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We present and solve exactly a lattice model for magnetic or for structural phase transitions. The model

proposed here can be seen as an extension of the spherical model. We obtain the following results: (i) The .

free energy of the system is calculated rigorously in a general case for lattices of any dimensionality d or
structure. (ii) The critical properties are worked out explicitly for a special case of the interaction on a cubic

d-dimensional lattice (d may be a fractional number). If d & 2, second-order phase transitions may occur.
The critical exponents are those of the sperical model. (iii) For a special choice of the interaction and if d ) 3,
the existence of a line of tricritical points can be demonstrated. The tricritical exponents are computed

explicitly; they are identical to the exponents of the "Gaussian" model. (iv) Finally, first-order phase

transitions are shown to exist in one and two dimensions.

I. INTRODUCTION

In this paper we present and solve exactly a con-
tinuous- spin model. The model may be considered
as an extension of the spherical model of Berlin
and Kac, ' but was first thought as a modification of
the well-known continuous-spin Ising model, which
describes magnetic' as well as structural phase
transitions. '4

Although it may be far removed from the physical
reality, it seems nevertheless worthwhile examin-
ing the model proposed here. In fact, we shall
show that the critical properties of such a model
system are quite interesting and that tricritical
phenomena may be treated exactly. Moreover, the
predictions of the renormalization-group theory
can be checked.

The results obtained in this paper are the follow-
ing: (i) The free energy of the system is calculated
rigorously in a general case, for lattices of any
dimensionality d or structure. (ii) The one-com-
ponent model is shown to be equivalent, in the
thermodynamic limit, to an n-component continu-
ous- spin model proposed recently' when n -~.
(iii) The critical properties are worked outexplicit-
ly for a special case of the interaction and for
cubic (hypercubic) d-dimensional lattices (d may
be a fractional number). The critical exponents
are those of the spherical model. "' (iv) In this
special case, for a convenient choice of the param-
eters in the Hamiltonian, the existence of a line of
tricritical points is demonstrated. The tricritical
exponents are those of the Gaussian model. "'
(v) Finally, the existence of an unconventional
phase transition is established in one and two di-
mensions.

In Sec. II we define the exactly soluble (ES) mod-
el and compute the free energy in the thermody'-

namic limit. The equivalence to the n-component
model is then established. In Sec. III we examine
the critical properties of the free energy and de-
rive the thermodynamic functions. A special case
of the model is solved explicitly in Sec. IV. The
one- and two-dimensional case is treated in Sec.
V.

II. ES MODEL

Consider a d-dimensional (d is an integer) finite
lattice with N lattice points denoted by ll, . . . ,j,
. . . , N f, and let X be a function defined for each
lattice point j and assuming the values x&, with
-~ ~x& ~ ~. We first consider the following Hamil-
tonian:

H„(x) = Q V(x', ) —Q J,,x,.x,. —h Q x, , (2.1)

where

V(z) ~ —V, &-~ for all g, lima 'V(z) &0,
(2.2)

J„=z,, =z(i-i), z(o) =o,

and h is a real number. Equation (2.1) is the Ham-
iltonian for the well-known continuous-spin Ising
model. ' A special case of (2.1) was chosen by Wil-
son' as a starting point of the renormalization
theory. Moreover, interpreting the x&'s as one-
component displacements from a reference lattice
position, (2.1) may also be regarded as a model for
structural phase transitions. " Finally, field theo-
reticians proved that (2.1) is the so-called "lattice
approxim'ation" for the P(g), Euclidean quantum
field theory. ' Nevertheless, the model defined by
(2.1) has not yet been solved.

Therefore, we propose a modification of (2.1)
which leads to an exactly soluble model. In (2.1)
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make the change

(2.3)

where

-Py„(P, i) =N 'lnZ„(P, I ) (2.6)

so that the new Hamiltonian, defining the ES model,
is given by z„(p,n) = d"x exp[ —Paz„s (x)].

N N

H (x)=Nv(N P'x~ —Q 7~xx,.—h g x~.
j~ 4J j 1

(2.4)

As a conse(luence, the local interaction Z V(x2~) in

(2.1) is replaced by a uniform long-range interac-
tion between all sites of the lattice. Note, how-

ever, that if V(z) is a polynomial the intensity of
the long-range interaction decreases at least as
N ', when N- ~. It must be emphasized that the
symmetry of the problem is modified by the trans-
formation (2.3): Q V(xq) has a discrete hyper-
cubic symmetry in R", while V(N ' Q x',.) has a
continuous spherical symmetry in R". Still, (2.1)
and (2.4) have a common property: the ground
states of both models coincide provided the J,~ are
all non- negative. "

Now, we are interested in computing the free en-
ergy corresponding to (2.4) in the thermodynamic
limit:

z„(p,k)

dr exp[ PNV(-N'r')]
0

do„exp J,. x,x + pi, x,.

(2.8)

where da„ is the surface element of the sphere of
radius x in R". Making the change

x~-rx. for ally, (2.9)

In a previous paper" we have already indicated
a method for computing the free energy (2.5). Let
us here make the derivation more precise. Using

(2.4) and the spherical symmetry, we may rewrite
(2.'l) as

-P4(p, h)=11m [-W (P, h}], (2.5) (2.8) becomes

Z„(P,h) =N'i' drr" ' exp[-PNV(r')]
0

exp 'v J )X]x)+ 'vk x) do'

x~ -N

dr r" 'exp[ PNV(r')]-Q~(r')= N' '-drr' exp(N[-PV(r')+1nr PF„(r—')]). (2.10)

Here Q„(r') is the partition function of the spheri-
cal model (apart from a renormalization factor}
with interaction x'J, , and applied field xh. The
corresponding free energy is F„(r'). Noting that
the limit

for all finite r' Now, for. a function G(r') which
decreases sufficiently fast for z'- ~, it is true"
that

lim N ' ln drr ' expNG(r') = max G(r') .
N ~eo 0 &~2~~~

»m F„(r')=F(r') (2.11)
N

exists for all y', it is easy to show" that the con-
vergence of the se(luence fE„]is uniform in r' on

every bounded real interval. Therefore, we get
from (2.10}

Using (2.12) and (2.13), where

G(r') = pV(r')+ ln-r pF(r'), -
we finally get

(2.13)

(2.14)

Pg„+N ' lnvN pg(p, Jz) =-— min [pV(r ) —lnr+ pF (r')] .

drr ' exp@[-PV(r')+1nr —PF(r')]) (e,

(2.12)

(2.15)

The free energy of the spherical model is well
known for lattices of any dimensionality d or
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—2 f~(t) + ph'/4[t —J(5)], (2.16)

where t =t(r') is the solution of the saddle-point
equation

pr' = ', f„,(t)—+ph'/4[t —J (0)]' (2.17)

structure. "Here, without loss of generality, we
shall only consider ferromagnetic interactions
(J,~~O) and d-dimensional cubic (hypercubic) lat-
tices. In that case, the free energy of the spheri-
cal model takes the form"

pF—(r') =
~ Inmp ' —lnr+ pr't

Before concluding this section, let us make some
comments:

(i) In some particular cases where V(r') is a
polynomial, the results (2.24)-(2.26) may also be
obtained with the aid of integral transformations
and of the method of steepest descent. " However,
the derivation of the free energy in this way is
more complicated and difficult to make rigorous.

(ii) In a previous paper" we emphasized that the
free energy of the ES model in the thermodynamic
limit is identical to the free energy of an n-com-
ponent continuous-spin model proposed by Emery'
and defined by the Hamiltonian

2t
f~(t) =(2v) ~ d~a ln[t —J(&u)],

0

9f.. (t) =
st f.(t)

(2.18)

N N N

H("'(PS&)) = P nV(n 'S&) —P J,& S,. 'S& —P h'S&,
i=1 5 ~ J j=1

(2.27)

J(v) = g Z(I) cos(Z& I) .
1

Introducing (2.16) in (2.15) yields

(2.19)

((('((i, i(= min (((V(r') —((r'i+ '.f,(i(-'
Ph'

-(g))
——, InmP . (2.20)

The minimum in (2.20) can be determined by equat-
ing to zero the derivative of the expression in large
parentheses with respect to y', we get

Ph' stPV'(r') Pt -Pr'-- 'f, ,(t)—-
4[t —J(0)]'

(2.21)

According to (2.17) the term in brackets on the
left-hand side of (2.21) vanishes so that the neces-
sary condition for a minimum in (2.20) can be
simply written

v'(r') = t(r') . (2.22)

v"(r ') & t'(r') . (2.23)

Thus the free energy of the ES model is given by
the set of relations

4(p, h) = V(r') r't+ .' p —'f,(t)--
—h'/4[t —J(0)]——,

'
P

' lnvP ', (2.24)

t(r') = V'(r'),

pr'=-,' f, ,(t)+ph'/4[t —Z(0)]'.

(2..25)

(2.26)

This condition is sufficient, when, in addi/. on, the
second derivative with respect to ~' is positive,
that is, when

when n-~. Here 8& is an n-component vector and
h=h(1, . . . , 1). Thus, if the ES model is consider-
ed as an extension of the spherical model as de-
fined by Berlin and Kac, ' the Hamiltonian (2.27)
may be regarded as the corresponding extension
of the n-component model defined by Stanley. We
have then extended the result of Stanley that the n-
component vector model is equivalent to the spher-
ical model. "'"

III. CRITICAL PROPERTIES OF THE FREE ENERGY

AND THERMODYNAMIC FUNCTIONS

(see Fig. 1). For short-range interactions J,, the
following results are true"

f~, (Z(5) ) & ~ if d & 2,

f~, (J(0)) diverges if d~2.
(3.2)

(3.3)

Now, we have to distinguish between two cases:

(i) Equation (2.25) has only one solution; in this
case the minimum in Eq. (2.20) is uniquely deter-
mined.

(ii) Equation (2.25) has more than one solution;
in this case the solution which leads to an absolute
minimum in Eq. (2.20) has to be found.

First consider ease (i). A very simple necessary
and sufficient condition for the existence of one

The solutions of Eq. (2.25) determine the behav-
ior of the system. Note first that t(r2) is obtained
by solving Eq. (2.26) and that the properties of
t(r') are connected with those of the function f«(t).
This last function is well known from the theory of
the spherical model. """ Let us emphasize that
t(r') is a continuous monotonically decreasing func-
tion of z' provided that, if h =0, one defines"

t(r') =j(0) if ,'P 'f«(J (0))&r—'&~ (3.1)
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i( t(r )
2

p
I

r = (2p) f d& (&(o))
2

FIG. 1. Behavior of t(z2), the solution of Eq. (2.26),
when: (a) h=0 and d&2; (b) h ~ 0 for all d or any h, and
d~2.

I

and only one solution of Eg. (2.25) is" (A) V(r ) is
a concave function of r for all r such that V'(r )
—J(0). Then, since t(r') is decreasing, the solu-
tion exists and always satisfies condition (2.23)
(see Fig. 1). Assume that V(r') has the property
(A), in which case the appearance of a phase trans-
ition in the system is strongly related to the sing-
ularities of the free energy. Now the only term in
(2.24) which may become singular at a finite temp-
erature is the function f,(t), an analytic function in
the whole complex t plane except along the real in-
terval [ ~,J (0)]."-At the point t =J (0), f~ has a
branch-cut singularity responsible for a second-
order phase transition, as is the case in the spher-
ical model. " However, according to (3.2), Eg.
(2.25) can have a solution with t(r') = J'(0) at finite
temperature only if f, ,(J (0))&~ and h=0. We then
have the following result":

Proposition 3.1: A.ssume that V(r ) has the proP-
erty (A), assume that f, (J(0)) diverges or that
h w 0. Then the free energy is an analytic function
of temperature and magnetic field.

For d = 1 and d = 2, f~, (J (0)) diverges if the in-
teractions J,, are short-range. ' Applying the above
result we conclude that the ES model has no phase
transition in one and two dimensions as long as
V(r') has the property (A).

Now let d&2 and h =0 and V(r') have the property
(A). Then V'(r') &J(0) as soon as V'(0) &J(0), and
there exists no solution of Eq. (2.25) such that
t(r') =J(0). In this case, too, the free energy is
an analytic function of p and h. If V'(0)&J(0), how-
ever, there exists an r', &0 such that V'(r', ) =J(0).
There exists a critical temperature given by

r'. = 'P,'f, , (J(~))- (3.4)

a 2
V(r') —r 't+ ', p 'f~(t) ——

4[t- J(o)l
h

2[t- J(O)]
' (3.8)

Now, according to (2.21) the first term on the
right-hand side of (3.8) vanishes so that

m(h) =h/2[t —J (0)] .
We define the spontaneous magnetization by

(3.9)

h
m, —= lim m(h) = lim (3.10)

For P ~P,(T ~ T,), and according to (3.1) and (3.4),
K p the solution of

V'(r:) =J(0), (3.6)

is always the solution of Eq. (2.25) and the free en-
ergy is singular. If p & p, (T & T,), r', is never a
solution of Eq. (2.25) and the free energy is regu-
lar. We summarize these results as follows":

ProPosition 3.2: A.ssume that U(r ) has the

property (A). Assume . that d&2 and that the J;,. are
short rang-e ferromagnetic interactions. Then if
V'(0) & J(0) the free energy of the ZS model is an

analytic function of temPe~ature and magnetic
field. If V'(0) & J (0) and h = 0, however, there ex-
ists a critical temperature given by (3.5). Below
the critical temperature the free energy always
has a branch point singularity.

We now turn our attention to case (ii) where
V(r') does not have the property (A). Then Eq.
(2.25) may have more than one stable solution at
sufficiently small temperatures, and the solution
must be determined which corresponds to an ab-
solute minimum in (2.15). Let r', and r,' be two
stable solutions of Eq. (2.25). The interesting case
occurs when, with variation of temperature,
applied field or model parameters, the absolute
minimum first given by r', is suddenly given by r,'.
At the values of P and h such that

$(P, h;r,') = $(P, h;r', ), (3.7)

a first-order phase transition will occur. Such
transitions are examined in detail in Secs. IV and
V.

Let us now derive from the free energy (2.24) the
most interesting thermodynamic functions of the
ES model. The magnetization as a function of h is
given by

m(h) =-—'
Bh

or

(3.5)
The derivative of m(h) with respect to h gives the
field- dependent susceptibility
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g(h) = —m(h) = „1—2m(h)—8

Bh 2p J(0)] sh (3.11)
very simple to analyze in the tricritical region.
Here we shall reexamine the case where V(z) is a
polynomial of degree three in z:

(x,.x,.„)=- P(P, h)
BJ(I)

= —,
' p-'(2')-' cos(4) 1),

( )t-J( )~
(3.14)

In derivating (3.14) we have again used (2.21) to
eliminate the partial derivative of ( with respect to

Now, setting l =0 yields

(x',.) = —,
'

p
' f', (t)+m'(h) =x'. (3.15)

Moreover, in the limit ~1~ - ~ the integral in (3.14)
vanishes" (Riemann-Lebesgue lemma) and we get

and the isothermal susceptibility is defined by

y = lim y(h). (3.12)

Now the relationship between phase transitions and
singularities of the free energy becomes clear. In
(3.10) and (3.12) we see that a spontaneous magne-
tization can only exist and the susceptibility can
only diverge if

t(x') —J(0)~ h. (3.13)
h~o

In this case (see the above considerations) the free
energy is singular when h =0. Note also that p~
remains divergent as long as the spontaneous mag-
netization exists.

Differentiating the free energy with respect to
J, ,„=J(1),one gets the correlation function

Then

2 J, i,j nearest neighbors;
fj

0, otherwise .
(4.2)

d

J(ur)=J g cost@, , J'(0)=dJ.
j=l

If we choose C fixed (positive) and define

'=A —J(5) =A —2dJ,

(4.3)

(4.4)

we have to distinguish three regions in the B-6
plane (see Fig. 2):

region I 6~0; B~0;
region II 6&0; 8 (= R;

region III 6~0; B &0.

(4.5)

A. Regions I and II: Critical behavior

In region I, it is easy to verify that V'(0) &J(0)
=dJ as long as 6&0, so that, from proposition
3.2, no phase transition can occur in this region
of the B-~ plane. If ~ = 0, critical behavior exists
at zero temperature. For a discussion of this par-
ticular case see Ref. 18.

V(z)= —,'Cz'+ ,'Bz-'+-,'Az, C&0, A, Bc R. (4.1)

Moreover, we consider ferromagnetic interactions
between nearest neighbors only, so that J,, is de-
fined by

lim (x,.x,.„)=m'(h). (3.16)
II( ~~

The internal energy per site u is defined by

u= —(Py) =V(~ )-~ t- +-,P
h2

dP 4[t —J(0)]
(3.1V)

Once again we have used Eq. (2.21). The specific
heat is then given by

B=B(

v(r )

v'(r

REGION III

r2

REGION I

v'(r )

l

r2

9c=—kP' —u
8

ef= —'k 1+2p [t +m (h)]t'(r )
sp

(3.18)
v'(r )

REGION Z

v'(r )

IV. CRITICAL AND TRICRITICAL BEHAVIOR

In this section the most interesting application
of the ES model will be discussed, namely, the
case for which tricritical behavior is found. The in-
terest of this application resides in the fact that
exact treatments of tricritical points are quite rare
and often fastidious. The ES model is, however,

z
ro r

FIG. 2. Three regions in the B-6 plane as defined by
(4.5) and the behavior of V' (x ). Here 6=2dJ, r& is
given by (4.7) and x~2 by (4.21). On the curve B=B*(A),
V' (w ) is tangent to the line dJ and y+ =y = (gt" )
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In region II, V'(r') always has the property (A),
so that Eq. (2.25) has one and only one solution,
which is stable. Moreover, V'(0) & J(0)=dj, and
for d) 2 and h =0, there is a phase transition at the
critical temperature

Moreover,
& / (s-2)

(q')s s, (*'s)s=s, s-s, ( (+~d' (4.17)

P, = (2J) 'r, ' q(d),

where r', is the (unique) positive solution of

V'(r') = 2(Cr +Br'+A) = dJ,

(4.6)

(4.7)

(~2) ~ p-1/3

B. Region III: Tricritical behavior

(4.18)

and q(d) is given by'""
21r d m]

q(d) =(qs) f d ss d —P costs,.
0 f =1

(4.8)

For p) p„, the solution of Eq. (2.25) sticks in r',
and the free energy always has a branch-cut sing-
ularity.

To calculate the spontaneous magnetization we
have to determine the behavior of t —dt, when

0. We find"

V'(r') = —,
' (Cr +Br'+A) =3J (4.19)

may have two positive solutions. If C) 0 and 4~0
have fixed values, an important quantity is

B*(~)= -2(~C)'/'. (4.20)

We first consider the case d=3 and @=0. In this
region V'(0) &dJ =3J; nevertheless V does not have
property (A), and proposition 3.2 does not apply.
Moreover, Eq. (2.25) may have more than one solu-
tion and the equation

T&0, p&p, ;

Ihl /, p=p, ;
lal 0

(2r.) 'lI I(1-p./» '" p& p.

—'(d+2), 2&d&4;S=
d~4.

Therefore, from (3.10), it follows that

(4.9)

(4.10)

For 0&B&B*(t)), Eq. (4.19) has no real solution.
For B &B*(h), Eq. (4.19) has two real solutions

r ' = (2C) '[-B+ (B ' - 4 ~C )'/'j .

If B=B*(h),

r 2 —r2 —r 2 —(d) C l)1/2

(4.21)

(4.22)

Therefore, if 0&B&B*(~),Eq. (2.25) has no solu-
tion r' with

p p, ;—
r, (1 —p,/p)'", p & p, ,

(4.11)

At p= p, it follows from (4.9) that

)21(I2) ~' I/2
I

s )/'s —
It1

Ihl ~0
so that the critical exponent" 6 is given by

6 =s/(s —2) .

(4.13')

(4.14)

The other critical exponents" can be evaluated in
the same way. We get

n =(s —3)/(s —2); P= —,'; y=2v=(s —2)

5 = s/(s —2), q = 0 . (4.15)

and P, the critical exponent" of the magnetization,
is then given by

(4.12)

t(r') =3J. (4.23)

Nevertheless, if the curvature of t(r') is large
enough for small temperatures, Eq. (2.25) may
have three solutions z'3) z,'~&,'. The stability
condition (2.23) is never satisfied for r', . However,

3 and y', are stabl e so lutions and the so lution
which gives an absolute minimum of (2.15) must be
found. Therefore, we have two essential tasks to
perform: on the one hand, to compute the curva-
ture of t(r') in order to enumerate the solutions of
(2.25); on the other hand, to determine the solution
which minimizes (2.15). These two points are
treated in detail in Ref. 10. In what follows we de-
scribe the results obtained there.

The curvature of t(r') depends on the values of
t), , J, and q(3), and one has to distinguish between
two cases:

These are the critical exponents of the spherical
mode] ~

An interesting property of the ES model is also
the behavior of (x', ). From (3.15) we find that at
h =0 one has

and

h (J)I = JX 41/ 2q 2(3)

l. 6 (&Jq

(4.24)

(4.25)

(2)ot ppst ~

~(2p) ' f„,,(t), p & p, .
(4.16) In this ease another important value of B must be

defined:
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where

r', (P)=r', P =P=o,

P, P&—P„
r,'(P) r'—, " P&—P, ,

(4.27)

r;(P = ) = 0; r', (P,) =r; (4.28)

W**(b)=-(4/~(AC)'~2~B*(h) . (4.26)

Note that B**(n) is the value at which the order
parameter jumps for T=0 and k=0 (Ref. 10). If
B &B*(b,), Eq. (2.25) has a unique solution for all
temperatures. Nevertheless, this solution never
satisfies (4.19), so that the free energy is always
regular. In this domain of region III there is no
phase transition.

When B*(a)~B ~B**(a), Eq. (2.25) has two
stable solutions x', ~ r'3. It can be shown that the
solution r'„which minimizes (2.15) is given by

consider the phase diagram in the B-p ' plane
(see Fig. 3). In this plane there is a line of critical
temperatures defined for B&B*(n) and given by

P,(B;6) = (2Z) 'q (3)r,'(B; 6) . (4.32)

The line ends at the point TCP: (B„P,') with

P, =(2Z) 'q(3)(h 'C)' ', B,=B*(&). (4.33)

t(r') =3J at the temperature P„so that the free
energy becomes singular with a branch-point sing-
ula, rity; there is a phase transition of the type
found in region II, that is, a second-order phase
transition. Along the line p, (B; 6), the critical ex-
ponents are those of the spherical model' "and
are given by (4.15). All thermodynamic functions
behave as in region II.

If B**(b,) ~B ~B*(h), there is, in addition, an-
other line of critical temperatures p, (B;6) ~ p, (B;d),
beginning at the point Q:(Bo,Po ), with

P = 0 Bo =B"*(6), (4.34)

P, = (2S) 'q(3)r, '. (4.29)

The new critical temperature P, cannot be comput-
ed explicitly, but the following relations hold:

and terminating at the point TCP defined by (4.31).
' t(r') = t(r', ) = 3J between the two temperatures p,

and P„and the free energy has a branch-point
singularity. At P„however, r' jumps from r', to

Pi —P,

P, = ~ for B =B**(6),

P, =P, =P, for B =B"(6) .
(4.30)

r', (P), with t(r', ) &3J', so that the singularity sud-
denly disappears and the thermodynamic functions
are discontinuous. Then, at P, two phases coexist
and P, (B;n) is a line of coexistence or a line of

I'r', (P) r;, P, P 0,
00~ )

(4.31)

Finally, if B &B**(h), Eq. (2.25) still has two
stable solutions x,'~r'„but the best solution is y 3,
so that z~ is simply given by

fir st- order phase transitions. At the point TCP
the two lines of critical temperatures P,(B; A) and

p, (B; b) meet so that TCP is a tricritical point. "
The thermodynamic functions are now easy to

compute. The spontaneous magnetization always
vanishes for B &B*(6). If B*(6)~B ~B**(h)one
ha, s

where r ', has to satisfy (4.28). In this case there is
only one critical temperature.

I et L be fixed, positive, and satisfy (4.24) and

0, (P, =P ~0);

m, = r,(1 —P,/P)'", (P, =PoP );
0, ( ~P —P).

(4.35)

Therefore, m, has a discontinuity at P, . For B
&B**(b), m is simply given by

Para Q&h&3q 0, P, ~P~0;
S

r,(1 —P,/P)'", "—P&P, .
(4.36)

p4 r
/

/
Qp

B*'(a)

TCP —P t

"Para"

B*(b,)

The susceptibility diverges when t =3J, that is, for
p, & p~ p„ if B*(L)~ B~B**(6),and for p, ~ p s ~,
if B &B*"(6). Nevertheless,

for B&B*(s),

FIG. 3. Phase diagram in the B-P"~ plane for 6&Jq.
The fu11 line P~' is the line of second-order phase transi-
tion (spherical-model type of critical behavior). The
dashed line P&" ~ is a coexistence line (first-order phase
transition) .

(4.37)

(x', ) is given by (4.27) and (4.31). Note that (x',.) is
discontinuous at P, and that
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p
2

(»') —(» ) (-I+— B &8 (»), (4.38)
g E~O

S:(B~;P~') such that

B**(n.) ~B,&B, p,' = p, '(B; 6), (4.41)

while

(x', ),(~, —(x';)~ ~,-I+—', B =B*(a) . (4.39)

which is not the TCP, and continues until another
point R(Bs; Ps') is reached, where

The standard critical exponents remain those of
the spherical model even if the TCP is approached
at constant B =B~(n,) Ho.wever, when the TCP is
approached in such a way that B 4B*(D) and P = P„
different, so- called tricritical exponents" '"
describe the behavior of thermodynamic quantities
as a function of B —B*(A), namely,

p, =g, o', =2, y, =l, 6, =5, g, =-,'. (4.40)

These are Gaussian exponents. ""p, is the so-
called crossover exponent ' ' and describes the
behavior of P, close to B=B*(S). It must be em-
phasized that renormalization- group calculations
made with model (2.1) with V(z) defined as in (4.1)
give the same result (4.40) for the tricritical ex-
ponents. "" However, these authors obtained log-
arithmic corrections for the tricritical exponents;
in the ES model there are no such logarithmic
corrections. A recent paper" gives an explanation
for this fact: the logarithmic corrections are of
order 1/n and vanish in the ES model which is
equivalent to an n-component vector model in the
limit n -~.

In this case there still exists a line of second-
order phase transitions P,(B; 6) and coexistence
line p, (B, n) in the B p' plane (see-Fig. 4).
P, (B; ~) is given by (4.32) and terminates at the
TCP definedby (4.33). The coexistence line P, (B;6)
appears at the point Q defined by (4.34). However,

P, intersects the second-order line at a point

R

B,&B*(~); P„'&P,'. (4.42)

r,'(P), P, P —0—;

r;(p), -=p=p„
(4.43)

lim r~(P) —lim r' (P) & 0 (B &B~) . (4.44)Af
~ ~

h1

When 6&J„the critical exponents are always those
of the spherical model.

It must be emphasized that in the B P' d, --
space, there exists a line of tricritical points when
6»Jq. This line appears at the origin of the B-P '-
n, space and terminates at the point P:(B*;p, ';
b, = J))). The line of tricritical points is given by

P = P(» B =B*(&) ~ (4.45)

Note also that all results derived here are in per-
fect agreement with those which can be obtained at
zero temperature.

In region III, phase transitions can still occur
when k is real and nonvanishing. In fact, if h has
a fixed, sufficiently small positive value, Eq.
(4.25) still has three solutions r ', (h) ~ r,'(h) ~ r,'(h)
at sufficiently low temperatures. " If B &B**(h;n)
&B**(h*;n), where

The consequences of this behavior are the following
(Fig. 4):

(i) The segment of the line P, between S and TCP
is no longer a line of critical points since it does
not correspond to a stable solution of Eq. (2.25).
The second-order line, therefore, terminates in
$. However, since the coexistence line continues
until R is reached, 8 is not the tricritical point.
There is no tricritical point when 6&Jg.

(ii) If B~ &B ~B~, and the temperature is de-
creased, the spontaneous magnetization always
remains zero, even if p, is crossed; in fact r' is
never such that t(r') =34. Nevertheless, (x',.) and

g~ are discontinuous at P, since

eTCP

Bs
I)

B"(~) BR

B++(0; ~) =B**(~),

Bgg(hg. /) (5)a /2(/C)l/2 Bg(/)

p g 8 5-5 /4 ~5 /4C -1 /4
3

(4.46)

FlG. 4. Phase diagram in the B-P plane for h, &Jg.
Note that the coexistence line (dashed) crosses the
second-order line (full) at a point $ different from TCI'.
The segment (S, TCP) of p, (pointed) has no physical
meaning.

as before, r, (h) is the solution which minimizes
the free energy, and there is no phase-transition.
If B~B**(h;6), there is a critical temperature

p, (h, B;b), such that if p& p, (h, B; 6), r,'(h) minim-
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transitions. They begin at the points P, or P and
meet at the TCP. At the TCP, therefore, three
lines of critical points meet (see Fig. 5).

When 6&Jq, the critical temperature P, (k, B;A)
exists if B**(k;6) «B «B„(k;n,), where

Bq(k = 0; 6) = Bq ) Bq(k*; 6) =B**(k*;6), (4.50)

FIG. 5. Phase diagram in the h-B-P ~ space for 6
&Jq and d=3.

izes the free energy, while if p&p, (k, B; n,), it is
done by r ', (k) . Of course,

P, (k =0,B;0) =P, (B;6) . (4.47)

For h~ Jq, this critical temperature exists for
values of B such that B**(k;A) «B «B*(k;6), where
B*(k;b,) cannot be calculated explicitly, but is such
that

B*(0 a) =B*(~) B*(k* a) =B**(k*~) (4.48)

When k is varied between zero and h~, the lines
p, (k, B; b.) generate a surface W, in the k —B p'-
space (see Fig. 5). Due to the symmetry with re-
spect to h, another symmetric surface 5' is gen-
erated between -h* and zero. These two surfaces
are the "wings" associated with the tricritical
point""" and are coexistence surfaces. The two
lines of points defined by

B =B*(+k n) B '=P '
(+k B*-n) (4 49)

are two lines of continuous (second-order) phase

p, (B; A) = (2j) 'q(d)r, '(B; n), (4.52)

the critical exponents are those of the spherical
d-dimensional model, "i.e. , given by (4.15), as
long as B &B*(a). When B=B*(s), however, and
the temperature P, is approached, the critical ex-
ponents are always those of the three-dirnensio~al
spherical model, namely

P = —,', y=2, ot =-1, 6=5 (4.53)

for all d &3. When the TCP is approached in such
a way that B 4B*(h) and P = P„ the exponents (4.53)
are renormalized by the crossover exponent P, and
given by the Gaussian tricritical values

p, = —,', n, = —,',. y, =l, 6, =5, p, = —,', (4.54)

for all d&3.
It must be emphasized that in the neighborhood of

the TCP, the dimension d =3 plays the same role as
d = 4 at an ordinary critical point, ' namely, d = 3 is
the border line above which classical exponents a,re
obtained for all d ~ 3.

When 2 &d &3, the qualitative behavior of the
model is always the same as for d =3 in the case
6&Jr). Therefore, no tricritical point exists for
d &3. Nevertheless, for h = 0, there still exists a
line of second-order phase transitions P,(B;6) de-
fined by (4.52) when B «Bz, and a coexistence line
p, (B; d) defined for B**(n)«B &B~. The phase dia-
gram in this case is that drawn in Figs. 4 and 6.

and B~ is given by (4.42). There are still two sym-
metrical "wings" and two lines of second-order
phase transitions:

L, : B =B~(+k; a); B '=P, '(+k, B„;6) . (4.51)

However, in this case J„L, and P, do not meet
at the same point (see Fig. 6).

If d &3 and fractional values of d with 3 &d ~ 4 are
admissible, the qualitative behavior of the model is
the same as for 4 =3 in the case 6 ~Jg. That is,
a tricritical point exists for all values of 6 if d & 3.
The phase diagram is again given by Figs. 3 and 5.
Along the second-order line P,(B; A) defined by

V. PHASE TRANSITIONS IN ONE AND TWO DIMENSIONS

FIG. 6. Phase diagram in the h-B-P space for 6
&Jq and d=3.

A surprising feature of the ES model is the exist-
ence of a phase transition in one and two dimensions
provided that V(z) has not the property (A). In
fact, for 8 =1 or 8 =2, f«(j(0)) diverges and t(y')
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ior" and we expect classical critical exponents"
at the critical point R.

VI. CONCLUSION

FIG. 7. Qualitative phase diagram in the h,-P-P
space for d= 1 and d=2 in the particular case where
V(a) is given by (4.1) and 6 &0.

S=(x.)8 @~+ (x')~ ~~ o (5.1)

has to be regarded as a spontaneous order param-
eter. At the point R, S vanishes and Bg/BS diver-
ges. 8 is then a critical point.

Moreover, if h 10, the behavior of the model is
still that described in Sec. IV. In particular, the
two symmetrical wings W, and the two second-or-
der lines L,, do exist, The phase diagram in re-
gion III for d=l and d=2 is given in Fig. 7.

The occurrence of phase transitions in one and
two dimensions can be understood if we keep in
mind the presence in the ES model of the long-
range uniform interaction. This long- range inter-
action must yield a mean-field-like critical behav-

~ j(t)) at all finite temperatures. The function f,
in the free energy (2.24) is, therefore, analytic in
the physical region. Then, even if V(z) has not the
property (A), there is no second-order phase
transition in one or two dimensions.

However, at sufficiently low temperature, Eq.
(2.25) may, still have more than one stable solution.
Consider once again the particular case where V(z)
is given by (4.1), and J,, by (4.2). Then, in region
III [Eq. (4.5)], Eq. (2.25) has two stable solutions
at low temperatures, and the coexistence line

P, (B; 4) given by (4.30) still exists for h =0 and
B**(h)(B&B~. Along the line P, (B;A), two phases

coexist, with the same magnetization (x,) but with
different values of (x',.). The quantity

In this work the critical properties of a model
describing structural or magnetic phase transitions
have been investigated. Particularly, a modifica-
tion of the original Hamiltonian (2.1) has been pro-
posed, which leads to an exactly soluble partition
function. The corresponding free energy was
shown to be identical with the free energy of the n-
component extension of (2.1) when n- ~.

The ES model enables all interesting thermody-
namic functions to be calculated, and exhibits a
nontrivial critical behavior. In fact, the critical
behavior has been shown to be that of the spherical
model. Moreover, tricritical properties may also
be examined. The existence of a tricritical point
has been demonstrated and the tricritical exponents
calculated explicitly. Apart from logarithmic cor-
rections, the tricritical exponents have been found
to be identical with those determined by renormal-
ization-group calculations for the original model
(2.1).

Finally, it must be emphasized that the critical
dynamics of the ES model can also be solved. ""
The main feature of the solution is that the self-
consistent approximation is exact.

Obviously, the ES model is far from physical
reality. The uniform long-range interaction (2.3)
has been introduced only for mathematical conven-
ience. Nevertheless, it seems interesting to ask
whether the qualitative behavior of the original
model is well described by the behavior of the ES
model. %hat are the features of the ES model
which are only direct consequences of the presence
of the long-range interaction? Is it possible to
prove that the original model has a phase transition
when the ES model has one? These questions have
not yet been clarified. Nevertheless, one fact is
certain: the ES model gives an idea of the com-
plexity and the richness of the original model.
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