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Theory of spin-dependent effects in silicon
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Crystalline silicon with a large dislocation density shows a very complex magnetic-resonance spectrum. It is
argued that this is due to exchange coupling between the “dangling-bond” electrons along the dislocation. A
microscopic theory of this exchange as well as “of the magnetic anisotropy js presented. The large spin-
dependent recombination observed in dislocated silicon as well as amorphous silicon is shown to be associated

with a multiphonon self-trapping process.

I. INTRODUCTION

Pure or lightly doped silicon, either » or p type,
does not show a conventional EPR absorption.
Lepine, ! however, has shown that changes in pho-
toconductivity provide a very sensitive method for
observing the spin resonance of the recombination
centers. By such a technique Lépine was able to
observe spin-dependent recombination in crystal-
line silicon which he attributed to surface states.

If dislocations are now introduced into silicon
by plastic deformation at high temperature, then

both EPR? and photaconductivity® show bulk effects.

This is not surprising, for every time a disloca-
tion line crosses a row of atoms parallel to its
Burgers vector we obtain an unpaired electron.
Although this electron is often referred to as a
“dangling bond,” it is more likely a localized
state derived from the conduction band.*

What is particularly interesting,  however, is
the fact that the EPR spectrum is very complex,
containing what appear to be as many as 15 pairs
of equally spaced lines symmetrically located on
both sides of a central group of lines. The in-
tensities of these pairs varies irregularly with
distance from the center. Furthermore, these
lines show an axial dependence when the applied
magnetic field is rotated about the direction of
the Burgers vector belonging to the great majority
of dislocations, which in this case was [011].
Schmidt et al.? therefore suggested that the dan-
gling-bond states each contain one electron and
that these electrons couple ferromagnetically
through an exchange interaction to form a total
spin s> 3. The observed spectrum is then that
of a “superparamagnetic” moment in an axial
crystal field. However, we estimate below that
the exchange interaction between two lone-pair
orbitals separated by 3.82 A appears as anli-
ferromagnetic. This would imply that the ground
state of the dislocation is a Néel state with S=0.

The photoconductivity also shows anomalous
spin-dependent behavior. If Ao is the increase in
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the conductivity of the silicon due to the photo-
excitation, then this excess conductivity is re-
duced by an amount 5(A0)/Ac=60x107° at room
temperature and 25x107 at 77 K when the spin
resonance of the recombination centers is satur-
ated. If one assumes® that the recombination cen-
ter consists of an electron and that the final state is

a singlet, then the maximum effect expected based
on the Pauli exclusion principle is 6 (Ac)/Ao=p,p,,
where p, and p, are the polarizations of the com-
bining spins. Under the experimental conditions
this product has the value 10~®, Lépine et al.®
suggested that the anomalously large observed
value is due to the formation of a magnetic polar-
on, although no detailed model was presented. In
this note we suggest an alternative model that is
consistent with both the EPR results and the photo-
conductivity measurements.

II. MAGNETIC HAMILTONIAN

A. Exchange

The first question we have attempted to answer
is: What is the nature of the exchange interaction
between the dangling bonds? To obtain some esti-
mate of this we have calculated the separation be-
tween the lowest-lying singlet and triplet states
associated with two dangling bonds. To carry out
this calculation for two silicon atoms bonded to
five other silicon atoms would be prohibitively
difficult. We have, therefore, saturated the sili-
con bonds with hydrogen atoms placed at the
silane (SiH,) distance of 1.48 A. The geometry of
this Si,H, molecule is shown in Fig. 1(a). A set
of self-consistent orbitals was obtained using the
GAUSSIAN 70 program of Hehre and Pople® with a
self-consistent-field treatment of the ground
state. The basis for this calculation consisted of
24 atomic states having Gaussian representations.
We find that the dangling-bond orbital has the form

» =0.40(35s) — 0.20(2p, ) +0.58(3p,) . 1)

The 34 electrons were then introduced and a con-
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figurational interaction calculation carried out to
determine the excited states using the SPINCIP
program of Gouyet and Prat.® The resulting spec-
trum is shown in Fig. 1(b). The singlet-triplet
separation indicates an antiferromagnetic coupling
of 2J =—6 meV or 35 °K. This is, of course, a
rough estimate. It does not, for example, allow
for the possibility of indirect exchange through
“backbridging” silicon atoms. Nevertheless, it

is interesting to note that Broude et al.” have ob-
served an anomaly in the magnetic susceptibility of
dislocated silicon at 40 K.

The excited state at 9.25 eV above the triplet
corresponds to the configuration in which one of
the dangling-bond electrons hops to the other to
form a “lone pair.” The large repulsive energy
U is consistent with an antiferromagnetic Hubbard
exchange 2J = -4#*/U, where the electron transfer
integral ¢ is much less than U, making a Heisen-
berg Hamiltonian a good approximation. We shall
therefore assume that the low-lying states of the
linear chain consist of a spin part multiplied by
an orbital part ¢ involving products of the dangl-

- ing-bond orbitals (1). The spin part is obtained
from the exchange interaction

Kex=21d1D 55, (2)

i>i

The eigenstates for finite chains of spins with such
coupling have been computed.®

925eV

6.2 meV

S:0 S

FIG. 1. (a) Geometry assumed in calculating the ex-
change between two dangling bonds. (b) Lowest-lying
states of the Si,Hg molecule.

B. Anisotropy

In Fig. 2(a) we show the structure of a disloca-
tion in the diamond lattice. We see that the en-
vironment around the dislocation is “stretched”
in the direction of the Burgers vector b. This .
distortion produces a crystalline electric field
which produces a magnetic anisotropy by dis-
torting the excited orbitals. The interaction
which couples the spins to their environment is
the spin-orbit interaction. Let us introduce the
coordinate system shown in Fig. 2(b) in which the
z axis lies in the direction of the dangling bond
and the x axis lies in the direction of the Burgers
vector. For an orbital wave function of the form
given in Eq. (1), (¢|7,| ¢) =0. Thus, we must
consider second-order matrix elements involving
an excited orbital state.

We expect the excited state to consist of a com-
bination of n=4 orbitals. Since these are more
extended than the # =3 orbitals they will be more
sensitive to the anisotropic environment. We
therefore assume an orbital of the form ¢ =a(4s)
+b(4p,). Furthermore, these orbitals will also
have some overlap along the chain. This means
that the orbital part of the excited eigenstates
will involve a linear combination of the form

U =AZ: eRi Cichis‘b ’ (3)
1

where the operator c,ﬁ,c,-3 excites the electron at

(a)

(b)

X [110]

FIG. 2. (a) 60° dislocation in silicon. § indicates the
direction of the dislocation and b the direction of the
Burgers vector [after J. Hornstra, J. Phys. Chem.
Solids 5, 129 (1958)]. (b) Coordinate system used in this
calculation of the magnetic anisotropy.
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site ¢ from a 3sp orbital to the 4sp, and A is a
normalization factor which accounts for the non-
orthogonality of these orbitals. This corresponds
to a tightly bound, or Wannier, exciton, with an
energy E,=E, -t *cos(n2n/N), where E, is the
energy of the orbital y, and t* is the transfer

integral between excited orbitals on adjacent sites.

The second-order corrections to the energy of a
state |S,M,,®) involve matrix elements of the
form

<S,!M.; b d}‘é(r()l?sﬂS!Ms 7¢) .

These may be factored into orbital and spin parts.
Both are independent of the site i. Therefore,
the sum over % leads to a Kronecker delta NAE).
Furthermore, writing

<SI’M.:, IS:ISMs >'= <S” M;IS,IS,M,)/N )

the effect of the spin-orbit coupling may be des-
cribed by the spin Hamiltonian

X ¢ =ps. @)

Hants = (0.58)°5° BB,

The integral of £(») between two 3p functions is of
the order of tens of meV. Therefore, since the
3p and 4p orbitals are orthogonal we expect A,
which is the corresponding integral between the
3p and 4p orbitals, to be perhaps an order of
magnitude smaller, say 5 meV. The energy E,
between the 3sp state and the 4sp state is of the
order of eV. If we take t* to be 0.5 eV then
E,-E,-t*=0.5 eV. With b of the order of 0.5

we estimate D to be 10™ meV.

IIL EPR SPECTRUM
Let us now apply an external magnetic field and
calculate the magnetic-dipole spectrum we expect
for this anisotropic chain. For simplicity, let
the field be along the Burgers vector

Kz=-gugHS, . (5)

A field of 3 kOe corresponds to 1 °’K while D

=~ 10°°K. Therefore, the anisotropy is a small
perturbation on the Zeeman levels. The eigen-
values of JC; +3Canis Within a given S multiplet are

Eyg =—gupHMg+ DM} . (6)

The - separation between multiplets depends upon
the number of spins on the chain and their ex-
change coupling. If we neglect, for the moment,
intermultiplet transitions, then we expect dipole
transitions at

hw=gugH +D(2M¢ +1),
Mg=-S,-S+1,---,(S-1). (7)

The relative intensities for AMg =+1 transitions

will be proportional to (S-M;) (S —=Ms+1). Each
multiplet in the spectrum will also contribute in
proportion to its thermal excitation. In Fig. 3

we show the derivative of the absorption spectrum
of the eight-spin chain for T =300 °K. A Gaussian
broadening with a width of 6D has been introduced.
This is only approximate, of course, since in one
dimension the line shape is neither Gaussian nor
Lorentzian. We see that the spectrum has a com-
plex shape reflecting the thermal distribution of
the exchange levels of the chain. Note particularly
that the zero of this derivative spectrum does not
coincide with the center of the unweighted spec-
trum, making it difficult to assign a g value.

Chains with an odd number of spins will give
complementary lines between those shown in Fig.
3. Chains with different numbers of spins will
have different distributions of eigenstates. How-
ever, as long as each chain has the same aniso-
tropy energy the positions of the lines will coin-
cide, reinforcing their intensities. Longer chains
will add more satellite lines to these shown for
N=8. We expect the spectrum to have the same
qualitative features of that observed, although it
is difficult to predict the intensity distribution
for such longer chains.

The length of these antiferromagnetic segments
is most likely limited by the appearance of doubly
occupied sites. It has been suggested that such
sites appear along the dislocation with some
frequency of the order of one in ten giving the
dislocation a negative core. The Coulomb re-

.
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FIG. 3. Derivative of the absorption spectrum theoret-
ically expected for a chain of eight spins (S=%) at T
=300°K.
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pulsion associated with such pairs is reduced by
“reconstruction” of the surrounding lattice.

Now, what about the intermultiplet transitions?
These may only occur if the multiplets differ by
one spin reversal. Furthermore, in the EPR case
only multiplets having the same wave vector will
be coupled by the uniform microwave field. And,
finally, the frequencies at which these transitions
occur will differ for different length chains. Con-
sequently their spectrum will be spread over a
wide range making their presence undetectable.

IV. RECOMBINATION

As we mentioned in Sec. I, the photoconductivity
of silicon samples containing a high density of dis-
locations shows an anomalously large spin depen-
dence. The experimental arrangement is rela-
tively simple: The sample is irradiated by micro-
waves, as in a standard resonance experiment,
while simultaneously photoexciting carriers; the
photoconductivity Ac is then measured as a func-
tion of the dc magnetic field. This photoconduc-
tivity shows a resonant behavior. By modulating
the microwave power it is determined that the
effect is due to a decrease in the recombination
lifetime, not merely a decrease in the mobility
of the carriers. In particular, when the modula-
tion frequency exceeds the inverse recombination
time, the resonance decreases.

Since the photoconductivity is three orders of
magnitude smaller in dislocated silicon than in
pure silicon it is obvious that the dislocations
are playing a role in the recombination. The
structure of a dislocation is very complex. It rep-
resents a region of very large strain in the crys-
tal. Furthermore, the frequent appearance of
lone pairs along the dislocation gives it a nega-
tive core, as we mentioned above. The screening
of this charge produces a space charge around
the dislocation which is believed to play an impor-
tant role in recombination.’ Our situation is fur-
ther complicated by the high density of disloca-
tions. At densities of the order of 10%/cm? the
lattice is strongly disordered. Such disorder is
known to produce a spectrum of localized states
in the gap as occurs in an amorphous semicon-
ductor. Lépine et al.® observe an optical absorp-
tion threshold at 0.7 eV in dislocated silicon com-
pared with the indirect gap at 1.1 eV in pure sili-
con. Since the resistivity is p type with an activa-
tion energy of 0.46 eV, Leépine et al. suggest the
transitions beginning at 0.7 eV are from states
associated with the dislocations. Thus, we shall
assume that the Fermi level of the dislocated
silicon lies within this spectrum of localized
states.

Since the photoconductivity is given by Ac

=Anep., and since the decrease in the photocon-

ductivity has been experimentally associated with
a decrease in the recombination time as opposed
to a mobility effect, this implies that

5(ac)/ao=6(Aan)/An. (8)

When carriers are optically excited a nonequilib-
rium steady state is established which is char-
acterized by two Fermi levels, one for electrons
and one for holes. If the number of photoexcited
carriers is large compared with the number of
centers, which we shall assume to be the case,
these Fermi levels lie very close to the valence
and conduction bands. Thus all the localized
states become recombination centers and the num-
ber of photogenerated electrons may be written

An=f/NpZ, 9)

where f is the generation rate of electrons and
holes, N, is the density of centers, v is the ther-
mal velocity of the electrons, and T is the cross
section for capture by a localized state.

Lax' and Ascarelli and Rodriques®! have cal-
culated the cross section for electron capture by
a Coulomb center. In this case, the cross section
becomes larger as the binding energy becomes
smaller. But the probability for thermal reemis-
sion also increases. Therefore the total cross
section will reflect a balance between those two
effects. This is described by writing the cross
section as

==Y =P, (10)

where Z, is the cross section for capture into a
state at energy E, below the conduction band, and
P, is the probability that the electron will continue
down to the ground state before escaping. Using
the principle of detailed balance Z, can be related
to the probability per unit time B, for thermal ion-
ization of an electron in state n. The “sticking”
probability P, may then be written

P,,=1-ﬁ,,/(s,,+2w,,m)

m*n

- T Lo/ (pur Zn)]

m¥n

me"/<6..+zwmn> -, (11)

m*=n

where w,, is the probability per unit time that an
electron in state » makes a transition to start m .
In order to apply this formalism we must have a
knowledge of the recombination centers. Unfortu-
nately, it has not been clearly established whether
the resonance observed in the photoconductivity is,
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in fact, identical to that observed in the imagi-
nary part of the magnetic susceptibility, x” («),
i.e., the EPR. As we saw above, the EPR of dis-
located silicon has a very complex structure,
making it difficult to assign a g value. Although
Wosinski et al.'? have observed structure in the
spin-dependent photoconductivity a detailed com-
parison with the EPR spectrum has not been made.

Since we have already argued that the disloca-
tion behaves like an exchange-coupled linear
chain, we considered the possibility that the
carriers are captured by the dislocations in a
spin-wave-assisted cascade process. This is
analogous to the phonon-assisted cascade capture
calculated by Lax'® and Ascarelli and Rodriques.!
The resulting cross section is proportional to the
spin-spin correlation function (S,S_,(w)), where
q is the change in momentum of the electron upon
capture and Zwits energy loss. There are several
difficulties with this process, however. If
hwr<kgT, as we estimated, then we find that the
spin-spin correlation function is not temperature-
dependent enough for the microwave heating of the
spins to produce much effect.”® More significant,
however, is the fact that an anomalously large
spin-dependent recombination has also been ob-
served in hydrogenated amorphous silicon pre-
pared by rf plasma decomposition of silane!? as
well as in a silicon n*-p junction.® The g values
associated with the photoconductivity resonance in
these three systems are all the same. This is an
argument for a recombination center common to
these different systems.

In the amorphous silicon there is only a very
weak EPR absorption in the dark, !* presumably
due to the saturation of the dangling bonds by the
hydrogen. The optically induced EPR in this case
occurs at the same g value as the resonance in
the photoconductivity. However, the power re-
quired to saturate the photoconductivity resonance
is much larger than that required to saturate the
EPR. This means that the “object” affecting the
photoconductivity has a shorter T,. Also, the

light-induced spin density »;, and 6(Ag)/Ac be-
have differently with doping.}**!® And, finally,

it is important to note that the photocurrent de-
cays much faster than the EPR signal after the
light is turned off. These results suggest that the
photocarriers first decay into deep traps, gener-
ating the spin density measured by EPR.

One possibility we considered was that the elec-
tron and hole initially form a bound triplet exciton.
If the triplet is in the m,= -1 state its decay to
the singlet state is spin forbidden, i.e., the stick-
ing probability is very small. If the triplet were
excited to its m, =0 state by magnetic resonance,
however, then the transition becomes allowed and
the sticking probability is increased. Such a pro-
cess is well known in phosphorescent materials'’
where the radiative triplet-to-singlet transition
is enhanced by EPR. Such a triplet is not involved
here, for this process requires that the EPR
signal decay with the same time constant as the
photoconductivity which, as we mentioned above,
is not the case.

Thus, if we are left with a number 7, of spins
after the photocurrent has decayed, and since the
number of spins in the dark is n, <n; , it appears
that the photocarriers are being trapped by what
is initially a spinless center. The simplest pos-
sibility is that the spin traps itself through a
local atomic rearrangement. In this mechanism,
we assume that the photocarriers drop into
shallow states near E, and E,. From here the
carrier may be reemitted to an extended state or
drop into a deep localized state with the emission
of N phonons. The role of the microwave re-
sonance is to heat up the local environment there-
by enhancing the phonon emission, i.e., increas-
ing the sticking probability. This sequence is
illustrated in Fig. 4.

The rate at which energy is absorbed by the
spin is

m=(M,-M)H/T, , (12)
where M, =xH =(12/kpgT)H . At saturation, we have
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FIG. 4. Schematic illus-

tration of the recombination
process.
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M, =0. We must now assume that the immediate
environment around the spin may be considered
as a thermodynamic system with its own tempera-
ture and heat capacity C. This might, for ex-
ample, be the local system generally represented
by a configurational coordinate diagram. If this
system transfers its energy to the lattice beyond
in a time 7*, then in equilibrium at saturation the
temperature rise 6T of the local phonon system
is obtained by equating the power in to the power
out

w2 H/kgTT ,=COT /7*. (13)
Thus
6T/T = (7*/T)(C/kg) " (uH /ksT)* . (14)

The rate equations governing the number of
carriers »n and the occupation of shallow traps
N is

—==f-—*+, (15)

=—————, (16)

Here f is the optical generation rate, -7, is the
rate of capture by the shallow trap, 7, is the
rate of reemission to the conduction band, and

T, is the rate associated with the multiphonon de-
cay. In equilibrium

L

We have written the result in this form to show
that it has the structure required Egs. (8), (10),
and (11) with the second factor in the denominator
representing the sticking probability. Thus

d(an) AT _ AP T3 A<1>

An z P 1,+74 Ts
__Ts l_j
T 1,47, 0T <73 oT. (18)

The relaxation rate 1/7, for N-phonon emission is
proportional to [#(T)+1]Y, where n(T) =[ exp(B#w,)
—1] ! and w, is some characteristic phonon fre-
quency.'® If the deep state lies AE below (above)
E,(E,) then N=AE/%w, Thus we finally have the

result

6(ag) 1, 1% AE n(T) (uH)z. (19)

AG  1,+7s T, kgT C/kg \ kgT

At room temperature kgT very likely exceeds the
phonon energy %w, Therefore, n(T)= kgT/lw,,
and the heat capacity C/kjp is just the number
atoms making up the “environment” N,. Since

T, probably involves the absorption of one phonon
we expect T,<T,. As an estimate of 7*, we take
the recombination time 7 itself. Thus

6(ag) . 7 AE 1 uH)z (20)

A0 T, hw, N \kgT

For a divacancy N, would be of the order of six.
Taking Leépine’s value® for 7/7, of 35 and AE/fw,
~ 20 we obtain an “enhancement factor” of 120.
Thus, this self-trapping model is capable of ex-
plaining the large enhancement factors observed.
Also, through the linear dependence on AE, it
explains why 6(A0)/Ac decreases'® as the Fermi
level moves toward either band. The condition
7*> T, corresponds to a phonon “bottleneck.”

Also, since the photoconductivity resonance in this
model is that of a shallow localized electron, it is
more extended and therefore interacts more with
other localized spins decreasing T, relative to that of
the deeply trapped more-localized electron. The
field dependence predicted by this model will de-
pend upon the field dependence of T,.

This discussion illustrates how useful the spin
dependence of the photoconductivity can be in pro-
viding clues in identifying the recombination
mechanism.
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