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Genetal decoupling schemes for many-site site-occupation correlation functions in equilibrium-disordered
substitutional binary alloys are presented and discussed. A justification for the decoupling schemes is given in
terms of the order-in-1/z criterion of accuracy developed previously, where z is the number of sites
interacting with a given site. The present decoupling schemes apply directly to concentrated alloys with
strongly clustering tendencies; they also apply to a lesser extent in other cases.

I. INTRODUCTION AND SUMMARY

Many-site site-occupation correlation functions
are important parameters for obtaining a detailed
understanding of many phenomena associated with
binary alloys. For example, many-site correla-
tion functions occur in: (i) theories of x-ray and
neutron scattering from disordered alloys when
the “size effect” is included,'”® (ii) expressions
for the higher-order concentration derivatives of
ensemble-averaged quantities,? (iii) the exact treat-
ment of neutron scattering from disordered mag-
netic alloys [e.g., Eq. (40) in Ref. 4], (iv) treat-
ments of the line shape in NMR® and the Mdssbauer
effect, and (v) the problem of differentiating be-
tween alternative possible structures when these
have identical pair-correlation functions to all
orders.® They are useful in helping to give simple
pictures of the microstructure in disordered al-
loys™® and may also be expected to be of value in
theoretical calculations of the electronic structure
of disordered alloys as these become more ac-
curate.® Further, statistical-mechanical theories
of ordering invariably involve some assumption as
to the nature of these many-site correlation func-
tions, and so improved theoretical methods for
estimating them are useful in helping to improve
the ‘accuracy of equilibrium ordering theories—the
goal to which the present series of papers is di-
rected.

In a previous work!® (hereafter cited as I), we
laid a basis for the approximate statistical-me-
chanical calculation of pair- and many-site cor-
relation functions using the order-in-1/z criterion
as a measure of accuracy, where z is the number
of sites interacting with a given site. The purpose
of the present work is to extend I by developing
and justifying explicit (cf. Refs. 7 and 8) general
decoupling schemes for many-site correlation func-
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tions. This is highly desirable because numeri-
cal evaluation of many-site correlations in the
manner of I becomes intractable for large clusters
and for widely dispersed sites in a cluster. Fur-
thermore, explicit decoupling schemes are of par-
ticular value in the development of theories of dis-
ordered alloys because they can be used to help
carry out simplifications of complicated algebraic
expressions.

The emphasis of the present work is on develop-
ing approximate general methods which are suitable
for a wide class of physically realistic Hamilton-
ians, rather than on obtaining highly accurate re-
sults for specific simplified cases fas might be
derived for example by Monte Carlo or series-
expansion methods). In this regard, the use of the
order-in-1/z criterion seems particularly appro-
priate because alloys are known to possess long-
range interactions (see e.g., Ref. 11).

The outline of the present paper is as follows.

In Sec. II, the fundamental equations are re-pre-
sented with new expressions for the coefficients
and a brief resumé is given of the order-in-1/z
classification scheme. Section III contains the
justification for the decoupling schemes'? and de-
scribes several of their important properties.
These results are intended to serve as a basis
for the development of the improved ordering the-
ories which are to be described in future papers.

II. HIERARCHY OF EQUATIONS FOR THE SITE-
OCCUPATION CORRELATION FUNCTIONS

For the sake of simplicity, consideration in the
present series of papers is henceforth restricted
to the pair-wise configurational Hamiltonian

1
H= Zfz Vg 050, (2.1)
3
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ofan (A, B) binary alloy with mole fractions (m ,, m )
and pair-interaction parameters V;;. The site-
occupation operators introduced in (2.1) are defined
as

2my for an A atom at site ¢
0; = o (2.2a)
-2m, for a B atom at site 7,
so that
0;=A,+B,0;, (2.2b)

where the reduction coefficients in (2.2b) are
found'® to be

A, =2"[m,m" +(~-1)"m"m ] (2.2¢)
and
B, =2 [m} = (=m ,)"]. (2.2d)

The pair-interaction parameter between sites ¢

and j defined by lattice vectors R, and R ; is
Vi =s(ViA+ VIR =2ViP), (2.3)

where V{7, etc. are assumed to be invariant to a

—J
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translation by a lattice vector and also to be sym-
metrical with respect to inversion of sites 7 and j.
A notational convention adopted throughout the
present series of papers is that subscripts
i,j,k,... relate to “fixed” or particular sites,
whereas f,g,k,... relate to “floating” or summed
over sites.

The pairwise form (2.1) for H should not be re-
garded as a necessary limitation of the present
method, since the method may readily be extended
to more complicated many-site-interaction Ham-
iltonians by using the order-in-1/z classification
scheme for irreducible many-site interactions in-
troduced in I.

The basic starting point for the present treat-
ment of the statistical mechanics of equilibrium-
disordered binary alloys is the doubly-infinite
hierarchy of equations for the pair- and many-site
correlation functions given in Eqs. (10) of I. These
equations are rewritten here in more compact
form as follows:

<010'203' . '0',,) E<123' * 'n> =Do(t)<23' * 'ﬂ) _%BDl(t) Z V1f<f23' * '7[)
f

+§32D2(t)z VigVi, (/223 -n) = 58°D4(t) Z VigVigVin(fgh23-com) ++ -,
f.& fi.g,h

where n, the number of distinct sites in the cluster,
successively takes the values 1,2,3,.... For the
special case n =1, the first term in the expansion
(2.4) is simply Dy(t). The expansion coefficients

D, (t) are given by

Do(t)=t—(m, -my) for m=0, (2.5a)

and for m=>1,

1 g"tanhn

L _ 1 _,2y 4
Dnlt)= o ——m = 5 (1= t7) 5 Dneal®)

L gy 812y, 8 142
=m!(1 tz)dt(1 t2) dt(l t2)

(2.5b)

. d
[w1th (m - 1) factors dt] .

In these expressions, ¢=tanhn, where X is analo-
gous to a chemical potential and as usual =1/k, T,
where &, is Boltzmann’s constant.

It should be noted that the development of these
equations in I was carried out in a grand-canonical-
like ensemble with the consequence that A or equiv-
alently ¢ must be chosen for each 8 such that the
solution to (2.4) satisfies the composition constraint
(o) =0 everywhere.

(2.4)

A. Order-in-1/z classification scheme

The problem of finding a general solution to (2.4)
is almost the same problem as trying to find a
general solution to the many-neighbor Ising model
in an applied field. In order to make the problem
tractable, a method for selecting the dominant con-
tributions in (2.4) was developed in I. This was
based on the order-in-1/z criterion of smallness.
This classification scheme is most simply devel-
oped if only completely clustering (i.e., all V;; <0)
alloys are considered initially; later extension of
the classification scheme to alloys with arbitrary
V;; is possible, and was discussed in I. ,

The rules for classifying the order in 1/z of the
general term with coefficient D, (¢) in (2.4) are re-
produced below for convenience: (a) Allow a factor
of 27D for each n-site interaction in the general
term. (b) Allow a factor of z for each summation
over a floating (summed over) site in the general
term. (c) Allow a factor of z~”» for a correlation
function with »n sites (fixed plus floating),
where v, is given by
v,=%[n+p@)] with ¢p()=(0,1) for n =(even,odd).

(2.6)
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(d) Allow an additional factor of 1/z for any term
which has coefficient D,,.

The special case (d) occurs because substitution
of {0;) =0 into (2.4a) reveals that D,=0(1/z), so
that the order of a term containing D, is increased
by one.

IIl. GENERAL DECOUPLING SCHEMES

The main results of the present work are the
general decoupling schemes for the many-site cor-
relation functions presented below and their justi-
fication in terms of the order in 1/z criterion.

In I, itwas shown that #»7educible (no sites co-
incident) four-site correlation functions could be
decoupled correctly to lowest order in 1/z [i.e., to
0(1/2%] into symmetrized products of pair corre-
lation functions. More generally, it is possible to
show that the following decoupling schemes for
irreducible 2n- and (2n +1)-site correlations apply
to lowest order in 1/z [i.e., v, as given by (2.6)]:

(123. .- (2n - 1)(2n)) = {(12)(34) - - - ((2n - 1)(2n))}
[+0(1/z™Y)], (3.1a)
and

(123. .- (2n)(2n +1)) = {(123) (45) - - - {(2n)(2n +1))}
[+0(1/z™2%)], (3.1b)

respectively, where{ } denotes the sum over all
distinct permutations of the sites. Permutations
which differ only in the order of the sites inside an
angle bracket or in the order of the correlation
functions in a product are not distinct, so that,

say, for distinct sites 1,2,...,6, the permutation
terms (12) (34) (56) and (43) (12)(65) are not dis-
tinct. That is, all products of correlation functions
which are formally identical, after algebraic man-
ipulation if necessary, are counted only once. The
decoupling schemes (3.1) are understood to be valid
in the sense that for fixed n the error term be-
‘comes small as z becomes large.

The justification of (3.1a) follows in a similar
manner to that used for four-site correlation func-
tions in I, and so the details need not be given
here. Suffice it to mention that the proof for the
2n-site case proceeds by induction on 2n (see Ref.
13 for full details). By contrast, the justification
of (3.1b) involves a more subtle argument, the de-
tails of which are given in the Appendix.

The decoupling schemes (3.1) have several im-
portant properties which are described below.

A. Properties of the decoupling schemes

(i) They are symmetrical with respect to site
permutation—this is obvious from inspection of
(3.1).

(ii) (3.1) is trivially exact for m, =} alloys since
all irreducible odd-site correlation functions van-
ish, including (123).

(iii) Validity of the decoupling schemes (3.1) un-
der conditions of reducibility: Although the de-
coupling schemes (3.1) were only justified initially
for irreducible site clusters, some very important
and useful properties of (3.1) are the preservation

- of the validity of these schemes to residual lowest

or leading order in 1/z when certain site coinci-
dences are allowed to occur in the cluster (see
also Ref. 13). These allowed classes of site coin-
cidences are as follows: (a) For 2n-site correla-
tion functions, Eq. (3.1a) remains valid to leading
order in 1/z if there are at most only pairwise
coincidences between sites. To illustrate this re-
sult for a particular case, consider, say, (3.1a)
for n =2 with (#ijj). Using the reduction relations
(2.2b), we obtain for the left-hand side

(#ijj) =AZ+B,(ij) =A2+0(1/z),

while the decoupled form on the right-hand side of
(3.1a) gives

(iijj) = (ii) (Gj) +2(j) (i) =A2+0(1/z),
and so the left- and right-hand sides of (3.1a) agree
to leading order in 1/z, i.e., to O(1) in this case.
(b) For (2n +1)-site correlation functions, Eq.
(3.1b) also remains valid to leading order in 1/z,
if there are site coincidences such that there is
at most one case of three coincident sites, and
pairwise or no coincidences among the remaining
sites.

(iv) Validity as sites in a cluster become more
dispersed: The decoupling schemes (3.1) for ir-
reducible many-site correlation functions are valid
to lowest order in 1/z, as given by (2.6). This
shows that for given n the decoupling schemes (3.1)
hold for the most strongly coupled n-site correla-
tion functions. Physical intuition would suggest
that the decoupling schemes should become more
accurate as subclusters of sites “move” away
from each other. In fact, we know that the decou-
pling scheme (3.1a), say, must become exact in
the disordered alloy as pairs of sites move away
from each other to infinity. This intuitive concept
has been called “the principle of correlation weak-
ening” by Bogolyubov'* and provides a useful check
on any results obtained for the decoupling of many-
site correlations. It implies that the maximum
attainable value of the n-site correlation functions
must in fact become of higher order in 1/z than Vp
as the intersite separations become greater than
the range of interaction. Therefore, it seems
physically reasonable to conjecture that the de-
coupling schemes (3.1) hold to leading order in
1/z, which may be greater than vy, if the cluster
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is very dispersed. The assumption that (3.1) holds A. Proof
to leading order greatly increases the significance X . -
of the results obtained in, for example, I, because To leading order in 1/2 (2.4) is
solutions for irreducible pair and triplet corre-
lations then enable one to generate all the rest to 0=Dy(?) +§32D2(t)2 Vis Vi, {fg) forn=0, (A2)
leading order via (3.1). 3

In addition to the above properties it is helpful
here to note that many-site correlation functions (12..-(2n =-1)(2n)) =

must satisfy certain very general bounds”*!° and
sum rules.?

=18Dy(8) 3 Vi (f2- -+ (2n = 1)(2n))
!

IV. APPENDIX
We wish to show that
(12345 . - (2n)(2n +1)) = {(123) (45) - - - ((2n)(2n + 1))} for even-site clusters, (A3)
[+0(1/z™2)]. (A1) and

—

(123--.(2n)(2n +1)) =D, ()(23- - - (2n)(2r +1))

—-3BD,(t) Z Vi;{f28---(2n)(2n +1)) +i—B"’D2(t)Z Vi Vi fg23- .- (2n)(2n +1))
f f&

for odd-site clusters, (A4)
where the sites 1,2,...,(2z +1) are all distinct. Defining

Giaseer(on) (e =123+ -« (2n)(2n +1)) -{(123)(45) - - -{(2n)(2n + 1))}, (A5)
it may readily be shown by taking suitable combinations of (A2), (A3), and (A4) that, to O(1/z™!),

G123---(2n)(2n+1 = '%ﬂD1(t) z Vig <f23 <o (2n)(2n +1)) +%BZD2(t) z: Vlf Vie
f f&

x[(fg23- - (2n)(2n +1)) =(fe) (23 - - (2n) (2n +1))] ~{(123)(45) - - ((@m)@n + 1))} (46)
In order to continue the simplification of (A6), it is helpful to note the following two results:
{(123) (45) - - - ((2n)(2n +1))} = {C 123) (45) - - - ((2n) (2n + 1))} + {(345) ( 12) - - - ((2n)(2n + 1)}, (A7)

and

{(fg23. - (2n)(2n + 1))} ={(fg23- - - (2n - 2)(2n - 1)) {(2n)(2n +1))} =n{(fg) (23) (45) - - -{(2n)(2n + 1))}, (A8)

where a bar underneath a site label denotes a fixed (i.e., nonpermuted) site.
Substitution of (A7) into (A6), followed by the use of (A4) with n =1, leads to the equation

G123..(2n)(2n) = ~2BD1(¢) Z Vit Gy2sene (e

+%32D2-(t)2: Vi, Vi, [(f223- - - (20)(2n +1)) =(f2) (23 - - (22)(2n +1))

—{(fg23) (45) « - ((2n)(2n +1)) =n{f2)(23)(45) - - -((2n)2n +1))}],  (A9)

for G to 0(1/z™'). Concentrating for the present on the term in square brackets in (A9), this part may be

rewritten as ,

[(fg23--- (2n)(2n +1)) +(n = 1){f) {(23) - - -{(2n)(2n + 1))} —{( £g23)(45) - - -((2n)(2n +1))}]
=[(fg23- -+ (2n)(2n +1)) —{(f2) (23) - - -((2n)(2n +1))}], (A10)

where we have used (A8) and the decoupling scheme (3.1a), which may be shown independently to be cor-
rect to lowest order in 1/z. The expression (A10) is of cumulant form, and from the property iii(a) of the
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decoupling scheme (3.1a) presented in Sec. III, it follows that this cumulant, and hence the second term in
(A9), vanishes to lowest order in 1/z [i.e., 0(1/z™")].

In order to complete the proof of (A1), we need only examine the first term in (A9), which involves G.

For the case of two coincident sites, say “1=2,” it is easily seen that
G 11340ve(am)(zns =A (34 -+ (2n)(2n +1)) +B,(134- .- (2n)(2n +1)) = B,{(13)(45) - - - ((2n)(2n +1))}

~A,{(345)(67) - - - {(2n)(2n + 1))}

+{(134)(15)(67) - - - ((2n)(2n +1))} +{(345)(16)17T) - - - ((2n)(2n +1))}

=0(1/z™1),

(A11)

if it may be assumed that (3.1a) and (3.1b) are valid for “n —1.” It is trivial to see that (3.1b) is valid for
n=1, and hence, using the general argument of Appendix B in I applied to (A9), it follows by induction on

n that

G 123. . (am) (2znep = 0(1/27%)

for each n, which is the desired result.

(A12)

*Author to whom correspondence should be directed.

{Permanent address.

3. M. Cowley, Acta Crystallogr. A 24, 557 (1968).

C. G. Shirley, Phys. Rev. B}_Q, 1149 (1974).

N. H. March, S. W. Wilkins, and J. E. Tibballs, Cryst.
Lattice Defects 6, 253 (1976).

‘R. A. Medina and J. W. Garland, Phys. Rev. B 14, 5060
(1976). -

’S. Nasu, H. Yasuaka, Y. Nakamura, and Y. Murakami,
Acta Metall. 22, 1057 (1974).

$p. C. Clapp, in Ordered Alloys: Structurval Applica-.
tions and Physical Metallurgy, edited by B. H. Kear
etal. (Claitor’s, Baton Rouge, La., 1970), pp. 25-35.

"P. C. Clapp, J. Phys. Chem. Solids 30, 2589 (1969);
Phys. Rev. B 4, 255 (1971).

’R. de Ridder, Physica (Utr.) 794, 217 (1975).

’R. J. Elliott, J. A. Krumhansl, and P. L. Leath, Rev.

Mod. Phys. 46, 465 (1974). See, in particular, p.
500.

Oc. G. shirley and S. W. Wilkins, Phys. Rev. B 6, 1252
(1972). -

15, w. wilkins, Phys. Rev. B 2, 3935 (1970).

L2Existence of this justification was briefly alluded to in
S. W. Wilkins and C. G. Shirley, J. Appl. Crystallogr.
8, 107 (1975).

133, w. Wilkins, Ph.D. thesis (University of Melbourne,
1972) (unpublished).

UN. N. Bogolyubov, in Lectures on Quantum Statistical
Mechanics (Gordon and Breach, New York, 1970),
Vol. 2.

155, B. Cohen and J. Gragg, in Critical Phenomena in
Alloys, Magnets and Superconductors, edited by
R. E. Mills et al. (McGraw-Hill, New York, 1971).



