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Effect of deformation on the conduction band of III-V semiconductors
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We develop a theory describing the effect of mechanical deformation on the conduction-band eigenstates in
the vicinity of the I point in the III-V semiconductors. In this theory all strain-induced effects are
interpreted in terms of the admixture of s- and p-like states used to describe the conduction band for zero
deformation. Unlike previous work, the results can be applied regardless of the relative size of the band gap
Eg and spin-orbit splitting h. A previously neglected term in the part of the Hamiltonian describing the effect
of deformation is found to produce substantial contributions for sufficiently large energies above the band
edge. Both of these aspects are particularly 'important when the narrow-gap materials like InSb are
considered. Our theory is also the first to predict the magnitude of the splitting of the conduction-band
degeneracy for deformations of certain symmetry.

I. INTRODUCTION

The electronic-transport properties of a crystal-
line solid are determined to a great extent by the
electron states in the vicinity of a band extremum.
The theoretical study of such eigenstates is ideal-
ly suited to the k p band-structure method. The
local conduction-band minimum at the I' point in
the III-V semiconductors has been thoroughly
studied in this way over the past 20 years. The
results of these studies have led to the successful
interpretation of many of the characteristics of
n-type III-V compounds.

The effect of crystal deformation on these eigen-
states has been much less well understood. Using
the framework of the k p method, we show that
an intuitive understanding of the effect of mech-
anical strain can be achieved. This stems from
the fact that the Sx 8 deformation potential matrix
in the combined conduction- and valiance-band
manifold, for all elastic strains, can be treated
as a perturbation in the two-dimensional space of
conduction band states at a given point in the Bril-
louin zone. Consequently, one can obtain analytic
results for the deformed conduction band which do
not impose any restrictions on the relative sizp of
E and 6 as is the case in previous work. Further-
more, it is also possible to include the effect of
k-dependent strain terms in the deformation-po-
tential matrix. These k-dependent strain terms
come from the modification of the k p operator
in the stressed material. We find that this effect
increases in size with depth into the band.

a. r-POINT CONDUCTION-BAND MINIMUM

IN THE III-V SEMICONDUCTORS

The Hamiltonian for a single electron moving in
a periodic potential V is

a=ff, +(h/4m'c')(~Vxp) o,

(H. +%)&T =Et ~%

where

(4)

W, =(h/m)k p+( h/4 m' c)((VVxp)+ (VVxhk)) o

(5)

(6)E-' =E- —h'k'/2m .k

The (h/m)k p term in (5) is obviously the origin
of the method's name. The second term in (5)
arises from the spin-orbit interaction; the k-de-
pendent part of this term is normally neglected
compared to the k-independent part because the
spin-orbit interaction occurs mainly near the
atomic sites where the crystal momentum Sk is
much smaller than the atomic momentum p.

The solutions of (4) have been considered by
Kane' using low-order perturbation theory to treat
W, . The set of basis functions for this calculation
are the conduction- and valence-band states at I'.
They are denoted St, St (for the conduction band),
and X't, At, Yt, Yt, Zt, Zt (for the valence band).
S transforms according to I', and X, Y, Z accord-
ing to I', in the single point group Td. These
designations indicate the correspondence between
these states and pure atomic states under the 24

H, =p /2m+ V.
The second term on the right-hand side of (1) is

the spin-orbit interaction. The potential V ex-
hibits the spatial symmetry of the space group

2T d ~

The eigenstates of (1) are determined using the
k p band-structure method. ' ' The wave function

g is expressed, according to Bloch's theorem

(3)

where UT(r) is periodic with a period equal to the
unit cell. Substitution of (3) in (1) gives the fol-
lowing equation for Uk..
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operations in T~. Although we are interested in
the conduction-band minimum, the I'-point val-
ence-band states are included in the basis because
of the large k p matrix elements between the s-
and p-like states, compared to their energy sep-
aration. One is thus faced with an 8 x 8 eigenvalue
problem. For k lying along the z axis, the con-
duction-band energy' is given by

E~(E,'+E )(E~+E + 6) Pk —(E,'+Eg+ s6) = 0,
P = -(in/m)(SQ, (Z&,

4= (3hi/4m c')(g(VV&&p), (Y}

( i)

(8)

(8)

4 = a[ i']+ b,[(K- iY)i//7]+ c,[Zt],
C s=a,[iSi]+b,[-(X+iY)t//2 J+c,[ZN],

where

a, =Pk(E,'+E + ', 4)/iV, —

(10)

m,'/~,c 3

c,=E,'(E,'+ E + ,r )/N, —

and N is chosen such that

6 is the spin-orbit splitting of the valence band
and E, is the 1 -point band gap. The eigenfunctions
of the conduction band are doubly degenerate and
given by

doubtedly stems from the exact treatment of the
k-p interaction between the conduction and valence
states at I'. The valence-band structure originat-
ing from (4} has not enjoyed a comparable suc-
cess; higher-order perturbation theory is, in
fact, necessary in order to adequately character-
ize the valence band.

III. EFFECT OF DEFORMATION ON THE CRYSTAL
HAMILTONIAN

For crystal deformations falling within the linear
elastic limit of the material, the changes in band
structure can be readily treated using low-order
perturbation theory. The applicability of perturba-
tion theory hinges upon an equivalence of the
boundary conditions in the perturbed and unper-
turbed problems. The role of boundary conditions,
in the effective mass method, is served by the
periodicity of U-„ in (3). Clearly crystal deforma-
tion produces a change in the unit cell size, and
so perturbation theory cannot be directly applied
to (4). However, the solutions of (4) in the de-
formed material could be formally expressed as
a function of the undeformed coordinates (r),
rather than deformed coordinates (r'), as there
exists a one to one correspondence between r and

@2+$2+ g2- $ Xi ~i j+ 6ij Xs (13}

e ' 'cos —,'e e"/'sin-, 'e

For k not lying along the z axis, the energy is
still given by (7) but the eigenfunctions are no
longer given by (10). However, (10) can be used
to give the eigenfunctions if we replace S, X, Y, Z,
0, 0 by primed quantities given by

The e, ,
' s are the components of the strain tensor

To proceed further mathematically the pseudo-
Hamiltonian in (4) in the deformed problem must
be expressed in terms of the undeformed coordi-
nates using (13). This procedure introduces ad-
ditional terms into the pseudo-Hamiltonian which
now takes the form'

I Xl

-e ' 'sin-,'e e' 'cos—,'e
cose cosC cose sinC -sine X

(Ho+ Wo+ D},
where

(14}

Y' = -sin4 cos4 Y D= D'jg,. (15}
Z' sine cosk sine sin4 cose Z

S'=S (12)

where e and C are the polar angles of the wave
vector k. The transformation given by (12)is iden-
tical to the transformation of the corresponding
basis functions of the full rotation group under a
change of coordinate system specified by the Euler
angles (4,e, 0). The effect of this change of co-
ordinates j.s of course to make k and the z axis
coincident.

The eigenvalues [Eq. (7}]and eigenfunctions
[Eqs. (10}and (12)] have been used with marked
success in explaining the electronic properties of
n-type III-V semiconductors. This success un-

8'
+ V. ——P k.

Pl ~X X ~ mJ

s V((1+e)r)
V~) r =

Bf, . g~p

(16)

The effect of the crystal deformation is obviously
contained in operator D in the pseudo-Hamiltonian.
The three contributions to D, as given by (16),
arise from the kinetic energy operator, the cry-
stalline potential itself, and the k p operator, re-
spectively. The effect of the last term in (16}on
the conduction-band structure has been omitted in
all previous work. Such an omission appears un-
justified when one recalls that it is in fact the size
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of the momentum matrix elements between the con-
duction- and valence-band states at I' which is re-
sponsible for the nonparabolic nature of the con-
duction band as given by ('l).

The matrix representation of D in the s-p mani-
fold can be calculated on symmetry grounds alone.

A quantitative determination requires the evalua-
tion of several unknown matrix elements called
deformation potentials. Such a matrix representa-
tion need only be calculated in a spinless basis, as
we have excluded any strain-spin coupling. The D
matrix in the S, X, Y, Z manifold takes the form

C,c C,e„,—iPZ„,.k, C,e,g
—iPZ&„,k, C,c,„—iPZe g, k,

C,e„,+ iPZe„, b, -ae + b(3e „—e)

C e„,+iPZe„ki

C,e„„+iPZe, ]k,

-ae + b(3e —e)

Exc

tK yg

-ae + b(3e„—e)

(18)

where & = Trl.
C„C„a, b, and n are deformation potentials

which clearly will determine the shift and splitting
of the conduction- and valence-band states at 1
produced by the crystal deformation. These effects
have already been extensively studied. ' ' Terms in
(18) involving the matrix element P defined in (8)
arise exclusively from the third term in D as given
by Eq. (16).

IV. SHIFT IN CONDUCTION-BAND ENERGY DUE
TO CRYSTAL DEFORMATION

The use of mechanical deformation as a tool in
studying the electronic eigenstates is a potentially
very powerful one. The main reason for this is the
relati've ease with which the initial spatial sym-
metry can be experimentally altered. Not surpris-
ingly the maximum information can be extracted
in the case of anisotropic strains. However, on a
practical level, large anisotropic strains are more
difficult to produce than hydrostatic ones. Conse-
quently, in most experiments in the III-V semicon-
ductors involving anisotropic deformation, the
components of the strain tensor seldom, exceed
3 x10 '. Such a value could be expected in InSb for
uniaxial compressions of the order of 2 kbar.

The change in energy of the conduction- and val-
ence-band states at I' is given by products of the
deformation potentials and components of the strain

&4.'IDIO'4 = a:&s'iDls'&

+-', b', [(x'lDlx'&+(Y'lDlY'&]

+ c,'(z'lDlz'&+2a, b, Im(s'lDlz')

. s"=s, .'.(s'lDlsg=c, ~ .
(19)

From (12), we get

tensor; such a dependence can be written symbol-
ically C*e*, where C* represents the appropriate
deformation potential or combination of same, and
e* represents components of the strain tensor.
The shift of energy of the states close to the 1
point will be governed by a similar expression. In
the group-IV and -III-V materials, one typically
Q.nds C*&7 eV. For the size of crystal strains
discussed above, one obtains a'value of C*e~( 0.02
eV. This is less than 10/q of the conduction-val-
ence-bind I"-point energy gap in all III-V semicon-
ductors (Insb has the smallest gap, E, ~ 0.20 eV at
T= 300 K). For km 0, the ratio of the strain-in-
duced energy shift and the conduction-valence-band
energy separation will be even smaller.

Under the conditions cited above, the shift in en-
ergy of the conduction band produced by crystal
strain can be calculated by treating the deformation
operator D only within the twofold manifold of;
states given by (10) and (12). From (10) and (18)
we have

(X'lDlX &
= (cose.cos4)'(XlDlx& + (cose sin4)'(YlDlY& + sin'8(ZlDlZ)

+ 2 cos'8 cosC sin@(xl Dl Y) —2 cose sine cos4(xl Dlz& —2 cose sine sin4(Y l Dl 2)
(Y'lDlY') = sin'4&xlDlx) + cos'4&1'lDlY& —2 sin4 cos4'(X lDlY)

(Z'lDlZ') = sin 8 cos 4(xlDl X& + sin 8 sin'4(YlDlY& + cos'e(zlDlZ)
+ 2 sin'e cos4 sin4(xlDlY) + 2 sine cose cos4&xlDlx& + 2 sine cose sine(Y lDlZ)

(20)

(21)

(22)
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&S'IDIZ'& = sine cos4&SIDIX&+ sine sin4&SIDIY&+ cose&SIDI&&

. .lm&S'[D(Z'& = -S u
k, k~

(23)

(24)

After some algebra we find

(4 '.(D(eg = a',C2~+ -,'b,'g &ilDli&

+(2c,'b', ) Q-&i(D)j&
j&J

where )i& represents ~X&, ~Y&, or ~Z&. But

&z)D)i& =-(a+b)e+3be;~ 2 &ilDlj& =«q

k k2.'.Q &i(D(i& ~2=-(a+b)e+3b Q ~2m, , ,
j

i D j '2 = ncj
j &j j&f

(25}

(26)

(27)

(28)

(29)

Now

a',C,e + b~',(-3 ea)+ 2(2c', —b',)(-a e)

= a,'Cia —ae (b', + c',)

= a,'C,e —ac(1 —a',)('.'a', + b', + c', = 1)

= C,e —(1 —a',)ce, (31)

where c = a+ C, is the hydrostatic deformation po-
tential of the band gap E, ;

. .&4'„~D~(bg = C,e —(1 —a',)ce + 2b(2c', —b',)

3e. k. t

X 2 ~-6 +n 2C
j

~ E jgkjk, 2 ~k~ e jgkjkq

j &f jf
(32)

It is easily shown that

(33}

Now

&4'„[Die', & =-,'a, b,(2iRe&S'IDIX &-2Re&S'IDIY'&),

(34)

Re(S'~D~X'& =cosecos4C, e„
. .&42N~D~O~& =a',Cia +'b,'(- 3')

+ —,
' (2c,' —b,') (-ae ) + 2 b(2c,' —b,')

'," -e+n 2c,'-5',
2

+ cose sin4 C,e„,—since„, ,

Re&S' (D~ Y'& = -sinC) C,e„+cos4)e„, ,

)&42~)D(42'()) [' = 2a', b,'C', e,', +e', +e„

(35)

(36)

kjkg kjk~—2a, c,Pk

(30)

"" k ~ k ~' k

(37)
The eigenvalues of this (2x2) eigenvalue problem

are given by

~'(~) = I&@.'IDIC.'& I+ I&c.'IDI@'8& I

k kk k'
=C,c —cc()-a,')+ —'il(2c', -2') (2Y ",' —a +a(2,c', —ii', ) Y ",' ' —2a, c,PkY

i j &f j

(38)

The first term of (38) represents a uniform b-
independent shift of the conduction band with de-
formation. At the F point all the remaining terms
in (28) are zero and thus C,e is the total shift of the

I'-point energy. The last term in (38) predicts a
splitting of the conduction-band degeneracy for
strains of sufficiently low symmetry.

The k dependence of the energy shift of the con-
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duction band is mven by the factors (1 —a,'),
(2c', —b', ), and 4g, c, appearing in (38). These
quantities are plotted in Figs. 1, 2, and 3, re-
spectively, in the range 0- k&0.03 a.u. The spher-
ical surface k = 0.03 encloses approximately 6 x10"
states/cm'. Four curves for each factor are drawn,
corresponding to P'=0.44, E, =0.00767, and 6
= 0, 0.0077, 0.031, and ~ a.u. The 6 = 0.031 curves
correspond to InSb. The strong k dependence of
all these curves is a measure of the increasing ad-
mixture, with depth into the band, of the p-like
states in the undeformed conduction-band eigen-
states. For reasonable values of the deformation
potentials (&5 eV), use of Figs. 1-3 shows that the
terms involving P in (38) will be non-negligible for
k z 0.015 a.u. A Fermi wave vector of this value
corresponds to a carrier concentration of approxi-
mately 0.8x10" cm '.

Note from Figs. 1-3 that 1 —a', is not very sensi-
tive, and 4a, c, only slightly so, to the value of the
spin-orbit splitting. However, the value of 2c',
—b,' can change by up to 100% as 6 goes from 0 to
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FIG. 2. Deformed conduction-band coefficient
(2c, —b, ) vs wave vector for P =0.44, E~ =0.0077 a.u;

V. COMPARISON WITH PREVIOUS CALCULATIONS

The effect of deformation on the conduction band
of the III-V semiconductors was first considered
by Bir and Pikus. " In that work the k p, spin or-
bit, and deformation-dependent interactions are
considered simultaneously, thereby requiring the

solution of a complex eightfold eigenvalue prob-
lem. In Sec. IV we showed that such an approach
is unnecessary for rapid convergence of the solu-
tion at least for deformations in the linear elastic
region. Bir and Pikus were able to obtain analyti-
cal expressions only in the limits E,» 6 and E
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FIG. 1. Deformed conduction-band coefficient (1-&~ )

vs wave vector for P = 0.44, E~ = 0.0077 a.u.
FIG. 3. Deformed conduction-band coefficient (4a, c~)

vs wave vector for P =0.44, E~ =0.0077 a.u.
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«d. Their results are presented below:

Eg&ck )

LE(f)=CE+ -cE + — SL —
f)E +2E-

96E —96E E

For E,» 6, an exactly similar analysis yields

(42)

Eg)) 6

kjkff jf+n~
i&f

2E 5 ~e jjk,
E +2E

(39) (1-a'.) = Z/(Z, +2Z),

(2c', —b',) =2E(E +2E) .

(43)

(44)

+ P i i ii (40)
j)f

Note in (39) and (40) the absence of any terms
involving P; this is to be expected since such
terms arise only from the normally neglected
portion of the deformation operator D. The lack
of any splitting of the conduction-band degeneracy
in (39) and (40) is a consequence of various alge-
braic approximations which allowed the solution of
the (8x8) eigenvalue problem. It is possible to
compare the other terms in our result (38) with
the Bir and Pikus results (39) and (40). In the
limit E «b, and for E(E,+ 6, we have from ('l)
and (11):

a, =Pk ', 5/N, —

~ Z/N,

Substitution of (41)-(44) into (38) shows that the
comparable terms in the Bir and Pikus results
(39) and (40) and our own work (38) are identical
in the limits E, «6 and E,» b,. Thus the curves
for 6=0 and A=~ in Figs. 1 and 2 also accurately
present the Bir and Pikus results. It shouM be
noted, however, that considerable error can be
made from indiscriminate application of their
work. For example, in InSb where E =0.21 eV
and 6 = 0.9 eV, one might be tempted to use the
Bir and Pikus result derived for E, «h. From
Fig. 2 it is apparent that an error of up to 50% or
more could be made in the terms involving b and
n in the deformed conduction-band dispersion re-
lation. The resulting substantial error in the en-
ergy shift would be in addition to the one caused
by the omission of the terms involving matrix ele-
ment P.

c,= —, 6'E/N,
E(E+E ) = ', P'b—
. .N' = 5 '

3 E (Ei + 2E),
a', = (E, +E)/(E, +2E),
(1 —a',) =E/(E, +2E);

(41)
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