =0.78 eV was used in this
calculation }. r2go(r)2 is sket'ched in Fig. 1. In
Fig. 2 we plot x2go(x)2. We also show the values
obtained with y'=-0. 55 and u'= 0.50 for compari-
son.

In Fig. 3 we show gg* for both sets of y, to re-
veal the form near

~

r
~

-0. Since the details of
g(x} are relatively insensitive to the choice of the
parameters y, n, we might ask whether the form
of y is at all similar to the form of g introduced
via Eq. (1) (i.e., the function obtained via A„2,
without the help of a trial function P'). When the
calculation of g is carried out, it turns out that
@2~A"(x) ~2 lies in between the two curves shown in
Fig. 2 and can be well reproduced from (9)-(11)
with a trial function (9) if y'=-0. 56 and n'=0. 69
a.u.

The difference between a'(=0.69) and u(=0.86)
may indicate the degree of accuracy of determining
the localization of the wave function. In this regard
the pessimism Of our introductory remark seems
well justified. It might be argued that a higher-or-
der polynomial in (9) could improve the situation.
Alternatively, we may feel that it is sufficient to
determine the wave packet of Eq. (1) at a grid of
points in space and fit a polynomial function which
describes these points. Naturally, such options
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funchon of impurity energy provided that the sym-
metry is preserved. It is worth emphasizing that
so far we have concentrated our attention on defects
or deep impurities possessing the high symmetry
of a substitutional site in the zinc-blende lattice.
Our conclusions cannot be of course automatically
extended to interstitials or defects of very low
symmetry.

In the past the localization of wave functions as-.

sociated with levels lying deeper in the gap than the
so called shallow donors or acceptors has been
estimated from the quantum-defect theory. " For
example, in their interesting study of the isotope
shift for zero-phonon optical transition at traps in
semiconductors, "Heine and Henry evaluate the
probability P of a carrier being on an atom. To
compute P for deep donor oxygen in GaP, they in-
troduce an envelope function

ft(r) -r" 'e ~~~, (12)

IH. OPTICAL CROSS SECTIONS

The experimental results of a photoconductivity
or optical-absorption study can normally be re-
duced to a normalized cross section a per photon,
and it is our prime interest to relate this observa-
tion to a particular defect or impurity. In practice,

where a=(2m*E, ) ' ~(a.u. ). Theparameter visde-
termined by relating the effective mass (hydrogen-
ic") value E„for a donor in GaP to the actual value
of the impurity energy E,

(18)

For a deep donor like GaP:0, v = (0.05/0. 9)' ' « I
and the envelope function in (12) becomes very sim-
ilar to the solution of the Schr5dinger equation with
a 6-function impurity potential. ' ' ' Our calculations
on this subject show quite clearly that a substantial
area in the wave-vector space is involved in the
formation of the donor ground state and the effect-
ive-mass parameter is not applicable in the cir
cumstances. Therefore the localization of the wave
function cannot be well represented with the func-
tion of Eq. (12). However, the nodal character
of the wave function is dominated by the standing
waves of the lowest parts of the conduction band
as conceived in the quantum defect model. Per-
haps as a simple approximation we can still form-
ally write the impurity wave function as a product
of a periodic part determined rather well by the
nodal properties of the dominating band states and
a decaying (localized) function. The precise nature
of the latter may be immaterial because it probably
does not change strongly enough from defect to
defect to be helpful in our analysis of most spec-
troscopic data.

we really want to distinguish one curve from an-
other, i.e., the real task is to predict the tempera-
ture dependence and the shape of the function or(h v)

(where h v is the photon energy and T stands for
temperature) in relation to the nature of the impur-
ity concerned. We propose to characterize a deep
level by a set of parameters E„E,d~~, and ~~.
E, is the binding energy and is defined as the true
energy of the state taking part in the transition,
with respect to the edge of a specified band of the
host crystal. The maximum of the normalized
cross section occurs at a photon energy E . d~~ is
the magnitude of the Franck-Condon effect. 4E~
is the shift of the impurity level at E] in the gap,
caused by a change in temperature. We also de-
sire to determine symmetry properties of the im-
purity wave function.

Let us first choose to consider the optical cross
section associated with an impurity-to-band transi-
tion assuming that the electron-phonon interaction
is weak and can be left out. Then it is a standard
approximation to write

o(hv) = „g](g~ xpe(-ik„r)f„j5~4„$~'

n, f

x 5(E, +E„ i-hv) . (14)

k is the wave vector of the radiation field and & is
the polarization direction. In the usual dipole ap-
proximation we. have exp(-ik„r) - 1. The momen-
tum matrix element in (14}really indicates an av-
erage over all degenerate initial and final states.
The band wave functions and energies indicated by
4„-„and E„„-must be generated at a large number
of points in the Brillouin zone and the expression
in (1}evaluated numerically if a truly quantitative
answer is required. Also the impurity wave func-
tion g is needed as an imput in such an exercise.
In this application it is convenient to express g as
in (1), i.e., via the coefficients A„;. A calculation
along these lines has been performed' for a transi-
tion from the two-electron state of oxygen in GaP
to the conduction band at low temperatures. How-
ever, p proposition that such calculations be per-
formed for all cases of interest, is unrealistic.
Indeed, as.soon as the temperature rises and
strong electron-phonon interaction allowed for, the
prospect of accomplishing this task disappears
from our horizon. Qn the other hand, the impact
of any simplification we make must be carefully
assessed. The detailed calculation showed that the
sum in (14)—when performed with a highly local-
ized function |t)—is not a sensitive function of the
form of P. The powerful averaging process im-
plied in (14) always leads to a smooth curve for
a(hv) and its shape reflects mainly the nodal mis-
match between g and 4'„» as well as the variation
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4„ I = g h„.„(5z)exp[i(k+5&) r], (17)
f

where 5 stands for a reciprocal-lattice vector.
The bands n and the reduced wave vectors k which
contribute to the transition probability at a par-
ticular photon energy hv are selected by the ~ func-
tion and the optical integral which appear in (14).
Because of our declared intention not to get in-
volved in the lengthy business of computing the sum
in (14) by a sampling procedure, we must now
enter upon the dangerous path of simplifications.
Let us choose to represent the band wave functions
by those of an isotropic semiconductor. ""Ac-
cordingly, the band functions take a form

F', = (e'~/~) (C, e "r"+ C, e "r"), (18)

with Cy Cg 1 and with+ and —referring to the
valence and conduction bands, respectively. At
the band edge, the band functions are just (1/~)
( eC'~ r+C,e '~r"). —,

' k2r is the free-electron Fermi
energy in a.u.

It is easy to show that the Fourier transform in-
dicated by the matrix element in (16) is constant
over the range of energies E„, -„, over which the
mismatch between the nodal character of 4„, -„and
g remains (on average) the same. In Sec. II we
concluded that tj may be formally written as a
product of two terms, one representing the nodal
properties of P and the other being a strongly
localized function. We may, for instance, write

g- (e "/r) F' (19}

The analogy with the quantum-defect effective-mass
theory is merely in the form since we do not pro-
pose to choose n according to Eq. (12). The nodal
part is chosen as a standing wave associated with
the relevant band edge. We will return to comment
upon this assumption later.

in the density of states of the continuum.
In Sec. II we indicated the loca)ization of the im-

purity wave function associated with a deep state
and pointed out that it does not change considerably
with impurity energy. This will help to simplify
(14}. The momentum matrix element in (14}is,
with g from (1),

g Ip, l
c„„-&-z~„*.pc„,; I p, l4„,g. (16)

We can rewrite (6) with tj from (1), multiply from
the left by 4„*, ~ and integrate over all coordinates
to obtain A„, -„,

-&. ,f =&4'"I Ih le»/(E~, I -Eg) .

Since we generate h, E„-„,and 4„-„within a pseu-
dopotential scheme, the crystal wave functions are
represented by linear combinations of plane waves,
l.e.y

In the case of most deep states, the impurity
potential is dominated by its short-range part. The
impurity pseudopotential generally derives its
strength from the area near the optimized-model
potential radius which is typically of the order of
the tetrahedral covalent radius r„or less. There-
fore, we are not likely to overestimate the local-
ization of h if we choose h-xe " "~. Then the lead-
ing term in the expression for the matrix element
in (16) is

I(E„, ,-.) =&e„,.- Ihip&-"'
x sin(kr)re ""dr,

0

where u=o+I/», . Hence

I(E„, ~)-I~-[u/(k +u ) )(C, +C~) .

(20)

(21)

(22)

Only a transition to a band with nodal properties
"matching" those of g is allowed and since hv =E
+ IE, I, we arrive at

a( h)v-[( hvlE&l) /h]vp (vh- I«l}.
With p-(hv- IE, I}' ', the normalized cross sec-
tion of (23) has the same form as that of the well-
known Lucovsky formula. " Had we assumed, as
did Lucovsky, that the potential h in (20) is a 6
function we would have arrived at I= const and con-
sequently Eq. (23) as well. Here we obtain Eq. (23)
without having sacrif ied much of the realistic form
of h and g. Note that (23) predicts the maximum of
a(hv) to occur at hv =2 IE, I. As we pointed out
earlier, our choice to represent the nodal part of
g, F;, in terms of the band-edge standing waves,
is merely a convenient vehicle for modeling (at a
later stage} the change in the nodal mismatch of
the impurity and band wave functions. It means

In Sec. II, we presented some results concerning
the localization of the impurity wave functions
associated with deep states. We found that u -0.5
(a.u.). The typical value for r, is 2 a.u. so that
N-l a.u. Since the range of photon energies is re-
stricted to

hvar

E(gap} (and in fact the ionization
energy E, constitutes a substantial portion of that
energy), the values of k' entering (21) appear to be
small acompared to u, i.e., I is for any practical
purposes a constant. It is now easy to see that this
result does not really depend upon the choice of a
particular analytic form of $, 4„„-since for a some-
what different choice the result would be the same.
However, we do need the simplified form of 4„~
shown in (18) since it will enable us to eliminate
the sampling procedure. Then we can introduce
the band density of states p(E) and write (14) as

a h v = const I p(E) &FI'jplFI,&(C', +C2) '
hv E-E&
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1~C'+C'~2

and, for the minus sign,

0 c,'-c2~

(25)

(26)

This can be taken into account if we introduce a
function g =q(E) such that near the band edge q =1
but g-0 as (hv--~E, ~)-~. The cross section then
becomes

2

a(hv) P( } ) (E)&l~+. ~ (E }~~2
hv E+ IE& I (E) I

—Eg-E
(27)

The appearance of the (negative) second term on
the right-hand side represents the fact that the wave
function g of a deep impurity can now couple to
both the conduction and valence band. Formula
(27) obviously oversimplifies this relationship.
For example the results presented in Ref. 8 show

that we can also observe the "forbi'dden" transition
since in most cases of practical interest C,'- C,'so.
Hence we arrive at another limiting case, analog~
ical to the Lucovsky formula for our "allowed"
transition, i.e., a(hv)- p(hv- ~E, ~)/hy' postulated

Qy Kopylov and Pik
On our way from Eq. (19) to (22}, we kept the

mismatch between the nodal structure of g and the

band wave function unchanged. Even in the most
favorable of circumstances such an assumption be-
comes invalid when we excite the carrier into
states lying farther from the band edge. This is
particular)y so in the case of the conduction band

in direct-gap materi&Ps where the importance of
the multivalley character of the band structure is
manifest. The changes concerning the density of
states can be, at least at low temperatures, well
accounted for via p. The change in the nodal mis-
match, alas, presents an unsurmountable difficulty
since its precise rate can only be established by

a very detailed calculation. To demonstrate the
essence of the problem let us suppose that g =e ™r
x 4„+/y. Then at each sampling point n„k,
[chosen in order to evaluate numerically the sum

in (14)] the leading contribution to I=I(E„„-)-M-„,k,ffgsg ]
where

(24)

In evaluating (20) we chose C
&

and C„;, in Such
a way that M happened to be one or zero. However,
the value of M will fluctuate as we proceed to
sample states farther from the band edge. So in
general, we must expect a detailed calculation to
reduced the average value of I as we increase E„.„.
In the language of our simplified formalism for
the evaluation of I, the average value of I,-C', ~C',
where

that only the lowest bvo valence bands contribute
significantly to the totally symmetric ground state
of GaP:O. This observation is easy to understand
if we recall that the top of the valence band is
basically p-like, whereas the lowest parts of the
conduction band are predominantly s-like. Only
the s-like part of the valence band contributes
significantly. Hence, in the language of our iso-
tropic semiconductor model, only the valence
states outside the optical gap contribute. We may
then change the denominator of the second term to

~E,
~

—,' E,—,'—E~ E—, w-here E~ is the average
(Penn)22'" gap. It is borne in mind that the degree
of cancellation brought about by the appearance of
the second term on the right-hand side of (2'l) de-
pends on the symmetry of the impurity center. By
analogy with the states of oxygen in GaP we expect
a deep state which is being dominated by the val-
ence bands to have small coefficients A„;associ-
ated with the bottom of the conduction band. Only

farther from the edge would the p character of the
band states give rise to a region where A„-„be
numerically significant.

In (27) we also assumed that k'/2m ~ =E(=hv-
—~E, ~) instead of trying to achieve a better balance
between E' ' and (E~)'~' by employing some ad-
ditional corrective parameter. Since this is only
relevant for small E where the second term should
not apply in any case, such an addition would not
be much of an improvement. Hoever, whatever
the precise quantitative form of q(E) and other
parameters in (27), the effect upon the shape of
o(hv) can only be that the maximum of a(hv) shifts
towards logger photon energies. We can now under-
stand why the "Lucovsky" form of Eq. (23) so well
fits photoionization curves associated with "med-
ium" deep impurities like In in Si [E,= 3E, (hydro-
genic)] but not those of "shallow" and "deep" im-
purities. In the case of the shallow impurities the
impurity potential is dominated by its long-range
Coulomb part and the wave function is very extend-
ed. The Fourier transform implied by the matrix
element I is then a sensitive function of k and its
shape depends on the degree of localization of the
impurity wave function. As a result the maximum
o occurs at hv&2(E, (." For deep levels dominated
by a short-range potential, 2 E, is a large num-
ber, and before hv reaches 2 E, the excitations
occur from the deep level into the band states lying
farther from the band edge. The change in the nod-
al mismatch leads to a shift of the maximum to
hv&2 ~E, ~. Although there can hardly be much
doubt about the nature of this trend, its quantitative
appreciation is difficult to establish. .There are
obviously many ways of representing g which will
in turn affect the precise form of &r(hv).

There is some hope, however, that the actual
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dFc

I

l

I

I

I

I

Eio

the electron-phonon interaction which is linear in
the lattice coordinates is included. The cross sec-
tion o becomes

2

or(hv)- —„g l(Pl exp(-&&&'r)~i'Pl@„f)l
hv„~

(28)

Lattice coordinate

FIG. 4. Configuration-coordinate diagram involving a
deep level with binding energy E; and the conduction and

valence bands separated by a band gap E~. dFc indicates
the magnitude of the Franck-Condon e'ffect. The tran-
sitions from the level to the condition band (0'„) and

from the valence band to the level (0&) are indicated.
is the optical-ionization energy.

form of g = q(E) may not be of great significance.
We must remember that the sole purpose of intro-
ducing this parameter is to take account of the

change in the average value of the matrix element
I with E due to the change in the nodal mismatch of

g and the band wave function. Hence q(E) must be
a slowly varying function of E. It should also
change very little with temperature. Indeed g must
change with E slowly enough so" that the cross sec-
tions of medium deep levels are uneffected. Now

the minimum gap is always small compared to the
average (Penn)" "optical gap E~ and since E~ is a
good measure of the strength of the crystal potent-
ial, the rate of change in q(E } should go as -(EJ
2) '. Thus we may choose for q q(E) = exp(-2ElE~)
which interpolates smoothly between its apparent
values at E =0 and E = ~. Should this prove inad-

equate E~ can be used as a free parameter to
achieve a better agreement with experiment.

In our discussion of the impurity wave functions
associated with deep levels in semiconductors we
noted that these functions are highly localized. It
is therefore to be expected that when such a state
is occupied with an electron, some additional' lat-
tice relaxation may take place which significantly
changes the position of the level in the gap. It is
customary to picture such an effect in a configura-
tion coordinate diagram shown in Fig. 4. The elec-
tronic transitions from and into the impurity level,
indicated in this figure, reflect the magnitude of
this effect (which is connected with the name of
Franck and Condon). In the event of strong coupl-
ing between the impurity and lattice, the transition
probability can be expressed following the model of
Huang and Rhys. '4 In this model, the equations for
the electronic and phonon functions separate. Only

where the function J„-„carries the information
about the vibrational states and for the mode1 in
question can be evaluated exactly. " At high temp-
eratures and for strong electron-phonon coupling,
the expression for J„g simplifies to

J'„,"-(4mk~TSI&o) '~'exp- (hv- [IEg& I+E,,q])3

(29}

Here I~ refers to the phonon energy and the term
SS&=d~c is shown in Fig. 4. k~ is the Boltzmann'
constant. E« is the optical-ionization energy of the
impurity at T. The preexponential term obviously
does not affect the shape of the optical cross sec-
tion and for our purposes can be omitted. We may
now recall the simplifications which lead us from
(14) to (22). Including the expression (29), we re-
write Eq. (28) as follows:

1 (1+q)E'~'
or(hv}- — M Pr(E) IErhv p «+

(1 v q)(Ez)'i'
IE~q~ I

-E- (E~+Ep)/2

(hv- [IEP~I +E])'
4k&T dFc

(30)

IV. NUMERICAL RESULTS AND DISCUSSION

A glance at Eq. (30) may assure us that had we
decided to keep the true band structure in the ex-
pression for or(hv) [Eq. (14)]we would now have to
face an unenviable task of computing the optical
sums as many times as necessary in ord'er to ac-
complish the numerical integration implied in (30).
In the light of this observation, we may feel fully
justified in having introduced the simplification out-
lined in Sec. III. Instead of relying on a detailed
computer sum evaluation, our simple model de-
scribes the changes in the matrix element I due to
the nodal mismatch (between the impurity wave
function and the band states of a particular energy}
in terms of the parameter q = q(E~, E). In this-
study we regard this as the sole purpose of intro-
ducing g. E~ may be, if,necessary, treated as a
free parameter, together with E~~p and d~. The
computations implied by (30}are minimal and the
smallest computer allows them to be repeated as
often as required. Hence, a given set of experi-
mental data, i.e., the normalized cross-section
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FIG. 5. Normalized cross sections o„,o& for several values of the parameters E&, dFc, E& and temperature T, from
Eq. (28). The nodal properties of the impurity wave function are determined by I"

0 [Eqs. (18) and (19)]. The relevant
values of the parameters are indicated throughout (see also Fig. 4). In (b) the binding energy E~& is measured from the
top of the valence band. Note that oz, (c) and o~ (b) are the special cases discussed in the text following Eq. (23). The
parameter E& is introduced and discussed in Sec. III, between Eqs. (23) and (24). Note that E&-—5.8 eV is the average
optical gap of GaP. In (d) it is assumed that E& is independent of temperature.

curves o—= or(hv), at several values of temperature
T, can be interpreted in terms of the optical-ioni-
zation energjy E„and the Franck-Condon shift d~c,
fitted to reproduce the data. By selecting 5'o or Eo
in (18) and (19) which indicates the origin of the
nodal character of P and employing (30)we may arrive
at a sensitive tool capable of distinguishing cross
sections of centers possessing different symmetry
properties. In Fig. 5, we summarize some general
predictions based on the formula (30). We can see
there the shape of the cross sections O„and o~, as-
sociated with transitions from a level to the conduc-
tion band and from the valence band to the deep level
in the gap, respectively. The notation is consistent

with that in Fig. 4 which shows the transitions in
a simple diagram including the Franck-Condon
effect parameter d~c. The effect of temperature
upon o is also demonstrated and it is assumed that
the level does not have any temperature dependence
(i.e. , the binding energy E, does not change with
temperature). Note that the ambiguity introduced
by our somewhat arbitrary choice of the parameter
E~ is not very significant unless E~ is taken to be
much smaller than the average optical gap.

One of the important conditions for a successful
interpretation of the experimental data is that the
cross-section measurements are taken at several
temperatures. It is also essential that the range



3703

terpret the abovesimply inver
ust of necessl y g 'sitlons, m

1 data
entioned tra

th experimentasentation of
p comment

Ppprer repre
pf this PaPe~ tot ide the scoPe o '

talist must ~e
It ls ou sl

. s an exPerimen iupon theprecautjpns
thy set of d '

prted

.„Order to gen . . data are notthe hotoconductiv
-H»l mobility )e. ~ Ph

nts
„control data ( g '

ther arrangemeabsence « ~y ""
a»»ust .r the obs

of trans

en in
erved signis npt clear w

t'ng a number o
f t ~-

"cpnvplutipn
pnds to only pne yP

f

" represen '

or w e
e level in e

small

h ther it corr Pon
'

th gap In br'Sltlon~ from one de P
l.s only a veryn deeP levet literature o
-

1 treatment.
the vas '

bl to theoretlca
b erv-

fraction is am . t the very thre
amena e

eshold o s'th«t saying th"
ases Iiifficult &ed in an expe

en at pne tempeestablis
. arent in e

h from data ~
th case of deep's rticularly aPP
to the lattice.

Th s Pa .
trong couPling „»

impur-Oxygen in G~
j-cpnductprs are~ s far as III-V sem

.vel enpugh so tha
ity a

bidied extensiv y
ll there-

'
h has been s

ble. We wi
whic

ed ~~em~ ava '
.0 We will

the data re~
attention pn G:

el.s
ncentrate our a

30) to deep leve
fpre, cpnc

licability «
~ prtantwi, ll discus

discuss the apP '
d ss some imP

silicone e g' gdppan

l.p—

0 l

pt. data

l20 K

4OOK

)

I) ~

2.Ol4 l 6
h I~»

0ol 08 lo

are the tr»sitio. 6. & an Op

d tate [E)(4 K) =
FIG. ~

state 1) groun
hematically in

gen donor s a
indicated sc . th

=80 meV, &

ntal results (The points are e
shown for comparison.

n donor state)A. GaP:0—tS te 1 (onewlectron

donor ground state tons from the d
sitionsband (o„) an

d ofG P han

T—
gap o

-2.22 eV in this range of em0

ner ies covered in e ' nt isth experiment is
1 low-energyh theach bot

have a
su fficient to rea

' twhereo vh } appears to hata'1 and the poin
imental results forr c (hv)

th fit to th
formula (3

resence of large Franck-since in the p
free parame ters. Wieffect t ereh are too many

nt values of Twemig' ht be able to
tod d.d that t, .;t,...In Sec. III we proposed

urity level ebe treated in an
th 1 1 to th

valence an
ose from e

hich take place in r
al fashion to th

the area near
th t ' fth
-At dfa

observed transi i im e

m the valence band (Fig.

d th 8 flgap is muc
ice vectors ecreciprocal-lattice

27) and (30), ifQ f 1wave functions. Our o

I.O .-

I90 K

O. I

I a I~ s ~

I.6 l.8
O.OI I ~

hv(eV)
0.8

ental resu slt for 0„(GaP:0)t of the experimen
d 26)at 120, 190 and 400 K (Re s.

l.4I.O

SECTIONS ~ ~ ~D Op TICAL CR+AyE F UNC TIPNS AN

ted and used to in



3704 M. JAROS 16

o o'///////i

0.4 .
4 ~a08- E~ "

~ E

l.2

I.6

E (eV)
Lattice coordinate

FIG. 8. Summary of computer calculations concerning
the two-electron state (state two) of GaP:0 (Ref. 8). E~
is the ground state of the state one. The second electron
is captured at E2 and the following lattice relaxation
brings the energy per electron down from E2 to E2.
transition of an electron to the conduction band (0„2) is
also shown.

The temperature broadening of o„ is relatively
small. Taking d~c =0.08 eV and recalling that the
low-temperature binding energy of GaP:0 is 0.896
eV (Ref. 30) we arrive at curves shown in Fig. 6
which seem in reasonable agreement with the ex-
perimental values. Note that consistent results are
obtained for both cr„, and 0&. It transpires that with

d~c = 80 meV between120 and 400 K the oxygenbind-
ing energy with respect to the conduction band de-
creases by 50 meV. The assessment of the temper-
ature dependence is confirmed by the shift of
o(max) as well. The numerical estimate of both fig-
ures (80 and 50 meV) is, of course, subject to a
h,rge error and these numbers are probably cor-
rect only to within +10 meV. The result is in
principal agreement with the assessment of Braun
and Grimmeiss. "

The difference between the observed and calcula-
ted cross sections cr& is not difficult to accept be-
cause of the approximate nature of (30). Also for
small drc (and/or low temperatures), formula (30)
cannot be expected to reproduce faithfully the de-
tails of 0. The difference between the calculated
and observed 0„, is more important. To illustrate
the effect with greater precision we reproduce the
data separately in Fig. I. The dip in a„(hv) start-
ing at hv-1.15 eV persists up to high temperatures
without any significant change. Therefore, it is
not entirely clear whether it can be attributed to a
change in the band density of states only. It may be
that some other transition is responsible for this
odd effect. The point is certainly worth investi-
gating since our understanding of the levels intro-
duced by 0 in GaP is more advanced than in other
cases, where it may serve as a useful (and rare)
guide.

I.O.- X +

Ol- Comp. (K)

(0)
(397) & "2
(0) 0
(401) j ~a

O.O) -/-
I.4 I.6 I.8 2.0 2.2 2.4

hv(ev)

FIG. 9. The computed and experimental (Ref. 3) re-
sults for the electron transitions from the two-electron
state of GaP:0 (o„&)to the conduction band, and from the va-
lence band to the level (0&2). The curves correspond to
a Franck-Condon shift of 0.55 eV. The first-principles
calculation (Ref. 8) gave 0.4 eV (see Fig. 8).

B. GaP:0—State 2 (two-electron state)

The oxygen potential is strong enough to bind two
electrons. '"'" The photocapacitance measure-
ments" were used to extract the optical cross sec-
tions o„,(hv) and o&(hv) involving an electron tran-
sition from the two electron state to the conduction
band and from the valence band to the level in the
gap, respectively. The temperature dependence of
0 points to a strong coupling to the lattice. A cal-
culation was performed' to estimate the magnitude
of the change in the electron energy due to lattice
relaxation which follows the capture of the second
electron and electron charge polarization. That
result is pictured in Fig. 8, in terms of a simple
configuration coordinate diagram. The shape of
o„was also calculated. However, the threshold
energy at which this transition should be observed
is not easy to deduce from such a calculation, al-
though we know the energy per electron in both, the
one and two electron states (and before and after
the lattice relaxation takes place), measured with
respect to the binding energy of the single donor
(i.e., -.9 eV). In order to excite one electron from
the two-electron state to the conduction band, the
energy required to reaccommodate the other elec-
trons in the system must be accounted for. Hope-
fully this term is small so that E« is approximately
given by the line shown in Fig. 8. In the present
study we can treat E «as a function of tempera-
ture. A comparison of the present calculation
with experiment is shown in Fig. 9. It would ap-
pear that the parameter d~c should be less than
0.55 eV. The above-mentioned computer calcula-
tion gave 0.4 eV. The results of our calculations
as T = 0 and T = 400 K, presented in Fig. 9, are
compared with the experimental data of Kukimoto
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et a/. ' The computed curves for T =0 nicely il-
lustrate the dramatic changes brought about by an
increase in temperature. An overall agreement in
Fig. 9 is good but the shape of o& near its maxi-
mum is difficult to understand. However, it must
be remembered that these cross sections cannot
be easily extracted from the experimental data and
the relevant rate equations. '~ In a difficult multi»
level problem some error is inevitable. Also, our
formalism is based on a linear-coupling model
which employs only one phonon mode. Nonlinear
effects may bring about some additional changes in
the shape of cr„and cr&, and may affect them dif-
ferently. It would then seem as if the two transi-
tions were effectively associated with a different
dpc, an impression one might get from the com-
parison in Fig. 9. It is indeed impossible to fit the
high-temperature curves well with d Fc being the
same for both, e„and o~.

C. GaAs

A single donor substituting for arsenic is expect-
ed near the middle of the gap. Experimental data,
although in one way or another referring to oxygen,
has so far produced no clear confirmation of the
prediction. Perhaps because of this uncertainty,
and also because of a large number of deep levels
present in this material, it is to the belt of our
knowledge impossible at this stage to gather a set
of data equivalent to those for GaP:O. The con-
fusing state of affairs is well documented in recent
papers by Lang and Logan" or Lin et al." A sim-
ilar situation is characteristic of another import-
ant dopant Cr." We will, therefore, make only
general comments on the differences we should ex-
pect when comparing GaP and GaAs. As we pointed
out earlier, '" some effect upon the shape of the
cross section cr„might be expected due to the low
density of states area near I'. We have also in-
dicated that the nearly-free-electron-like model
we introduced to allow for a better fit of o may be

a poor approximation at I where the concept of an

isotropic semiconductor breaks down. As a re-
sult somewhat sharper spectra might be expected
compared to GaP. However, as in GaP, the data
available at present does indicate a number of deep
levels in GaAs strongly coupled to the lattice.

D. Si

The optical cross sections of several important
deep dopants in Si have been measured. The data
on deep levels introduced for instance, by Zn,"
S,"Au, m and Co (Ref. 39) is customarily interpre-
ted as indicating that none of these impurities
exhibits strong coupling to the lattice. This is
most remarkable since it might support the old
belief that all these may be simple substitutional
donors or acceptors. The proposal that gold and
cobalt impurities are somewhat related to a com-
plex with vacancy~ would lead us to anticipate a
great deal of lattice relaxation and the temperature
dependence of the optical cross sections should
show broadening.

Unfortunately, a careful inspection of publi't))ted

material on levels in Si indicates that there are
substantial differences between results available
in the literature (gold donor being a good example).
The complications brought about by the presence
of several optically active levels in the material
under investigation, and in most cases a restricted
rangy of temperature considered-increase the de-
gree of uncertainty. Also the band gap of Si is
smaller then that of GaP or GaAs and the absolute
changes in the impurity energy are expected to
shrink accordingly. We believe, therefore, that
under these circumstances the question concerning
the lattice relaxation effects in Si remains open.

ACKNOWLEDGMENTS

It is a pleasure to thank Claude M. Penching and
Hans J. Stocker for many discussions.

*Supported in part by ONR under Contract No. N00014-
76-0890.

~On b:ave of absence from Dept. of Theoretical Physics,
the University, Newcastle upon Tyne, U.K.
C. T. Sah, L. Forbes, L. L. Rosier, and A. F. Tasch,
Jr., Solid State Electron. 13, 759 (1970).

2C. T. Sah, W. W. Chan, H. S. Fu, and J. W. Walker,
Appl. Phys. Lett. 20, 193 (1972).

3H. Kukimoto, C. H. Henry, and F. R. Merritt, Phys.
Rev. B 7, 2486 (1973).

4C. H. Henry, H. Kukimoto, G. L. Miller, and F. R.
Merritt, Phys. Rev. B 7, 2499 (1973).

5A. M. %Rite, P. Porteous, and P. J. Dean, ,J. Electron.
Mater. 5, 91 (1976).

6A. M. White, P. J. Dean, and P. Porteous, J. Appl.
Phys. 47, 3230 (1976).

VH. G. Grimmeiss and L-A. Ledebo, J.'Appl. Phys. 46,
2155 (1975).

M. Jaros, J. Phys. C 8, 2455 (1975).
9M. Jaros and S. Brand, Phys. Rev. B 14, 4494 (1976).

K. Huang and A. Rhys, Proc. R. Soc. A 204, 406 (1950).
T. H. Keil, Phys. Rev. 140, A601 (1965).
W. Kohn, Solid State Phys. 5, 257 (1957).

' M. Jaros and S. F. Ross, J. Phys. C 6, 3451 (1973);
and also S. F. Ross, Ph. D. thesis (Newcastle Univer-
sity, U.K., 1975)«(unpublished).

'4Note that Z A„~ &f, ( @ k &=a,. and we have two homo-
geneous equations with unknown coefficients && and +2
to solve. The sums involving the matrix elements of
h are then evaluated with different values of the wave-
function parameter 0. until the usual condition Det=0
is satisfied.



M. JAROS 16

~~M. Jaros and S. F. Boss, Proceedings of the Twelfth
International Conference on the Physics of Semicon-
dlctors (Teubner, Stuttgart, 1974), p. 401.
S. F. Ross and M. Jaros, Phys. Lett. A 45, 355 (1973).

~M. Jaros and G. P. Srivastava (unpublished).
H. B. Bebb, Phys. Rev. 185, 1116 (1969).

~ V. Heine and C. H. Henry, Phys. Rev. B 11, 3795
(1975).
G. Lucovsky, Solid State Commun. 3, 299 (1965).

2~A. A. Kopylov and A. N. Pikhtin, Fiz. Tverd. Tela 16,
1837 (1974) [Sov. Phys. -Solid State 16, 1200 (1975)l.
D. R. Penn, Phys. Rev. 128, 2093 (1962); J. A. Van
Vechten and J. C. Phillips, Phys. Rev. B 2, 2160
(1970).

23V. Heine and R. O. Jones, J. Phys. C 2, 719 (1969).
24K. Huang and A. Rhys, Proc. R. Soc. A 204, 406 (1950).
25G. Bjorklund and H. G. Grimmeiss, Soljd State Elec-

tron. 14, 589 (1971).
S. Brown and H. G. Grimmeiss, Solid State Commun.
12, 657 (1973).
H. C. Henry and D. V. Lang, Phys. Rev. B (to be pub-
lished).
D. V. Lang and C. H. Henry, Phys. Rev. Lett. 25, 1525
(1975).
C. D. Thrummond, J. Electrochem. Soc. 122, 1133

(1975).
P. J. Dean, C. H. Henry, and C. J. Fosch, Phys. Rev.
168, 812 (1968).
S. T. Pantelides, Solid State Commun. 14, 1255 (1973).
D. V. Lang and R. A. Logan, J. Electron. Mater. 4,
1053 (1975).
Alice L. Lin, E. Omelianovski, and R. H. Bube, J.
Appl. Phys. 47, 1852 (1976). -

+Alice L. Lin and 8. H. Bube, J'. Appl. Phys. 47, 1859
(1976).
M. Jaros, J. Phys. C 8, L264 (1975).
J. M. Herman III and C. T. Sah, J. Appl. Phys. 44,
1259 (1973).

37T. H. Nigh and C. T. Sah, Phys. Rev. B 14, 2528 (1976).
S. Braun and H. G. Grimmeiss, J. Appl. Phys. 45,
2658 (1973); O. Engstrom and H. G. Grimmeiss, Appl.
Phys. Lett. 25, 413 (1974); D. C. Wong and C. M.
Penchina, Phys. Rev. B 12, 5840 (1975).
C. M. Penchina and J. S. Moore, Phys. Rev. B 9, 5217
(1974).
D. V. Lang, Proceedings of the International Conference
on Radiation Effects in Semiconductors, Dubrovnik,
Yugoslavia, Sept. 1976 (unpublished).

4~J. A. Van Vechten and C. D. Thurmond, Phys. Bev.
B 8, 3539 (1976).


