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Anharmonic lattice dynamics of solid potassium
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An intcrionic potential proposed by Dagcns, Rasolt, and Taylor has been used in classical computcr-

simulation experiments on solid K at 162.5 and 311 K. Results for the dynamical structure factor S{gre)
are compared with lattice-dynamical calculations employing the self-consistent harmonic approximation plus

cubic anharmonic corrections. The lattice&ynamical calculations are in good accord with the simulation data

at the lower temperature but near the melting point the simulation data yield considerably broader phonons,

in qualitative agreement with experimental neutron-scattering data. The anharmonic interference effect which

couples the one-phonon S,(@ts) to the multiphonon background is also discussed.

I. INTRODUCTION

The anharmonic properties of the simple alkali-
metal potassium have been extensively studied
over the past few years. The frequencies and life-
times F 'of thenormalmodes of vibrations or pho-
nons have been measured over a wide range of
temperature by inelastic neutron s cattering. ' The
elastic constants' and other thermodynamic pro-
perties' are known up to the melting point. The
volume dependence of the phonon frequencies has
been studied' by neutron scattering as well as the
interesting anharmonic interference effects which
couple the one-phonon and multiphonon contribu-
tions to the dynamical structure factor. ' This ex-
perimental work has in turn stimulated theoretical
study. '6 . Buyers and Cowley' calculated the
shifts in phonon frequency and the phonon "line-
wldths ( 2I' ) due to allhal'lllollicl'ty llslllg stalld-
ard perturbation theory. Duesbury e~ al.' ex-
tended these calculations using the self-consistent
harmonic (SCH) theory with contributions from
cubic terms added (SCH+C). The resulting phonon
frequencies compared well with the neutron data
with little distinction between the seLf-consistent
and perturbation methods within the experimental
error. Near the melting point, hcwever, the cal-
culated phonon linewidths" were often a factor of
2 too small. This disagreement may signal
that the remaining higher-order anharmonic con-
tributions are important in potassium.

The melting temperature T =335 K of solid
potassium is about four times its Debye tempera-
ture. For this reason the lattice behaves classi-
cally at temperatures above -~T Thus the gow-
erful computer-simulation Ments Carlo (MC) and
molecular dynamics (MD) methods can and have
been used to study the thermodynamic' and time-
dependent'0 properties. These simulation studies,

which employed the effective ion-ion interaction
potentials of Dagens, Rasolt, and Taylor (DRT),
yielded elastic constants, phonon frequencies, and
linewidths in good agreement with experiment up
to the melting point. Thus the disagreement of the
previously calculated linewidths while possibly due
to use of less reliable interatomic potentials seems
at least in part due to higher-order anharmonic
effects. The purpose of the present work is there-
fore to investigate the magnitude of higher-order
contributions in detail by direct comparison of the
self-consistent phonon and computer-simulation
studies.

Previous theoretical work' ' employed slightly
different effective ion-ion potentials and state con-
ditions that make explicit comparison with com-
puter-simulation experiments somewhat indirect.
Accordingly we have carried out self-consistent
phonon calculations using the same (DRT) effect-
ive ion-ion potentials and state conditions as in
the present extensions of previous molecular-
dynamics studies. " In particular, we compare
the dynamical structure factor S(Q, &o) as calcu-
lated by the MD and SCH+ C methods for selected

values at T =162.5 K, a =5.2767 A and 7 =211 K,
a =5.333 A. . %here appropriate, the SCH+ C cal-
culations include the- interference contributions
between the one-phonon god. two-yhonon compo-
nents of S(O, u&) and the two-phonon contributions
to S(@,&o). Section 11 outlines the theory and me-
thods of computation. The results in Sec. III sug-
gest that at one-half the melting point the two ap-
proaches give similar results. At higher tempera-
tures, near melting, the MD data yield one-
phonon groups considerably broader than those of the
SCH+C theory indicating, we believe, the need to
include higher-order anharmonic decay processes
into existing phonon theories.
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II. OUTLINE OF THE CAIXULATIONS

A. Molecular dynamics

The molecular-dynamics computations followed
the procedures used in previous studies of the fcc
Lennard-Jones solid. " A solid of 432 particles
each having mass 39.1 a.m. u. were initially ar-
ranged on a bce lattice of appropriate lattice con-
stant a. The classical equations of motion were
solved using Verlet's finite-difference algorithm"
with a time step of about 10 "sec. Periodic
boundary conditions were used to simulate the ef-
fect of an infinite crystal. Two runs of 10000
time steps each were carried out for a =5.2767 A.

and T = 162.5 K, and one run of 20000.time steps
at a=5.333 A and T =311 K. These state condi-
tions correspond to roughly-, 'T and I~V' . The
finite system size limits the number of independ-
ent phonon wave vectors along the [001] direction
to six.

The ions interacted via the DRT potential which
was truncated after eight shells of neighbors.
This truncation, which takes place in a region
where the potential is still oscillating with non-
negligible amplitude, is necessary because of the
finite system size. Previous studies of elastic
constants' suggested that truncation at eight shells
of neighbors (a distance-2. 5u) gave a reasonable
compromise between truncation errors and compu-
tational time. Studies of the truncation dependence
of the harmonic phonon frequencies showed that
only the frequencies of the slowest transverse
branch T, [110], were significantly affected by the
truncation (by-7%). Duesbury and Taylor"
have recently shown how to treat a long-range os-
cillating potential using Ewald-type methods and
in fact the DRT potential provides photon fre-
quencies in excellent agreement with r'eeent mea-
surements of the T, [110] branch. "

The raw MD data were stored every fourth step
on a tape and subsequently used to compute sta-
tistical averages. A few equilibrium properties
such as the internal energy, the pressure, the
mean square amplitude of vibration of an ion, 2nd
the isotropic pair distribution function g(r) were
also calculated.

The main effort went into the computation of the
dynamical structure factor S(Q, ~). This is the
Fourier transform with respect to time

of the correlation function

of the particle density operator

Here the sum runs over the N atoms in the solid
whose positions at time t are given by r(t )
= R + u(t ), where u(t ) is the displacement from the
lattice point A. The angular brackets denote the
statistical average that is evaluated using the MD
data. Since our computations are purely elassieal
they violate the well-known detailed balance con-
dition

In the following comparisons of the MD r esults
with lattice dynamical calculations we use Scho-
field's ansatz" to correct the MD data.

The one-yhonon approximation to the intermedi-
ate scattering function is

where V, =-~e ~Q('(I'). In the MD calculations
both F(Q, f ) and F,(Q f }can be evaluated with

equal facility" providirig a test of the "phonon ex-
pansion" of S(Q, ~). The corresponding dynamical
structure factors obey the f sum rules"

We have evaluated S(Q, &u) for selected Q values
along the principal symmetry directions. The MD
computations satisfy the sum rules within about
1(PO. Errors arise fram several sources, not the
least of which is related to the long-time behavior
of F(Q, f ). Because of the finite length of our
computations, sharp yhonon groups will be arti-
ficially broadened by the time truncation of F(Q, f ),
adding a width of -(0.03-0.05) THz to the phonon
groups shown in Sec. III. The arbitrariness of
separating F(Q, t ) from the long-time noise intro-
duces uncertainties in the broader yhonons. We
also employed the so-called "direct method" of
computing S(Q, &u) and intercomparisan of the two
methods is useful in estimating uncertainties.
Koehler arid Lee" have discussed the general
problem of best' using MD methods to study dynam-
ical properties. The implementation of their
ideas, however, does not seem feasible for our
relatively small system size.
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B. Self-consistent phonon dynamics

The procedures used to calculate S(Q, u&} in the
SCH+ C approximation follow previous work' ex-
cept that the DRT potential'was employed. The usual
phonon expansion of S (Q, &u) yields"

S(Q, &o) = S o(Q, &u) +S,(@,&u) + S„(Q,&o)

+S,(Q, (o) + ~ ~ ~ .
The S, is the static Bragg scattering of no interest
here, while S, and S, are the contributions in which
one and two phonons are created (or destroyed),
respectively. The S» is the purely anharmanic in-
terference contribution which couples the sharply
peaked single-phonon process to the two-phonon

process which usually forms a generally uniform
background. The S, and S» can be combined to
yield

Sp(g (o) = S,(Q, (u)+S„(@,(u).

The dominant terms of S~(Q, v) can be expressed
in the form' '

where A and 8 are approximately frequency-inde-
pendent constants, 0,'~ =~,'&+3~,&~,& is the m-
harmonic one-phonon frequency, and ~,& is the
SCH frequency.

From S, (Q, u&} above we see there are two dis-
tinct types of interference contributions. The
first, S»(Q, &u}, is essentially a constant (-2A)
times S,(Q, &a&} and hence adds or subtracts an in-

tensity proportional to S,(Q, ~) depending on the
sign of A. The sign of A changes as Q passes
through a Bragg vector, or the midpoint between
two Bragg vectors, causing an "oscillation" in the
magnitude of S~ (g v) about S,(Q, &u) with g Tlie
second, S"„(Q,&o), is asymmetric about 0,„, the
frequency of the phonon involved in the one-pho-
non process. This has the effect of raising or
lowering the apparent multiphonon background on
each side of S,(Q, cu) and for broad S,(Q, &v) can
shift the peak position of S~ (Q, e) away from that

of S,(Q, u&). The sign of B "oscillates" with Q as
does A.

Higher-order interference contributions have
been discussed in the literature in the context of
x-ray diffuse scattering" but we shall not consider
these here. To the present lyvel of approximation,
the interference terms vanish for zone-boundary
phonons. Thus for zone-boundary phonons we com-
pare S,(MD) and S,(SCH+ G) to.test the usual theo-
ry of single-phonon dynamics. For other phonons
comparison of the full S (MD) and S~+S,(SCH+ G)
will test the importarice of multiphonon and higher
interference contributions.

III. RESULTS

A'. Equilibrium properties

Before entering the detailed discussion of the dy-
namical structure factors we report a few results
on the equilibrium properties (for the truncated
potential) in Table I. The MD elastic constants

c» and c«were obtained from the frequencies of
the phonons of smallest wave vector in the [001]
direction. There is good agreement between the
MC and MD values near the melting point as well
as at the lower temperatures (not shown explicitly).
We see that the c,, elastic constants calculated
from the SCH+C approximation discussed in Sec.
II B are significantly larger indicating that the
SCH+ C transverse I001]phonon frequencies at low

Q are -(5-10)% too large. This branch is partic-
ularly interesting since the frequency shifts due
to the cubic and quartic anharmonic terms are
both of the same sign (negative). Hence any omit-
ted higher anharmonic shifts may be expected to
be negative and additive. The simulation data are
in good agreement with experiment. '

In Fig. 1 we show the spherically averaged radial
distribution functions g(r}. These are of in-
terest since scattering from sinall erystallites
can be used to obtain g(r)." Although eight shells
of neighbors are included in the calculations, the
thermal motion smears these into only four ap-
parent peaks.

TABLE I. Some calculated equilibrium properties of potassium.

(MD)
T = 311 K, g = 5.333 A.

(Nc) ' (scH) (scH+ c)
T= 162 5 K, a = 5.2767 A.

(MD) (SCH) (SCH+ C)

E!Nk T
PVINk T
c~~ (kbar)
c44 (kbar)

'~Rm

-3.35
7;2

37.4
18.3
0.162

-3.46
7.0

37.1
18.5
0.20+ 0.02

—3.53

41.6
24.2

0.136

36.5
20.6

40.0
24.4
0.106

-9.01

43.8
26.9
0.0984

39.4
25.2

Jesuits from Ref. 9 for a 250-particle system at T=308 K, a = 5.333 A..
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cillation in the background, chiefly on the low-
frequency side of the one-phonon peak.

Figure 5 shows the computer simulation results
for S(Q, u&) for similar phonons, Q*=(g, ), 0),
)=&6, ~, &, and ~9 at 311 K. The data, as the
SCH+C results, were convoluted with a Gaussian
with a FWHM of O.13 THz to simulate a finite neu-
tron-spectrometer energy-resolution width. The
interference effect manifests itself most strongly
by the large intensity changes on the low-frequency
side of the one-phonon peak. A shiR in peak posi-
tion is also visible for the highest Q in Fig. 5

which is not visible in the SCH+ C case. A shift in

peak position by S yp is possible only if the phonon
group has significant intrinsic width. This shift
illustrates the larger intrinsic width calculated in
the MD simulation. In Fig. 5 we also see that the
zone boundary Q*= (2.5, 2.5, 0)L phonon is suf-
ficiently broad that it is barely visible above the
multiphonon background. This perhaps explains
why no results were reported experimentally for
this phonon at elevated temperatures.
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We now compare some selected phonon groups
as calculated by MD with the predictions of the
lattice-dynamic theory, SCH+ C in order to identi-
fy any differences. Figure 6 compares the MD

data for S(Q, ur), Q*=(2/3, 0, 0)L with the SCH+C
calculation of S,(Q, &u) and S~(g ur) for Q*=(0.7,
0, 0)L. The interference effect seems primarily
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FIG. 8. Comparison of the MD and SCH+C theory
S(Q, co) for the fast transverse phonon at Q ~ = (2, 0.5, 0.5).
The open circles are the MD results at 162.5 K, the full
circles the MD at 311 K. The full lines are S&(Q, (d) by
SCH+C ~

responsible for the asymmetry in the one-phonon
peak. There is good agreement at 162.5 K be-
tween the two calculations; the small difference
in peak position and height can be ascribed
to the different wave vectors used in each
calculation. At 311 K the MD one-phonon group is
broader and more asymmetric than the SCH+C
result. We believe these differences are due to
higher-order anharmonic effects.

To identify the differences more closely, Fig. 7
shows S,(Q, &u) alone for Q*= (2.5, 2.5, 0)L caIcula-
ted by MD and SCH+C methods. At 162.5 K there
is relatively close accord although the MD

S,(Q, u&) peaks at a, slightly higher energy. At 311
K the simulation phonon group is considerably
broader than the SCH+C theory result. This corn-
parison of S,(Q, v} alone shows that the difference
in one-phonon width is due to anharmonic terms
damping the single phonon in- the absence of pos-
sible complications from multiphonon or inter-
ference effects.

Figure 8 shows the highest-frequency transverse
T, phonon at the t110] zone boundary. The simu-
lated S(Q, &u} data are for Q* = (2, 0.5, 0.5). At

162.5 K there is relatively close agreement be-
tween the MD data and the SGH+ G theory (S, +S~}.
However at 311 K significant differences are ap-
parent with the MD data yielding a substantially
broader phonon having a somewhat smaller fre-
quency. The latter is not unexpected since at
small wave vector the slope of this branch yields
the c,4 elastic constants given in Table I. The
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TABLE G. Phonon frequencies, u/2m (in THz), for q = (2m/a)(0. 5, 0.5, 0).

16

ation L
Temperature (K)

162.5 311

Ti
Temperature (K)

162.5 311

T2
Temperature (K)

162.5 311

QH
SCH
SCH+ C
MD
Expt.

2.36

2.40 + 0.01 ~

2.27
2.32
2.26
2.28

2.16
2.25
2.12
2.17

0.55

0.555 b

+ 0.008

0.52
0.62
0.60
0.59
0.54'

+ 0.03

0.50
0.65
0.59
0.56
0.52'

~0.03

1.52 1.50
1.48
1.43
1.43

1.46
1.42
1.33
1 ~ 27
1.30 ~

+0.06

~Cowley et al. , Ref. 23.
"Dolling and Meyer, Ref. 14.

Buyers and Cowley, Ref. 1.
"Interpolated from Z3 branch and P4, Ref. 1.

much larger background in the MD simulation data
may be due, in part, to the S» interference con-
tHbution which does not vanish at zone bound-
aries. "

Finally in Fig. 9 we show the slow transverse
1", phonon at the [110]zone boundary. The MD

data S (Q, e) are for Q*= (1.5, 1.5, 1). Again the
agreement between the SCH+ C, S, +S„and the
MD S(Q, u&) is reasonable at 162.5 K, but at 311 K
the MD simulation yields a substantially broader
phonon group. Figures 7-9 serve to demonstrate
the differences in one-phonon widths calculated by
theory and simulation. The difference in the one-
phonon frequencies calculated in various approxi-
mations, including the quasiharmonic (QH) theory, is
displayed in Table II.

IV. SUMMARY

The MD simulation and analytic SCH+C theory
are in reasonable agreement for S(O, e) at modest
Q values at about one-half the melting temperature
of potassium. One might then expect lattice-dy-
namic theories to apply with confidence for calcu-
lation of dynamic and thermodynamic properties in
this range. At. higher temperatures, near melting,

there are often significant differences between the
MD and SCH+ C theory particularly in the phonon

group widths. The FWHM of the MD S(Q, &u) is
often about twice that calculated by the SCH+C
theory with MD results agreeing well with experi-
ment. ' This difference explains a discrepancy be-
tween the SCH+C theory and experiment noted
earlier' ' and points to the importance of including
higher anharmonic terms beyond the cubic in cal-
culating phonon lifetimes. The phonon fr equencies
calculated by the two methods generally agree
within a few percent.

Near melting we believe that the differences be-
tween SCH + C and MD data are significant. Thus
at the present level of application, selfwonsistent~
phonon theories do not provide a complete descrip-
tion of the one-phonon response. Some attempts have
been made to extend and improve phonon theo-
ries"' and perhaps the MD datapresented in this
paper will stimulate further work along these lines.
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