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A stochastic model of the diftusion of clusters on crystalhne surfaces is presented. The cluster

configurations are mapped onto a periodic lattice with internal states. The formulation is capable of treating

complex kinetics, cluster structures, and surface topologies. A detailed analysis of dimers with two and three

allowable states in one and two dimensions is given. These correspond to recent observations of the diffusion

of atomic clusters on surfaces by field-ion microscopy techniques. Expressions for the transition rates

between spatial configurations involved in the motion of the clusters are derived in terms of experimental

observables. It is demonstrated that for a complete determination of the parameters characterizing the

various cluster configurations (i.e., activation energies and frequency factors) full use of the fieM-ion

micr@scope data (moments of the cluster centroid displacement and equilibrium-state occupation probabilities)

is required. The effect of a bias field is included in our analysis, and shown to be essential in certain cases

for a complete determination of the transition rates. The effect of periodically placed defects on the di6usion

on surfaces is investigated.

I. INTRODUCTION

In recent years investigations' of surface phe-
nomena have constituted @ major thrust of scien-
tific endeavor. awhile being a topic of interest
and relevance for many years, the modern ap-
proaches to the subject are characterized by an
emphasis on a microscopic level of description. '
Such studies which aim at the interpretation and

construction of theoretical models of fundamental
interaction processes occurring at material sur-
faces are greatly enhanced by advances in experi-
mental techniques which allow the observation of
surface structure and interaction phenomena on a
microscopic scale. In investigations of the inter-
actions of atomic species with solid surfaces and

between atomic species mediated by a surface,
it is recognized thy, t in order to achieve a proper
description of the system the individual and cor-
related effects of several factors have to be studied.
These factors include surface geometrical struc-
ture, electxonic and vibronie spectxa, dynamics,
kinetics, and thermodynamieal considerations. "
As a starting point for a discussion of chemical
reactions on solid surfaces, it is convenient to
postulate a schematic series of "elementary" reac-
tion steps: adsorption, migration, and desorption.
%bile the term "heterogeneous catalytic reaction'*'
is customarily reserved for the interaction between
atomic species in the presence of a surface when

the atomic reactants originate in the gaseous (or
liquid) phase, it could be generalized to describe
various surface processes such as annealing and
Bintering' thin-film growth, ' ete.-, in which one or
more of the "elementary" reaction steps may be
missing. Reactions may be classified according to

rate-limiting steps in the reaction mechanism.
The identification of the rate-limiting steps and

their dependence on the characteristics of the

system and reaction under study are of major im-
portance in the construction of kinetic schemes,
and for establishing classification trends aceoxd-
ing to the type of reactions and reactants con-
sidered. The complexity and versatility of surface
systems complicates the definition of the "element-
ary steps" to- such a degree that the study of each
of them separately forms a subfield of consider-
able complexity both experimentally and theoretic-
ally. The ultimate goal of surface studies is to
relate and correlate the various phenomena in a
coherent scheme. A possible approach for the

construction of a general theory of reactions on

surfaces is within a statistical thermodynamieal
stochastic framework. " This approach, which

proved to be most successful in investigations of
the kinetics of chemical reactions, is particularly
suitable for the study of heterogeneous catalytic
reactions -which involve the interaction of atomic
and molecular species with condensed-matter
systems. In attempting to advance beyond a ther-
modynamical macroscopic description, it wouM

be necessary to express thermodynamieal quan-
tities such as the free energy in terms of micro-
scopic models of the interaction processes. In

order to be able to test and assess theoretical
models it is essential that methods for the analysis
of experimental data be developed. The degree of
detail required of the analysis techniques is often
dictated by the nature of the experiment. In addi-
tion, such studies may suggest either new experi-
ments or modifications of existing techniques.

In this paper we employ stochastic techniques



3390 UZI LANDMAN AND MICHAEL F. SHLESINGER 16

for the study of the migration of clusters on crys-
talline surfaces. Our study was motivated by
recent observations' of the correlated motion of
atoms on metal surfaces using field-ion-micro-
scopy" (FIM) techniques. Thus, the main objec-
tive of the present paper is to study the above
phenomenon and suggest methods for analyzing
the wealth of FIM experimental data, and to sug-
gest new experiments to enable the extraction of
parameters which characterize the motion. " Add-
itionally, the formalism which we developed is a
rather general one such as to provide a frame-
work for the study of reactions on surfaces along
the lines discussed above.

The challenging goal of observing individual
atoms on surfaces was first achieved upon the in-
troduction of the field-ion microscope by Muller
over two decades ago." In recent years other
methods for the imaging of individual atoms, such
as transmission-electron microscopy operated in
either bright- or dark-field modes and high-reso-
lution electron-microscopy techniques, have been
developed. " While these techniques may extend
the range of materials to which the FIM method
can be applied, the latter one remains the major
source of quantitative data of atomic resolution.
In particular, data about the migration of individual
species on surfaces is currently available only
from FIM measurements. Nevertheless, the re-
sults which we present in the following are not
limited to the analysis of FIM data.

FIM observations of correlated motion of clus-
ters of atoms on metal-surface planes is one of
the most significant results in recent work on sur-
face diffusion. The observation of this phenomen-
on indicates the importance of interactions be-
tween adatoms on, metal surfaces in controlling
the mechanisms for their migration. Clearly, to
describe the correlated. motion and enable the ex-
traction of physical quantities from the data a new
theoretical formulation is needed. @ ) Apart from
explaining the experimental data and suggesting
new experiments, the analysis may be of relevance
in comparing and evaluating theoretical models of
adatom-adatom interactions (direct and substrate
mediated) on metal surfaces" "by virtue of pro-
viding quantitative measures of parameters (like
activation energies of migration and frequency
factors) which enter the description of related
phenomena. Since detailed descriptions of FIM
techniques and statements of the "state of the
art" are available in the literature (see Refs. 9
and 10), we restrict ourselves to a very brief des-
cription of the available data of cluster diffusion
on metal surfaces. (The following list is by no
means exhaustive; for additional examples, the
reader should consult the bibliography cited in

Ref. 9.) First, we note that cluster diffusion on
metal surfaces was observed for systems exhibit-
ing variable cluster sizes and dimensionality of the
motion. As examples, we mention one-dimension-
al motion of tungsten~ ),' -si and rhenium dimers
on W(211) and tungsten triplets'"b~ on the same
substrate, two-dimensional motion of tungsten"
dimers on the (110) face of tungsten, and the mo-
tion of higher-order clusters of ihridium" and
platinum" "on W(110).

Most schematically, FIM studies of the migra-
tion of adatoms involve"" the evaporation of a
few atoms onto the field emitter tip, followed by
measurements of their motion after successive
periods of heating. (The typical range of tempera-
ture is of the order -100 'K. ) During a heating
stage (typically 20-90 s, depending on tempera-
ture), the high electric field used for imaging is
absent to avoid the effect of the field. The imag-
ing stage is done at a cryogenic temperature of
-20 'K to ensure a freezing of the motion. To ob-
tain well-characterized contaminant-f ree condi-
tions the experiments are performed in an ultra-
high-vacuum environment. From the chronologi-
cal series of micrographs a mapping of positions
is performed from which an assignment and tabu-
lation of adatom displacements is made. In order
to be able to construct a statistical sample, ap-
proximately -100 observations are made at each
temperature. From the resulting histograms the
variance of the displacement and the mean posi-
tions (available if experiments are done under
the influence of a bias field) can be determined as
a function of temperature. In addition, analysis of
the micrographs provides data about the equilib=
rium occupation probabilities of the various states
which the migrating species encounters during its
motion. As will be discussed in the following sec-
tions, to enable a complete characterization of the
diffusion process, full use must be made of the
FIM data, and in certain cases experiments under
the influence of a bias field are necessary. "

As indicated above, it is observed that the mi-
gration of clusters on crystalline metal surfaces
proceeds via transitions between possible cluster
configurations. The nature of the motion and the
allowed spatial configurations depend upon the
substrate morphology and composition and the
composition and size of the migrating cluster
(these factors are related, of course, to the ener-
getics of the system, i.e. , adsorbate-substrate
and interadsorbate interactions). A cluster will be
characterized by the number of states (configura-
tions) which participate in its motion, by its size,
and by the dimensionality of the motion. In Figs.
1(a) and 2(a) cluster configurations (in coordinate
space) are shown for dimer migration in one and
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two dimensions, respectively (on a rectangular
lattice). In Fig. 1(a), if all three states are
allowed, the dimer is called a one-dimensional
(1-D) 3-state dimer; if state 3 is prohibited, the
diagram describes a 1-D 2-state dimer. The sys-
tem shown in Fig. 2(a) is characterized as a 2-D
3-state dimer. The motion of a cluster is best
described in terms of the location of the centroid
of the cluster [denoted by x in Figs. 1(a) and 2(a)],
which ean be mapped onto a periodic lattice on
which it performs a random walk. Such mappings
are shown in Figs. 1(b) and 1(c) for the 1-D 2-
state and 2-0 3-state dimers, respectively, and

I-P 3 STATE DIMER

FIG. l. One-dimensional dimer migration. {a)
'

Three
possible spatial configurations of a dimer (filled circles
connected by heavy line) moving along the z direction
(the allowed equivalent mirror-image configurations
are not included): if only states 1 and 2 are allowed, a
2-state dimer; if all states are allowed, a 3-state dimer.
The location of the dimer centroid is marked X. (b)
Random-walk lattice describing the motion of the cen-
troid of a 2-state in (a). The unit cell is denoted by
dashed lines and the states by numbered circles. Let-
tered arrows indicate transitions to and from states.
Note that transition rates connecting states can be dif-
ferent for transitions to the left or right (i.e., a &o. ,
5 & p). (c) Random-walk lattice for the 3-state dimer
shown in (a). Note that the centroid location is the
same for states 1 and 3; however, they are distinguished
by different transition rates.
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plo. 2. Two-dimensional dimer migration: (a) spa-
tial configurations; (b) random-walk lattice.

in Fig. 2(b) for the 2-D 3-state dimer. It is ob-
served that the unit cell of the random-walk lattice
(denoted by the dashed lines) contains, generally,
several "sites" or internal states (denoted by
numbered circles). The transition rates between
the states are designated by lettered arrows. In
addition, by allowing for different txansition rates
in and out of states (i.e. , a 4o., b4P, etc.) a di-
rectional preference (bias) to the motion can be
introduced. In the case of the 1-0 3-state dimer
[Fig. 1(c)] it should be noted that the spatial loca-
tions of the centroid of states 1 and 3 coincide;
however, they are distinguished by different transi-
tion rates. Such situations, which occur often in
the analysis of higher-order clusters, could not
be treated by previous methods. " As we have dis-
cussed elsewhere, " and as shown in the following
sections, the inclusion of the third stat:e modifies
the expressions for the motion of the cluster.
Since the forces holding atomic clusters together
involve long-range contributions, it is expected
that extended configuration such as the one shown
in Fig. 1(a) (state 3) can occur. Consequently,
FIM data should be carefully examined for such
oecux'x'enees and analyzed accordingly.

In this paper we describe a formalism, based
on stochastic-processes techniques, which we
apply to the problem of cluster motion on sur-
faces. Furthermore, we obtain explicit expres-.
sions for the transition rates between the individu-
al cluster states in terms of observable quantities.
In Sec. IIA we outline the mathematical formula-
tion of the "continuous-time random walk with in-
ternal states" method. " Section II 8 contains a
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concise description of the procedure which we
use. Case studies of cluster diffusion on crystal-
line surfaces are discussed in Sec. III, in which
some details of the calculations are exhibited. In
Sec. IV we present formulas for the transition
rates in terms of observable quantities, and dis-
cuss aspects of the analysis of experimental data.
Finally, in Sec. V motion on defective lattices is
discussed. These systems are of particular inter-
est in studies of poisoning or deactivation of cata-
lytic-diffusion-controlled processes, and in in-
vestigations of the role of active sites in surface-
diffusion-controlled reactions.

II. CONTINUOUS-TIME RANDOM WALK KITH INTERNAL
STATES AND THE DIFFUSION LIMIT

A. Mathematical formulation

g"),,g, 5,; t) (2.3)

that a walker created at I=0 in g„j,) makes its
nth transition achieving g, j) exactly at time t.
The probability (I)~,(S, 8,; l) that the walker
created at t=0 in S„jo will reach S,j exactly
at time t via any available path is given as

To describe the random motion of a particle on
periodic lattices in which each cell contains a
number of internal states (see Figs. 1 and 2) a
generalization of the continuous-time random-
walk (CTRW) formalism" "is required. Since
a detailed desex'iption of such a generalized foxmu-
lation was discussed by us recently, "we limit
ourselves in this section to a presentation of the
underlying principles of the method and provide a
concise procedure for its application.

Consider a d-dimensional periodic space lattice
of identical cells, each being identified by a vector

8=(s„s2, . . . , sn), with s =1, 2, . . . ,N„(2.1)

where in most applications N -~ for all o.. With-
in a cell, intex'nal states labeled by an index
j= 1, . . . , m are available to the walker.

The basic quantity of concern is the probability

P, ,„(i,8,; I) (2 2)

that a walker exeated at time t = 0 in cell S, in
state j, will be in cell 5 in state j at time t. [In the
following the couple (S,j) represents state j in cell
5.] In the study of P it is convenient to define also
the probability

n, , I, }}',r}=( ann f (}(v}dr=}.
0

les

(2.6)

We note that the doubly subscripted quantities can
be arranged into m x m matrices, and the g,.'s
form a diagonal matrix of the same order.

The n-step walk carrying the walker from (5',j')
to (8, j) with the precise arrival time r satisfies
the matrix recursion relation

q(n+ i)(8. r) q(n)(8 8}.r

(2.7)

where translational invarianee, of the system has
been assumed. We define now the discrete Fourier
transform of a function f(8) as

Ej
*$)=- Q ~ ~ f(5)exp[i(k 8)],~ N„

(2.8)

where % = (2}}r,/N„. -. . , 2((,r~/N~) and 8 is given in
Eq. (2.1}. Also the Laplace transform of a func-
tion g(t) over the continuous variable I is defined
to be

g (u}=- e '"g(t)dl. (2.9)

Summing Eq. (2.7) over n and applying the Fourier
and Laplace transformations defined above, we ob-
tain through the use of the convolution theorems
the matrix equation

Qn (k, a) = [1- (t *(k, u)] ', (2.10)

where the walker is assumed to be initially at the
origin (8=0) cell.

The quantity P,, (5, I) is related to Q~,. g, r) via
the aid of the probability I', (r) that a walker ar-
riving at a point (8, j) at t = 0 has not changed state
in the time interval v after arrival. Thus

(},.~ (5,5', r)dr =F„(S,K', r, )}1},(r)dr, (2.5)

where (},(r)dr is the probability that if the walker
reached state j at time t = 0, then it wiQ leave it
(independent of the cell 5) in the time interval
(r, r+dr); i.e. , (I},(r) is a waiting-time density
function. For the transition occurring at time 7
the I" function in the above equation is the prob-
ability of (8', j')- (S,j) iri one steP at time r. The
associated normalization conditions are

P, q (S, t) = I',.(I- r)(I),„(S,r) dr, (2.11)

Both I' and Q can be described in terms of a
transition probability (}},,'(8, 8; r) which charac-
terizes each step. Let us assume for g the form

and [see Eq. (2.6}]
t

r,.(l) =1 — q, (r) dr.
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Performing Laplace and Fourier transformation
of Eqs. (2.11) and (2.12) and employing the convolu-
tion theorem yields fusing (2.10)]

P *$, u) = u '[1 - [I)~(u) ] Q*(k, u) (2.13a)

=u '[1 —(t)~(u)][1 —$*$,u)] ', (2.23b)

where g, (u) is the diagonal matrix

[J) (u) ~ ~ ~

,(u) =

0

0

[l) (u)

(2.14)

Equation (2.13}constitutes the solution to our
initially stated problem [Eq. (2.2)], and the com-
putation of the probabilities P,, (S, t) given in terms
of the inverse Laplace and Fourieg transformations.
of Eq. (2.13) is reduced to quadratures.

Quantities of interest in the investigation of the
stochastic motion of particles are moments of the
probability distribution and equilibrium probabil-
ities of occupation of states. As we show below,
these quantities are derived most readily in terms
of the transformed expression P*(k, u) [Eq. (2.13)].

(i) The lth spatial moment of the probability dis-
tribution in the nth coordinate direction is defined

(s„'(t)) = Q Q s'„P,, (s; t)p, ,
JsJ

where p,. is the probability that the walker is in-
itially in state j. Performing an inverse Laplace
transformation, Eq. (2.13a) yields

(2.15)

P (k()=Z,- —[( - (,(u)] Q.-'"'Qi(i, )) .
S

(2.16}

s'P*(k, t)
'

Bk k=o
= g ' u ' 1 -

|)I) ~ u i S 'Q S, u
S

=s'g-' S'P S, u
S

(2.17)

Comparing (2.17) and (2.15), we observe that

(2.18)

Using (2.16) in (2.18), we obtain the final expres-
sion

Differentiating (2.16) l times with respect to k and
evaluating the result at %=0, we obtain

(s'.(())=(-()' 2 ): '( " ' '[(-( ( )]) , . (
J iJ

(2.19a)

In the diffusion limit (t ~and -u-0) the elements of the matrix Q* become independent of j ', and since
Q&ip, (= 1, the corresponding expression for the moments is given by

slQg
(s (t- ))=(-'„i)' L l li(m ", ' u '[( —[),( )]) .

J n k=o
(2.19b)

When l=1, we obtain the mean distance of motion.
The mean and the second moment (l = 2) are used
in the calculation of the variance

o' =-(s') -(s )'. (2.20)

P, „=lim ppP, (S, t)p
m

S

In the Laplace-transform domain, (2.21a) can be
written as"

(2.21a)

P, „=lim u g g P, (S, u)p
S

Since

(2.21b)

lim P,* (k, u) = g P,. (S,u),
k~o

S

and using Eq. (2.16), we can finally express P, „

(ii} The equilibrium probability of occupation of
the internal state j, PJ q

is defined by

in (2.21b) as

P, , =limlim g Q,*. $, u)[1 —[t),.(u)]p . (2.22a)

In the long-time limit (t -~ or, equivalently,
u -0) the elements of the matrix Q*(k, u) do not
depend on ~n for fixed j, and

P, ,q
= lim lim(Q,*.,(k, u) [1 —g,.(u) ]}, . (2.22b)

(2.23)Q* = Min. .
Differentiating (2.23) with respect to k, we obtain

We observe from Eqs. (2.19) and (2.22) that the
key quantities in calculating the moments of the
probability function are derivatives of the function
Q*(k, u) given in Eq. (2.10). Denoting the determin-
ant of Q* [given in Eq. (2.10)J by a and the matrix
of cofactors by M [the ij element of M being (-1}'"
x(ji cofactor of tI)*)], we express Q* as
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sQ+$, u)

8%

1 8& 1 8M=-—2~M +-
[,=a &' s& [ =0 & s% [, =o

(2.24)
dI (5, t)

dt 4 —,7P S, t-v

s'0'(ji, u) Q2Q
M ——

2 -2M
k=0 &' See [ =0 A' Sk' k=o

-e(5' -'5, 7)z(5, t —~)]dr,

{2.28a)

g~8M & eM
ass sR

&
iap

(2.25)

%hen considering the motion in the diffusion re-
gime (to which the present study is devoted), only
those terms in the expressions for the first mo-
ment (when a bias is present) and the variance
which grow linearly, with time are of interest.
This brings about a significant simplification,
since {aswill become evident from the detailed
examples in the next section) the only divergent
terms in u as u -0 in the expressions for the
position mean and variance are powers of the in-
verse of A [see Eq. (2.23)-(2.25)] which in the
limit of % 0 can be written as

j.

lim[a%, u)] '
(u a;u' (2.26}

where m is the number of internal states and the
~'s are constants. The evaluation of the moments
of the probability distribution involves an inverse
Laplace transformation [see Eq. (2.19)] of expres-
sions of the form of Eq (2.26) .[see Eqs. (2.23)-
(2.25)]. We utilize now the following relation,
known from the theory of Laplace transforms":

tFe tQdt g 1' 1

F(~+ 1) (2.27)

where I'(r} is the gamma function. Since we are
interested in terms which, subject to an inverse
Laplace transformation, yield expressions linear
in t (t and u are conjugated Laplace variables;
i.e. , when t-~, the conjugated variable u-0),
only terms which diverge as u (in the limit u-0)
will contribute. Terms which behave as t', orig-
inating from u ' terms in the (Laplace-trans-
formed) expression for the variance [Eq. (2.20)j,
will always cancel. Contributions to the moments
other than those linear in t depend on the initial
spatial configuration of the cluster and are either
constant (of the order of the lattice spacing) or
decay. in time and thus can be neglected in the
diffusion (long-time) limit.

In concluding this section we note that a formu-
lation equivalent to the continuous-time random
walk with internal states diseassed above ean be
given in terms of the generalized master equa
tion" (GME)

where the elements of 4 are

4~;{5,r) = g~ (r)E,~.(5, v), (2.28b)

and E is the function defined in Eq. (2.5), subject
to the equivalency conditions

y+$, u) =up(fc, u)[1- [II~ (u)] ' (2.29a)

and the diagonal matrix 4,(u) given as

y, (u) = ug, (u)[l [II„(u)] '.
For [j[,(7)=5(r), the GME [Eq. (2.28a)] becomes

the well-known Kolmogorov equation. %e choose
to work within the continuous- time-random-% alk for-
malism, since it provides a compact framework
which can be easily applied to complicated eases.
In the following we list the steps involved in cal-
culations using the CTRW with internal-states
formalism.

(2.29b)

B. Procedure

Step 2. Examine the allowed spatial configura-
tions for the cluster. For each configuration de-
termine the location of the centroid and map the
latter onto a lattice. Determine the unit cell of
the centroid-random-walk lattice. The centroid
may move on a one- or higher-dimensional lattice.

Step Z. Label the allowed transitions between
states, within and out of the unit cell.

Step 8. Construct the transition matrix

[I(5, t) [Eq. (2.5)].
Step 4. Perform a discrete Fourier transforma-

tion with respect to 5 [see Eq. (2.8)] and a Laplace.
transformation with respect to t [see Eq. (2.9)] of
[I[(5, t) Denote th. e transformed matrix by jII*$,u).

SteP 5. Form the matrix Q* [see Eq. (2.10)]:

q~=M/t[, [Eq. (2.23)].

Step 6. Calculate the first and second deriva-
tives of Q*@,u) with respect to %, and evaluate at
2=0 [see Eqs. (2.24) and (2.25)].

Step 7. Employing step 6, ealeulate the mome&ps
of the probability distribution of the motion [see
Eq. (2.19)]. In this calculation, when performing
the inverse Laplace transformation, only terms
which contribute in the diffusion limit are retained
(see the discussion at the end of Sec. II A). Also,
we use Q*$,u} obtained in step 5 for the evaluation
of the equilibrium occupation probabilities [see
Eq. (2.22)].

Step 8. The diffusion coefficient (or coefficients
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for motion in two dimensions) and detailed balance
relations are given as functions of the transition
rates. In order to extract information about in-
dividual transition rates, the above equations are
solved yielding expressions for the transition rates
in terms of observable quantities: variance of the
position, occupation probabilities, and mean posi-
tion (in the case of experiments employing a bias
field).

A. Three- and two-state dimers in one dimension

Following the procedure described in Sec. II B,
we construct first the centroid random-walk lat-
tice shown in Fig. 1(c). Next (step 3) we form the
matrix (tg, t) [Eq. (2.5}]which contains the prob-
ability density functions for the allowed transitions.
In constructing the matrix we assume for the
waiting-time density function the form

III. CASE STUDIES OF CLUSTER DIFFUSION y,.(t) = ~,. exp(-~t t), (3.1)

Having described in the previous sections the
mathematical model and the analytical procedure
for the study of cluster motion on surfaces, we
turn in this section to detailed demonstrations of
the application of the method. First we discuss
the motion of a 3-state dimer in one dimension,
followed by a study of the motion of a 3-state
dimer in two dimensions.

where ~& is the sum of the transition rates out of
state j. For example, the element g»(s —s', t)
governing the transition (s, 1)- (s', 2) is given by

F (S —S ' t)(t) (t)
s-s'. .0 s-s'..-b (a+ a)e-(s+ a) tab ~ + +5

21 & 1 a+a

The matrix ())(s, t) is given by (in the following we
invoke translational invariance)

q(s, t) = e "'(ab, , + ab, ,)

e "(bb, „-+Pb„)

e "'(cb, , + yb, 0)

e D'(db, ,+ (5)b, ,) (3.2)

whereA= a+ a, B=b+P, etc. , and U=B+C. In the next step (4) we Fourier- and Laplace-transform the
matrix given in (3.2), yielding

o

(I)*(k,u)= (A+u) '(a+ ae ")
(U+ u) '(be" '+ ii )

(U+ u) '(ce"+ y)

(D+u) '(d+be ")
o

(3 3)

We now construct (step 5) the matrix Q*(k, u) =M/n, yielding

1 —(be "+d)(ce" + y)/(B+C+ u)(D+ u)

M(k, u) = (ae '"+a)/(A+u)

(ae ts+)(ace' By+)/(B+ C u+)(+Au)

(be" ~ O)/(B C) (be"+~ O)(e+ be )/(B C ~ ")(B~ )

1 (d+ be '")/(D+u)

(ce' ~ y)/(B ~ C) 1—(be" ~ O)(t»
'" e)/(b+e)(B ~ C .e))

(3 4)
and [see Eq. (2.26)j

lim [to,(k, u)] b = (A +u)(D+u)(U+ u) [(CA+ BD+AD)u+ (A +B +C +D)u + u ] (3.5a)

which diverges as u ' when u-O. Also,

lim ' = -i [(cd —y 5}A+ (ab —a P)D]
84(k, u)

a-O
u~O

x [AD(B+ C)] '

lim, ' = [(cd+ y 6)A+ (ab+ a p)D]
8'n, k, u

0 8k
u~0

x [AD(B+ C)] '.

(3.5b}

(3.5c)

From Eq. (3.4) we obtain

(B/(B+ C) B/(B+ C) B/[B+ C))
M(k=O, R=O)= 1 1 . 1

C B+C C B+C C B+C

(3.6)
Note that the elements in each row of the matrix in
(3.6) are equaL This implies that in the diffusion
limit the probability P, , (s, t) [see Eq. (2.11}]is in-
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deed independent of the initial state j . On the other hand, the limiting expression of the derivative of the
matrix

(dd —-dy)/( B+C) D5/(B+C) ( 5d- 55)/(B+C)D)
SM

=i -a/A 0 5/-D

(ac- ay)/(B+ C)A c/(B+C) -(ab —aP)/(B+ C)A)

(3.V)

W(u) -=s '[1-y,{s)]. (3.8a)

The ith element (l),(s}of the diagonal 555atrix $,(s)
is calc55»ted by considering the probability density
for leaving site i, independent of which configura-
tice the cluster takes when state i is vacated. We
obtain

(A+u) '

W(s) = 0 (B+c+I)-'

(D+ «)')
(3.8b)

Having calculated the ingredients which enter the
expressions for the moments and equilibrium
probabilities, we turn now to a derivation of the
final expressions for these quantities.

The first moment {mean position) is calculated
from Eq. (2.19b) with l= 1~

wouM yield results which depend on the initial con-
figuration. Such terms shouM not contribute in the
diffusion limit. Explicit calculatipns shew that
these. terms cancel each other in the complete ex-
pression for the position variance and mean or are
negligible compared to the terms which do not de-
pend on initial conditions. Consequently, terms
such as a-'aM/Sk, 2n-'(SA/Sk)(5M/sk), and
A '(O'M/Sk')Tace Eqs. (2.24) and/2. 25)] will not
contribute to the moments. Finally, we form the
waiting-time matrix [see Eq. (2.19)]

where

S =AC +BD+AD,

(3.10a)

(3.10b)

negligible for sufficiently long times.
Calc~&~tion of the variance [Eq. ($.20)] involves

the second moment (s'). From Eq. (2.19b) it is
seen that the second derivative of Q~(k, s) with
respe0t to k, evaluated at k"-0 in the limit of u-'0,
has t(s be calculated. As is seen from Eq. (2.25),
the first term involves I, 6, ' contribution. It is
observed from Eq. (3.5a) that in the u -0 limit
two additive divergent contributions to this term
occur. One diverges as u ' and the other as u ',
since the other factors in the first term of Eq,.
(2.25}do not diverge as u-0 [see Eqs. (3.5b) and
(3.8}]; this term, upon a Laplace iriversion, yields
contrjbutions which are proportional to P and t,
respectively. The P contributiop is canceled by
—(l(t))BB [Eq. (3.9)]. Other terms which depend on
imtial conditions or are independent of time can-.

cel each other or are neglected in the limif of
sufficiently long times [for a proper cance&lation
of terms the constant term in Eq. (3.9) is to be in-
cluded]. Finally, we obtain for the variance in
position of the 3-state dimer

t 'o', (t) =Z'[A{cd+ y5)+D(ab+ aP)]
2t '(l(t)), Z '[(A'+ AB —BD)(cd —y5)

+ (D'+ DC —AC)(ab —a P)],

hm(z(&)), -=(l(f)),

S-' lim -" ' .
W»(u) 5

8@~&k, u&

ek

and (l(t)), is given by Eq. (3.9). Examination of
Eq. (3.9) reveals that indeed in the'case of no bias
(a =a, 5 =P, c=y, and d=5) the mean position
vanishes as required. For this case of a bias-free
experiment the yariance is given by

(l( ))
A(cd y5)+D(ab —ap—)

AC+Ba+Aa (3.9)

Xn the above expression we have omitted an addi-
tive constant term, deyendent on thy initial config-
uration (of the order of a lattice spacing) on the
right-hand side ef Eq. (3.9), whose contribution is

(8.8c)

where the matrix W(&el as defined in Eq. (3.8a) and
{l(t}),denotes the long-time limit of the mean posi-
tion for the 3-state dimer. Using Eqs. (2.24),
(3.5a), (8.5b), and (3.8), we obta5u

t 'EBB(t) =ad(c+b)z '
z =ac +bd+ad.

(3.11a)

(3.11b)

Using the expressions for the variance and mean
for the 3-state dimer, we can now recover the
corresponding expressions for a 2-state dimer by
dksallowing the transition to the third state, i.e.,
in the limit of vanishing transition rates c an/ y.
From Eq. (3.9) we obtain for the mean position of
a 2-state dimer (under a bias field)

(3.12)
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and for the variance, Eqs. (3.10) yield

ab+aP
2

(ab-aP)
A +B (A +B) (8.13)

Again, if no bias is present, (l(t)), vanishes and

Ps,~ =ACZ (8.15c)

where Z is defined in Eq. (3.10b}. Defining the
relative state population factors (de~i&ed balance
relations} as Ru P, /P, , we obtain two inde-
pendent relationships,

(3.14)
Rgz~B/A, Rz~~D/C . (3.18)

The laht expression vfas previously derived by
Reed and Ehrlich~ starting from a Kolmogorov
master equation. The factor-of-4 difference be-
tween Eq. (8.14} and Eq. (25) in Ref. 25 is due to
different definitions of the randoxn-walk unit ceD.

Finally, we derive the expressions for the equi-
librium occupation probabilities of states. Using
Eqs. (2.23), (8.5a), (8.8), and (3.5b) (multiplied
by u} in Eq. (2.22b), we obtain in the long-time
limit

This completes the derivation of quantities de-
scribing the motion of a 3-sta,te dimer in orie di-
mension. Prior to solving the equations for the
individual transition rates between the states, we
discuss in the following the motion of a 3-state
dimer in two dimensions.

S. 3wtate dimer in two dimensions

P~ ~=BDZ

Pz ~=AD/

(3.15a)

(8.15b)

The first two steps of,the solution procedure
(Sec. IIB) are contained in Figs. 2(a) and 2(b).
Next (step 3}, we construct the transition matrix

0

0

e-"[db,„„+(5)5„„„] (3.1V)

Performing (step 4} the Fourier and Laplace transformations of Eq. (3.1V), we construct the matrix Q~
=M/b, (step 5), yielding

1-T '(ye '~~+c)(de'4~+5) S '(be'~~+P)

M(k, u) = (ae '"+a)/(A+u) 1

T '(be '&+P)(de '~~ 5)+S '(ye '~~+c)

r '(ae"*+1)(de" +S}

(de"~ +5)/(D+u)

1-R '(be' "+P}(ae ' ~ +}ai

(3.18a)

where

T =(D+u)(B+C+u),

8 =B+C +Q 8

R =(A +u)(B+C +u),

(3.13b)

(8.18c)

(8.18d)
(l,(t)}~Z 'A(cd-yb) t (3.22)

where Z is given by Eq. (3.10b). From the sym-
metry in Fig. 2 we obtain the expressions for the

y Cartesian components

n, (k, u) =1—T '(ye ''&+c)(de''&+5)
t-'o„'(t) =Z-'[A(cd+ yb) -2t *(l„(t})*

xA '(A'+AB -BD}]. (3.23)

(l, (t)) =Z-'D(ab -aP) f (3.20)

t 'd,'(t) =Z '[D(ab+aP) -2t '(l, (f))'

xD (D +DC -AC)], (3.21}

-R '(ae ''&+a)(be""+P) ~ (8.1~)

Employiiig the above expressions in the procedure
described in- Sec. HB, we obtain after some tedi-
ous algebraic manipulations the following expres-
sions for the x Cartesian components:

The corresponding expressions in the absence of a
bias field are obtained by setting a =a, b =P, c =y,
and d =5, yielding

t a„'(t) =abdz (3.24)

t 'a„'(t) acdz ', (8.25)

where z is given by Eq. (3.1lb). We also note that
8' transitio~ into the states propagating in the y
direction are prohibited (c,y-0; b, d-~), the
above results reduce to the corresponding ones
for the motion of a 2-state dimer in one dimension.
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The equilibrium population of states are given by symbol)

P, , =Z 'BD,

P2 eq Z A D y

P3, =Z AC ~

(3.26a)

(3.26b)

(3.26c)

u (t) =(tl (=2eDt),

and ( assumes an activated-process form

( = v exp(-E '/k T),

(4.3)

(4.4)

The detailed balance relations for this case are

R,2=B/A, R23=D/C . (3.27)

lV. TRANSITION RATES

D = lim
g'(t)
2gt

(4.1)

where & is the dimensionality of the random walk
(e =1 or 2 for surface diffusion). The diffusion co-
efficient is assumed to be given by an activated
form of the Arrhenius type:

D =D, exp(-E*/kT), (4.2)

where E is the magnitude of the activation barrier
and Dp is a pref actor. For an unrestricted random
walk on a lattice of spacing l the variance is re-
lated (in the long-time limit) to the transition
(jump) rate ( via (ih the following we omit the limit

As we discussed above, in our model the migra-
tion of clusters of atoms on surfaces proceeds via
transitions between several configurations of the
cluster. This view is supported by the FIM ob-
servations discussed in Sec. I. The allowed con-
figurations are dictated by the topology of the sub-
strate lattice on which the migration occurs, the
potential and dynamical characteristics of the lat-
tice, the energetics and dynamics of the interac-
tion between the atoms of the cluster and the un-
derlyingsurface, and the intercluster interactions.
The parameters which characterize the transitions
between the various cluster configurations, and
hence the motion of the cluster, are a consequence
of the above-mentioned factors. Thus, the deter-
mination of the parameters (activation energies and
frequency factors) characterizing the individual
transitions would be of fundamental importance for
the study of the interaction and migration mechan-
isms. Analytical procedures which would allow the
determination of these parameters from the anal-
ysis of FIM data are described below. " In this
section we utilize the expressions derived in Sec.
III, in order to express the individual transition
rates in terms of measurable quantities. When the
motion of a singLe particle is of diffusional char-
acter (a classification which depends mainly on the
temperature of the experiment'~'~), the results are
customarily analyzed in terms of the diffusion co-
efficient D, which is related to the variance in
position ~'(t) (in the long-time limit) as~

where p is called a frequency factor and p ~ the
activation energy of the transition. Thus the dif-
fusion coefficient (or the variance of the displace-
ment) and the transition rates are related to each
other.

Qur objective is to derive relations between the
transition rates of cluster configurations and ob-
servables such as moments of the displacement
and equilibrium occupation probabilities of states.
In the following we will use the following form for
the transition rates":

a = p, exp(- [E, -g(v)] /k T),
o. = v, exp(- [E.+g(v)] /kT), etc. ,

(4.5a)

(4.5b)

where v, is the frequency factor of the transition,
E, the activation energy, and v the applied bias
voltage (we assume the forward direction, char-
acterized by a, in the direction of the applied
field). The function g(v) describes the effect of
the applied field on the activation energy. In most
applications

g(v) =pv (4.6)

A. 3- and 2-state dimers in one dimension

As a first example we consider the 3-state dimer
discussed in Sec. IIIA. Since the forward and
backward transition rates are related to each other
[Eqs. (4.5)], we need to determine the four rates
a, 5, c, and d. Detailed balance between the 3
states yields two relationships [Eq. (3.16)]. The

where p, and 8 are empirical constants.
In general, when the motion of a cluster is char-

acterized by n transition rates between its con-
figurations, it is necessary to find n independent
relations in order to achieve a unique determination
of all the rates. In the case of m allowed cluster
configurations one can obtain m —1 independent de-
tailed balance relationships: R», R „,. . . ,R y

The remaining n —m +1 relationships required for
complete determination must be obtained from the
cumulants of the displacement probability distribu-
tion of the cluster, i.e., (l(t)), oa(t), and higher
cumulants, if they can be determined from the
data. In the event that more relationships are at
our disposal than the number of transition rates
n, there are several ways in which we can choose
the n necessary relationships, allowing for con-
sistency checks on the results derived via differ-
ent alternatives.
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t '(l(t)},=ad(b+c)z 'F, (g(v)/kT), (4.Va)

other two relations are given by the expressions
for the mean and variance. Since the mean van-
ishes in the absence of a bias, the above implies
that in this case the application of a bias field is
necessary for a complete determination of the four
rates. Substituting Eqs. (4.5) and the correspond-
ing ones for the other rates in Eqs. (3.9) and (3.10),
we obtain the following expressions for the mean
and variance, respectively:

v. ~p(-E. /kT} =2-'[-~„-(~2, -4~,)"]

x exp [-g(v)/k T] . (4.12}

Plotting the logarithm of the right-hand side of Eq.
(4.12) vs (kT) ' yields -E, as the slope and Inv, as
the intercept. Similar plots of 5, c, and d using
Eqs. (4.9b)-(4.9d) yield E» v„E„v„and E~, v~.

The situation simplifies considerably when the
most extended state (state 3) of the dimer is pro-
hibited, i.e., for a 2-state dimer. In this case

where

F,(g(v)/k T) = 2 sinh [g(v)/k T] exp [-g(v)/k T],
(4.7b)

v, exp( E,/kT-)=t '(l(t)) 2f~(g(v)/kT}

x [1+R, '(T)],

where

f(g(v)/kT} =2 ' csch[g(v)/kT]

(4.13a.)

(4.13b)

1+exp[-4g(v)/kT]
1+exp [-2g(v)/kT] (4.8b)

t-' o(t) =t-'(l(t)), F, '(g(v)/-kT)F, (g(v)/kT)
—2t 'z '(l(t)), [(d'+dc -ac)(ab -nP)
+(a'+ab —bd)(cd -yb)], (4.8a)

where

v, exp(-E, /kT) =aR, 2' . (4.14}

Expressions for a and 5 can be derived in terms
of o', (t }rather than (l(t )),. However, we suggest
the use of Eqs. (4.13}and (4.14}, since the sta-
tistical error involved in the measurement of the
mean is smaller than for the variance. For the 2-
state dimer in the absence of an applied bias field
we obtain

I —exp [-4g (v)/k T]
{I+exp[-2g(v)/kT]]' ' (4.8c) a =—v, exp( Ea/kT) =-t ' o22(t}[1 +R»(T)], (4.15a)

b =-v, exp(-Eb/kT) =t ' o', (t }[1+R»' (T}]

s =2-'[-X, —(X', —4X,)"],
5 =aR~2,

c =K

d =cR23,

(4.9a)

(4.9b)

(4.9c)

(4.9d)

where

1 H1R»(H3 ~12 23}~

~2-KxR23~ '
y

(4.10a)

(4.10b)

Together with the two detailed balance relations
R „=b/a and R» =dlc, the above relations allow
us to solve for the individual transition rates:

=aR»' (T). (4.15b)

These are the relations employed by Stolt et al."
in their analysis of the diffusion of Re dimers on
W(211). Equations (4.13)-(4.15) provide two al-
ternative ways for the determination of the transi-
tion rates a and b.

It is obvious from the above examples that cluster
diffusion cannot be described by a single Arrkenius
relationship. Note that although a semilog plot of
the latter r'elationship would appear to be almost a
straight line in the typical temperature range of
the experiments, its slope and intercept are not
simply related to the parameters characterizing
the transitions between the states. "

H, =t-'(l(t)), (1+R +R,'), (4.11a)

H2 =t [o3(t) -(l(t)) ~F, ~F2](1+R23+R»R 2~)

x[2t-'(l(t)), F, ] ', (4.11b)

H 3 (R» +R» +2R»R»' +H, )R»R»', (4.11 c)

p = 1+R~2R 23Ks+R ~2R 23. (4.11d)

Thus, from the measurements of (l(t)) „e',(t),
R»(T), R»(T}, at time t and bias voltage v, versus
.T, the transition rates can be found. For example,
from Eq. (4.9a)

B. 3-state dimer in two dimensions

We turn in this section to an exposition of the
results for the transition rates of a 3-state dimer
moving in two dimensions (see Sec. III B). In this
case, there are four independent transition rates
a, b, c, andd. The detailedbalance relationsR»(T)
=b/a and R»(T) =d/c have to be augmented by two
additional relationships to allow a complete deter-
mination of the rates. We have derived in Sec.
III B expressions for the Cartesian components of
the mean and variance [see Eqs. (3.20)-(3.23) for
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the biased and (3.24) and (3.25) for the bias-free
cases, respectively], (l„(t)&, (l„(t)&, o,'(t), and
o', (t). In general, there are 15 alternative ways
in which to choose the four re1ationships from the
two detailed balance and four mean and variance
equations. In the following we give the results for
three of the alternative choices. First, we sub-
stitute the forms given in Eqs. (4.5) for the transi-
tion rates in Eqs. (3.20)-(3.23), yielding

t '(l„(t})=z 'abdF, (g(v)/kT),

t ' (l„(t)& = z 'acd F,(g(v)/kT),

t 'o„'(t) =t '(l. (t))[F,{g(v)/kT}1 '

(4. 16a.)

(4. 16b)

F,{g(v)/kT} —2t 'z '(l, (t)&

x F,{g(v)/kT) (c+d —ac/d), (4.16c)

t 'o', (t) =t '(1, (t)&[F,{g(v)/kT}] '

c,' (t)/o', (t) =b /c . (4.17)

Combined with the two detailed balance relation,
we get

b =t 'o, (t}[1+R,2(T)+R23' (T)]F2', (4.18a)

a =bR,,'(T),
c =b[o', (t)/o,' (t)],
d =cR»(T),

(4.18b)

(4.1 8c)

(4.18d)

from which semilogarithmic plots of the right-
hand side versus (kT) yield the individual acti-
vation energies and frequency factors.

(ii) Motion under an applied bias in the x direc-
tion, i.e. , (l, (t)) =0 and (l, (t)& v0. Employing
Eqs. (4.16) and the detailed balance relations, we
obtain

b =t '[F,(g(v)/kT}] '&l.(t)&

x[1 +R,2(T ) +R,3'(T)], (4.19a)

a =bR„'(T), (4.19b)

d =2at '(l, (t)&'F, (g(v)/kT)

x{2t a(l, (t)& F3(g(v)/kT)(1+R )

+[a'*(t) —&l. (t)&F, '(g(v)/kT)F. (g( )/kT)

xat '(1+R»+R»R»)] j, (4.19c)

xF,(g(v)/kT) 2t 'z ' (l-„(t)&'

xF,(g(v)/kT} (a +b —bd/a), (4.16d)

where F„F„andF, are defined in Eqs. (4.8a),
(4.8b}, and (4.8c), respectively, and z =ac+bd+ad.

The three alternatives which we present are:
(i) Bias-free motion. From Eqs. (3.24) and

(3.25) we obtain

c =dR, ,'(T). (4.19d)

(iii) Motion under the influence of a bias field
applied in an arbitrary direction such that both

( l „(t)& and (l, (t )& do not vanish. Here

b =t '[F (g(v}/kT)] '(l, (t)&

x [1+R,2(T ) +R '(T )],
a =bR»'(T),

d =t '[F,(g(v)/kT}] '(l, (t)&

x[1 +R „(T)R2,(T) +R„],
c =dR, ,'(T }.

(4.20a)

(4.20b)

(4.20c)

(4.20d)

As we discussed before analyzing the data via
different alternative choices provides a consistency
test of the analysis. In addition, from the com-
parison of results obtained from the analysis of
biased and bias-free experiments, the effect of ex-
ternal field on the transition rates"' "[see Eqs.
(4.5) and (4.6)] could be investigated.

o,' (t) =c'„(t)= 2at (5.1)

in units of the square of the unit-cell length, l'.
The waiting-time probability density [see Eq. (3.-1)]
of leaving any site is (one site in each unit cell)

g(t) =4z exp(-4at) . (5.2)

Suppose that we replace in a periodic fashion 25%
of the net sites by totally reflecting sites. The
corresponding random-walk lattice is identical to
the one shown in Fig. 2(b), with a =a, b =P, etc.
Consequently, the corresponding expressions are
derived from Eqs. (3.21) and (3.23), yielding

t 'a2 (t) =4abd/(ac+ad +bd),

t 'o'„(t) =4acd/(ac+ad +bd).

(5.3a.)

(5.3b)

The factor of 4 in the above equations enters be-
cause the length of the unit cell is now twice that
of the one given in each direction in Fig. 2(b).
With the replacement of a-2a, b-a, c-a, and

V. DIFFUSION ON DEFECTIVE LATTICES

While the migration of atoms and atomic clusters
on crystalline surfaces in the presence of defects
is a broad subject which will be dealt with in de-
tail elsewhere, " we outline in this section an ex-
tension of the method described in Secs. II and III
and demonstrate the effect of periodically situated
defects on the diffusion of a single particle on a
fourfold-coordinated surface net.

Consider first the motion of a particle on a square
net (see Fig. 3) with equal jump probabilities of —,

and equal rates in all directions. For this case,
in the long-time limit
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d-2a in Fig. 2(b) [i.e., the waiting-time distri-
bution given by Eq. (5.2)] we obtain from Eqs.
(5.3)

a', (t) =o,'(t) =2at, (5.4)

which is identical to the result for diffusion on the
same lattice with no defects (i.e. , all sites allowed
for the walker; see Fig. 3). This identity is the
result of the choice of transition rates in the above,
which does not account for the time delay caused
by multiple reflections. We can account for such
a time delay by observing that, owing to the ex-
istence of a defect, as shown in Fig. 4, the rates
of leaving states 1 and 3 (which are the first near
est neighbors to the defect site} to site 2 are ef-
fectively lowered, since the migrating particle
attempts also to achieve state 4, which is ex-
cluded from it, and thus is reflected back to the
original site (the time delay being the time spent
by the particle in attempting these "futile" transi-
tions). For this purpose we replace the original
rates of leaving sites I and 3 by a rate 2(d &4a,
yielding [from Eqs. (5.3)]

o2 (t}=o', (t }=4ta/(1+2a/&u}&2at. (5 5)

2m =g —(2q)" '2p=-4a —ln(2p) &4a .4a p
fI g

Pg
(5.6)

As an example, assume P = q = 0.25, yielding from
Eq. (5.6)

2u = -4a 1n2-2.76a.

With this value for 2', we obtain from (5.5)

q~ (t) =a'„(t) = 1.64at,

(5.7)

(5.8)

i.e., an effective -1 reduction from the 2at
value, corresponding to the unmodified defective

The inequality in the above equation reflects a
lowering of the diffusion constant for motion on the
modified defective lattice. We may calculate the
modified rate co by considering the following model.
The rates for leaving sites I, 2, and 3 are all
given by 4a. . However, upon attempting transitions
from states 1 (or 3) towards the defect, the par-
ticle is reflected back to the original state with
probability 2q (what we call a "futile" walk) and
thus achieves state 2 with probability 2p = I -2q.
Thus, if the particle starting at site 1 (or 3) suf-
fers one reflection before it leaves the state to-
ward state 2, its effective transition rate (con-
tributing to its nonzero displacement on the lat-
tice) is 2a. Such an event occurs with a probability
(2P}(2q). Continuing this line of reason, taking
into account all reflections before leaving, we find
that the effective total transition rate out of state
1 (or 3) is given by

0 0
a~ a

I 1

I

o„a0 0 0

FIG. 3. Random-walk
lattice for a single particle
in two dimensions. The
total rate for leaving any
site is 4a. The unit-cell is
designated by dashed lines.
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FIG. 4. Random-walk lattice for a single particle in

two dimensions, with 25% of the sites replaced periodi-
cally by totally reflecting sites (filled circles). The re-
flecting sites, designated as state 4, form a 2x2 period-
ic superstructure with respect to the perfect lattice
(empty circles). The unit cell used in the random-walk
description is denoted by dashed lines. The rate of leav-
ing state 2 (whose nearest neighbors are perfect lattice
sites) is denoted by a and the one corresponding to leav-
ing states 1 or 3 (who have reQecting defect neighbors)
is denoted by ~ [see Eq. (5.6)]. The probability of leav-
ing state 2 is ~ in each direction. The probability of
leaving state 1 or 3 towards state 2 isP, and toward a
defect site q, such that 2p +2q =1.

lattice. The variation in the variance for other
values of p and q is shown in Fig. 5. As p/q-0, i.e. ,
when the probability of going towards the defect,
q, is larger than the probability of going towards
a normal lattice site, the variance approaches
zero, since the particle spends its time on futile
walks. As P/q-~, i.e. , when the probability of
going to a normal site, p, is larger than the proba-
bility of going to a defect site, q, the variance
approaches 2at, which is the value derived for the
ideal lattice or a 25/o periodic defective lattice
(when no account is taken of the time wasted by
futile walks).

Until now we considered total reflection from the
defect. We can generalize these results by further
characterization of the defect site. We introduce
the parameter T, such that the particle leaves the
defect site (state 4) with probability T; i.e. , the
probability of the particle to be trapped at the de-
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feet site is 1 —T, Thus the parameter T serves to
characterize the defect; for T = 0 it is totally ab-
sorbing and for T =1 totally reflecting. The ran-
dom-walk lattice and associated rates, and proba-
bilities are shown in Fig. 6 We denote the total

transition rates from sites 1 Rnd 3 by 4c, transi-
tion from state 2 by 4a, and transition from the de-
fect state 4 by 4b. In accordance with our pro-
cedure (Sec. II B) we construct first the transition
matrix

$(5, t) =

4pce ~'(5,„~+5„„)

4qce ~'(5,„~+5,„, ,)

(bus' ~ oo + 5&v, qo)

ae "'(5,„ M+5„„, ,)

4pce "'(5„~+5„„)
Tbe (bgy op+bzy o, )

0

In comparing the present case with that of the mo-
tion of an atom on an ideal lattice, it should be
noted that the dimension of the unit cell in the
present case is twice as large in the x and y di-
rections as in the latter case. Employing our pro-
cedure in the manner demonstrated in the previous
sections, we obtain in the long-time limit the fol-
lowing expressions for the variance of the dis-
placement:

c2 (f) =o'„(t}= 4Ta'b'c'(T/c + 2pT/a + 2pT/s +2q/b )

[2xqac+bT(a+2pc)] 't. (5.10}

IO.O

The result for the motion on an ideal lattice (2at)
is recovered from Eq. (5.10) by setting a =b =c
and T=1. Note that the limit is obtained for ar-
bitrary choices. of p Rnd q, subject to the normali-
zation 2P+2q =1.

In the strong-absorption limit T approaches zero
RIll

lim c2 „(t)= t.2Th
Q'

(5.11)

The same limiting result is obtained when the par-
ticle resides (on the average) at the defect site for
times longer than its residence time on normal
sites, i.e., when the rate of living the defect (state
4) obeys b «a, c. It is also easily seen that for

I.O—

p/q

I

q(c)I
I

'/4 (b)
I

I

I

I

V4 (a)I
I

p(c)I
I

(c)
(b)

q (b)
(c ) '/4

(b) (c)
I/4 q

(b) '/4

q(c)

(c) p

~/4 (a)

i l

p l/4

(c) (a)
4

!(c)q
3

(b) V4
I

(c) I

p I

I

, (a) &/4

-O2'

(c) (a)
p '/4

02 04 0.6 08 I.O
~~ /(2at)

FIG. 5. Variation of the variance 0 (~=x,y) in units
of 2at, for motion on the lattice shown in Fig. 4, as a
function of p/q. Note that the perfect lattice variance
is 2at. As p/q becomes large (i.e., the probability
of going towards a defect site is smaller than the pro-
bability of migrating to a normal site), 0. approaches
the perfect lattice variance.

p q ~/4 Probabilities

a, b, c Rates

FIG. 6. Random-walk lattice where 25% of the sites
have been replaced by defect sites (cross-hatched cir-
cles). The defect site is characterized by the rate of
leaving it (5) and by the probability 7.' of leaving it,
such that for 7'=1 the defect is totally reflective and for
T = 0 totally absorbing. The unit cell is denoted by
dashed lines.
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given T, q, P, a, and b and c&a, b, the value of
the variance in Eq. (5.10}is smaller than in the
ideal lattice case.

We can analyze the case when leaving a particu-
lar state becomes the rate-limiting step in the
diffusion by using Eq. (5.10) to find

4a
limo, =—t,
4~0

(5.12a)

2b
limo,' =—t, (5.12I3)

lim o,'=4ct,
C ~0

(5.12c)

VI. CONCLUSIONS

We have presented in this paper a formalism,
based on stochastic techniques, for the description
of the propagation of a system with internal states
on a lattice. The model we have used is a continu-
ous-time random waik with internal states. In this
study the internal states are the allowed spatial
configurations of a cluster of atoms migrating on

a crystaQine surface. The random-walk lattice
is constructed via a mapping of the locations of
the cluster centroid onto a periodic lattice.

The random-walk lattice sites need not represent
spatial displacements of the system variables. In

general, sites of the random-walk lattice may
correspond to a set of states which characterize
the evolution of the system, i.e. , intermediate
states on a reaction coordinate.

In Sec. II B we have provided a concise pro-
cedure for the application of our formalism to
systems of arbitrary complexity. We have applied
our formalism to the diffusional motion of 2- and 3-
state dimers in one dimension and a 3-state dimer
in two dimensions. The effect of a bias field on
the motion has been included. We have derived
expressions for the mean and variance of cluster
displacement and equilibrium probabilities of oc-
cupation of states. Using these results, we have
expressed the transition rates between the allowed
configurations (states) in terms of observable
quantities, thus enabling a comPlete determina-

while the case of b-0 or T-0 is given in Eq. (5.11).
While a more complete analysis of the above and

the investigation of the effects of defect concentra-
tion and lattice topology on clusters are the sub-
jects of a separate study, "we have demonstrated
in this section the principles of the extension of
our method to treat the motion of particles on de-
fective lattices, and the new trends characteristic
of particle migration on these lattices.

tion of the individual activation energies and fre-
quency factors of transitions between states from
experimental data. We have demonstrated that in
certain cases (e.g., 3-state dimer in one dimen-
sion) such a complete determination necessitates
migration experiments with a bias field. In cer-
tain other cases (e.g. , 3-state dimer in two di-
mensions) we provide more relations than there
are transition rates. Consequently, several al-
ternative methods of analysis of experimental data
are given, allowing consistency checks aalu the
investigation of the effect of a bias field on activa-
tion energies and frequency factors.

The analysis of the motion of higher-order clust-
ers becomes, more involved owing to the occur-
rence of a large number of allowed states; for ex-
ample, in one dimension the motion of a trimer
with transitions to nearest-neighbor sites is
characterized by six distinct states connected by
nine independent transition rates. (This calcula-
tion will be reported elsewhere. } In addition, our
formalism can be reduced to a computational al-
gorithm which allows the analysis of the dynamics
of complex clusters. We are currently investiga-
ting, using our formalism, models of the kinetics
of thin-film growth, annealing, and diffusion-
controlled surface reactions.

In Sec. V we have presented an extension of our
method to treat the influence of defects on the mo-
tion. We have illustrated the effect of periodi-
cally placed defects (totally or partially reflect-
ing) on the motion of a single particle on a four-
fold-coordinated lattice. Clearly, the topology of
the underlying lattice influences the motion of
single particles and clusters. The effect of de-
fects is also a function of the topology (connecti-
vity) of the lattice. In attempting to optimize the
diffusion rate (minimize the poisoning, i.e.,
inhibiting effect, caused by the defects) we are
employing our methods for a systematic study of
the diffusion on lattices of various topologies and
defect concentrations.

The treatment of systems which exhibit a low
concentration of periodically spaced defects by
our present methods entails the inversion of a
large matrix, since the unit cell will contain
many sites. While in principle this can be ac-
complished, we have developed new methods,
based upon a renormalization of the propagator
due to the effect of the defects, for treating such
cases.

In the description of surface reactions, certain
defects may be identified as active sites. These
active sites may be desolation sites to which re-
active intermediate migrate, "ori eaction sites
on which (or in the vicinity of which) reactants
interact. Our renormalized propagator technique
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has been employed by us to derive kinetic expres-
sions for such reactions. Reports on these meth-
ods and the results we obtained by their applica-
tion have appeared elsewhere, "and wOl be dis-
cussed in detail in forthcoming publications.
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