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The electromagnetic generation of transverse acoustic waves in metals in the presence-of a static magnetic
field normal to the surface is discussed with reference to an isotropic effective mass m~ of the conduction

electrons. From a semiclassical argument, it is shove that in addition to the direct Lorentz force and the
collision-drag force, each lattice ion experiences a Sragg-reflection force proportional to mlm~ —1. In the

nonlocal limit, when the ratio m/m~ is greater than unity, this force causes the generated acoustic
amplitude as a function of magnetic 6eld to deviate significantly from the monotonic dependence that is

expected from the free-electron theory of metals. However, this force does not provide significant

modification to the free-electron theory for predicting the rotation of the plane of polarization, the
attenuation coefficient of shear acoustic waves, and the properties of the helicon-phonon interaction.

I. INTRODUCTION

'The free-electron theory for the electromagnetic
generation of transverse ultrasound in metals was
first studied by Quinn and has since been dis-
cussed by a number of other authors. ' ' 'The

mechanism of the process may be summarized
as follows. The metal consists of conduction elec-
trons and a lattice of positively charged ions.
Electrons move freely in the background of these
positive ions except for infrequent collisions with
impurities in the lattice, eharaeterized by a con-
stant relax Cion time v'. %hen an electromagnetic
wave is incident on the metal surface (Fig. 1),eddy
currents in the skin layer avow the electric field to
penetrate. The conduction electrons in the skin
layer are accelerated and transfer their excess
momentum to the lattice through coBisions. The
resulting force on the ions is called the collision-
drag force. The lattice ions also experience a
direct Lorentz force due to the electric field in the
skin layer. The I.orentz force due to the ac mag-
netic field in the electromagnetic wave is negli-
gibl. If the conduction electrons are completely
free, as is approximately the .case in metals like
Na or K, these two are the only forces acting on
the lattice of the metal.

If these two forces are dyriamically unbalanced,
they will excite propagating transverse acoustic
waves that can be detected at the opposite surface
of the sample. In the absence of a static magnetic
field this happens only if the electronic mean free
path / is larger than the skin depth 5. 'The colli-
sion-drag force is then spatially separated froin
the direct Lorentz force, and the two produce a
shear on the lattice. The shear wave thus gener-
ated in the nonlocal limit is polarized parallel to
the electxic field in the skin layer. The corre-
sponding amplitude of the wave is known as the

nonmagnetic-direct-generation (NMDG) amplitude.

If, however, /& 5 the two forces locally cancel each
other and there is no acoustic generation in this
local limit.

If there is a static magnetic field, Ho present,
the electrons experience a Lorentz force,

(- e(v, ) && H, )/c=- (j,x H, )/nc, (1)

where j, is the electronic current density, n is
the density of electrons, and e is the velocity of
light. 'The momentum acquix ed is given up to the
lattice in the process of collisions. The result is
generation of an acoustic wave with amplitude
linea. r in H„and polarized in the direction perpen-
dicular to the electxie field. This amplitude has
been known as the magnetic-direct-generation
(MDG) amplitude. Actually Eq. (1) represents
the total force per lattice ion in the local limit,
because only in this limit ean one assume that the
magnetic I.orentz force on the electron is trans-
mitted directly to the lattice ion.

Quinn's' free-electron theory based on the above
ideas covers both local and nonlocal conditions and,
as reported by T'urner eI; cl.,' explains the genera-
tion, data in potassium samples at large magnetic
fieMs. However, Gaerttner' and others" in their
experiments on potassium and aluminum samples,
have found considerable disagreement with the
theory in the region of small magnetic fields. The
discrepancies are shown in Figs. 2 and 3, and
are discussed below.

'The magnitude-of the generated acoustic-wave
amplitude

~
(

~
as a function of the magnetic field

has a large dip near ff, -1 kG (Fig. 2), compared
to the smooth rise predicted by theory. This is
probably due to two underlying discrepancies (Fig.
3): (i) The NMDG component of the amplitude is
much larger at H, = 0 and, with the increase of H„
falls off much faster than what theory predicts.
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(ii) The MDG component is nonlinear for small
values of H„, whereas simple theory predicts only
a slight departure from linearity.

In a recent paper Kaner and Falco8 have intro-
duced another force on the lattice in addition to the
magnetic Lorents force, as shown in Eg. (l). Al-
though this force has been shown to produce some
qualitative features of the experimental data, we
do not understand its origin and the degree of its
relevance to simple metals. The force does not
contain any parameter characterizing a depar-
ture from the free-electron model. Qn the other
hand, there is definitely the need of such a pa-
rameter in any model, because, as can be seen in
Ref. 5, the amount of discrepancy between Quinn's
theory and experiment is different for different
metals.

In the present paper, me introduce real-metal
effects into the theory in terms of an isotropic ef-
fective mass m~ of conduction electrons. . In real
metals there is a nonzero, . pet. iodic crystal po-
tential which manHests itself in giving rise to
electronic band structures and hence in modifying
the dynamics of otherwise free conduction elec-
trons. The introduction of an effective-mass ten-
sor for conduction electrons is a simple may of

We~
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FIG. 2. Discrepancies
between experimental re-
sults and fx ee-electron
theory for electx omagnetic
generation of ultrasound in
potassium (ql[ [100), &
=4.2.'K) after Chimenti
~& nl. Puef. 7). The gen-
eration amplitude has been
plotted as a function of
static magnetic field.
The free-electron theory
(solid line) has been nor-
malized at high field.

0

FIG. i. Geometry of the coil-coil experimental used
by Ch&menti et al. Qef. 7), an~ definition of the coordi-
nate system broken lines) used for calculating (Sec. III)
the amplitude of electromagnetic generation.

taking these modified dynamicz into account.
For simplicity we assume that the constant-

energy surfaces of electrons in wave-vector space
are spherical. In this case the electron under the
influence of an external force will move xn the
periodic lattice as if endowed mith an effective
mass m~ that is different from the free-electron
mass m. 'The fact that the conduction electron
does not xespond to an external field in the may it
should if it mere free causes a partial transfer
of its momentum to the l.attice. This is analogous
to the momentum transfer to the lattice by an x-
ray photon undergoing a Bragg reflection. The
force on the lattice arising from this momentum
transfer is mhat has been called the Bragg-re-
flection force by Kittel. ' 'Thus the Bragg-reflec-
tion force is a natural consequence of the exis-
tence of a nonzero crystal potential. Although the
effective mass m~ is treated as a parameter in
the theory, its value should be consistent with the
known band structure of the metal in question.

In phenomena concerning acoustic waves in
metals, the Bragg-reflection force should play
an important role, especially when the direct
I.orentz force on the lattice is small. It is, there-
fore, of interest to obtain an expression for this
force and study its effects on the phenomena which
might be affected by its presence. For this pur-
pose, me start with Jones and Zener's relation, '

d(kk) I (vi) xH
jdt c

Then from a semiclassical argument, consistent
with momentum balance between electrons and
ions, me show that each lattice ion experiences a
Bragg-reflection force proportional to mlm* —l.
A microscopic derivation of this force is presented
in the Appendix. In the case of generation of sound,
this force is shown to have substantial. effects only
at small values of H, and in the nonlocal limit. In
the local limit. or/and at large magnetic fields, we
obtain the results of Quinn. We also show that for
values of m/m* appreciably larger than unity, fea-
tures similar to those found in the data for potas-
sium and aluminum can be produced. However, the
value of m/m* needed to fit the potassium data is
intolerably larger than the known band-structure
value. In the case of attenuation of shear waves,
we find that in the Kjeldaas approximation" there
is no significant difference in the results for the
attenuation coefficient and the xotation of the plane
of polarization compared to those obtained from
fxee-electxon theory. 'There is no modification
whatsoever in the phenomena of hebcon-phonon
interaction.

The plan of the paper is as follows. In Sec. II
me present a simple derivation of the Bragg-re-
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flection force ia the presenceof external electric
and magnetic fields and thus obtain a modified ex-
pxession for the net force on the lattice ion. The
amplitude of the shear acoustic wave is calculated
in Sec. III following the same method as suggested
by Quinn. ' We also present our results for vari-
ous values of m/m ' and compare them with the
experimental data. Section Ft contains a brief
study of the effect of the Bragg-reflection force on
the phenomena of ultrasonic attenuation and the
helicon-phonon intex action. In See. p we summar-
ize our results and discuss the possibility of ex-
tending the theory to metals that have complicated
band structures.

In a completely-free-electron model, as vre al-
ready mentioned in the Introduction, there are two

types of forces acting on the lattice ions: (i}the
direct I.orentz force and (ii) the collision-drag
force. The direct Lorentz force F~ for a mono-
valent metal is given by

F,= e[E+ (u x H, )/c]

per ion, where u is the local velocity of the ion,
is the electric field arising from the electromag-

netic wave that is incident normally on the metal
surface, and H, is the static magnetic field appl. ied
normal to the surface. In EII. (3) we have neglected
the I.orentz force due to the magnetic fieM as-
sociated with the electromagnetic wave. The col-
lisioa-drag force F„ in the approximation used
by Rodriguez aad ]ustified by Holstein from a
microscopic viewpoint, can be written as

F,= m((vg —u)/v', (4)

where v is a constant relaxation time and (v~) is
the electron velocity averaged over all states%
in the Fermi sphere and weighted by the zero-
temperatux e Fermi distribution. Although these
are the only forces present in the free-electron
model, in the present model an additional force
on each lattice ion will arise in order to pxeserve
momentum balance.

Consider the energy 8~ versus the wave vector
% relationship for an electron with an isotropic
effective mass m*,

g, = g'I '/2m*.

Then the group velocity of an electron in the state

vy = @/m+ ~

Thus the true momentum of the electron is

P, = (mlm*}N%,

different from 5%. Also consider the Zones and

Eener re/ation, "

EIIuation (8), together with EII. (6) implies that in
the presence of external fieMs, a conduction elec-
tron acquires an acceleration (Kg which can be
written as

Since the true mass of an electron i.s m, the Lor-
entz force F~ on the electron with effective mass
m~ is, therefore, -

'F =(-m/m*g . (10)

F». as given by. EII. (10) represents the true Lo-
rentz fort:e experienced by a conduction electron
in. the crystal. Obviously, F~ is different from
Sk, the I.orentz force on a free electron. As the
result of a nonzero crystal. potential, created
by lattice ioas in the metal, there is thus an ex-
tra force on tbe electron. Consequently the lattice
1on itself must 8xp8x'1enee an 8qual and opposit8
reaction force F~, which is called the Bragg-re-
flection force aad is given by

F,= (m/m*-1)1 . (11}

The Bragg-reflection force F~ is a logical con-
sequence of having a noazero crystal potential.
Note that in the limit m~ m, i.e., in the free-
eleetron limit, F~-O.

%e considex a monovalent metal with g coaduc-
tion electrons per un' volume. Thus the number

of ions per unit volume is also g. The total force
per lattice ioa ean then be written as

F~= Fu+ Fc+ Fa

m ~ m j~xHD sje m mu
pg4

ping

gag

0 (12}
C

with co=$8 T/m+ and j~= -II8(vg). FroIII Eq. (12}y
one ean easily show that in the local limit and ia
the absence of a magnetic field, there is no net
force on the lattice ion. This is a xequirement
for electrical neutx ality of metals and cannot be
met rigorously without considerir~ the Bragg-re-
flection force.

III. GENERATED SOUND-NAVE AMFI.ITUSE

For the geometry of the experiment, as shown

in Fig. 1, we assume that a plane-polarized elee-
tl'01nagnetlc (em) wave is incident on 'the u1etal
surface with the magnetic field vector H along the

y direction and the propagation vector q ia the s
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FIG. 2. Discrepancies
between experimental re-
sults and free-electron
theory in the magnetic
field dependence of NMDG

and MDG amplitudes in
potassium (fast shear
wave, qua[110], T=4.2 'IQ

after Gaerttner et cg.
(Ref. 6). Free-electron
theory (solid lines) is for
ql = 1.95 and has been nor-
malized at high field.
Small circles represent
experimental

points.

direction. The surface of incidence is at z =0 while
the surface of detection is at z =~. A static mag-
netic field H, is applied normal to the surface and

is parallel to q. We consider a monovalent, cubic
metal and assume that q is parallel to [100]direc-
tion. In this configuration, the two possible shear
acoustic modes have equal velocities. Although
the degeneracy in the velocity will be lifters due
to the presence of the static magnetic field, this
effect will be negligibly small in the range of mag-
netic fields that we shall consider here. Exten-
sions of the following calculations to other orien-
tations of q will not yield any new information.

Given E,(z), the long-range force on the lattice
ion, as a function of z, it is straightforward to
evaluate the amplitude of generated acoustic waves
from the wave equation,

62$ s2$
(13)

where' is the force on ions per unit volume and is
given by

~=riFg. (14)

Here g is the displacement of the ion from its
equilibrium position, s is the transverse speed of
sound, p is the density of the metal and n is the
number of ions per unit volume and is equal to the
density of conduction electrons in the metal. In
general, g is obtained from a self-consistent solu-
tion of the acoustic-wave equation [Eq. (13)], Max-
well's equations, and the Boltzmann-transport
equation. However, self-consistency is not im-
portant in the generation of acoustic waves of ul. -
trasonic frequency because the ionic current is
small compared to the electronic current and the
electromechanical coupling is weak. In contrast,
self-consistency becomes important in considering
the attenuation qf generated acoustic eaves, be-
cause for this situation the electronic current is
comparable to the ionic current. This is not of
importance here since the reported experimental
data. are the actual generated amplitudes after

cosqoz' f(z')dz' .
P(OS

The observed acoustic-wave amplitude at infinity,
$(~), is therefore equal to A and we write it as

f(~)=A (16)

The force density 7(z}depends on the mech-
anism for electron scattering at the boundary of
the metal. In the following we shall assume that
electrons are reflected specularly at the boundary.
Influences of diffuse scattering will be considered
in a separate paper. 'The assumption of specular
scattering allows one to adopt a simplified, yet
mathematically equivalent model to describe the
problem of acoustic generation. That is, we may
replace the semi-infinite metal by an infinite me-
dium that is symmetrical about the plane z =0. In
order to include the effects of an incident electro-
~agnetic wave at the boundary of the semi-infinite
metal, we place a source at z = 0 in the infinite-
medium model. In addition, the plane z = 0 re-
mains stress-free, as in the semi-infinite case.
E(z} is continuous across the boundary. However,
because of the presence of the source at z =0, com-
ponents of dR/dz parallel to the surface is dis-
continuous at z = 0. The electronic current density

I,(z) is then a functional of E(z). From Eqs. (12)
and (14), we see that the force density can also
be written as a functional of E(z). Thus 7(z) itself
is an even function of z and we can write

g(~) = — e"o'f (z')dz'}
2pads

= -(v/pros) f(q, ),
with

1
f(q, ) = e"0'f(z'}dz',

2m

the Fourier transform of f(z}. We now evaluate
7(q, ) separately for the local and nonlocal limits.

A. Lacal limit

In this case the electric field E(z) and the elec-
tronic current density j,(z) are related through a
local conductivity tensor. We use circular coor-
dinates to write this relation as follows:j:—j +ij ~=0' E
with

(18a)

making corrections for attenuation.
With the neglect of self-consistency, it can be

shownthatfor a stress-free surface, [i.e., (8$/
Sz}~=0), the amplitude of an acoustic wave prop-
agating towards the opposite end of the surface is
given by

f(z, t}=A sin(qoz —&ot},

with
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o'= o,/(1 vi&u, v) . (18b) B. Nonlocal limit

P'(0}5(z ), (19)

where H'(0) = +iH„(0), the magnitude of the ac mag-
netic field at the surface and 5(z) is the Dirac 5
function. The second term on the right-hand side
represents the source at z =0. As discussed
earlier, we have neglected the ionic current.
From Eqs. (18) and (19), we obtain for the Fourier
component of the field,

+ (&o/wo)H'(0)
0 q2 ~

4wzo k/c2 (20)

For ultrasonic frequencies (&o-10' Hz) and low
magnetic fields (H, 620 kG), q,'«I4v&oo'/c'I, and
we obtain

Here, c, is the zero-field conductivity as defined
in Eq. (12}, r is a constant relaxation time, and
a&, = eH, /m*c A.ssuming a time dependence -e '"'
for the fieMs, the relevant Maxwell's equations,
neglecting the displacement current, can be written

When nonlocal conditions are included, the elec-
trons experience spatially varying electric fields
between collisions. Thus the conductivity tensor
becomes wave-vector dependent and must be ob-
tained from the solution of the Boltzmann-transport
equation. For the boundary conditions appropriate
for specular scattering, we shall use the results of
Kjeldaas"

(2V)

where G,(q) are even functions of q and G (H, )
=G,(-H, }. Exact expressions for G, (q} can be ob-
tained from Ref. 11 replacing m by m*. o, in Eq.
(27) is the zero-field conductivity and has been
defined in Eq. (12). With the above constitutive
relation, we proceed as in the local limit and ob-
tain

(28)

E =- cH„(0)/4s'o' (21) P( )= ' + (
——1) H, (

—1) .— (89)

j ', =- cH„(0)/4s'. (22)

These results could be obtained from Eq. (19) by
neglecting the left-hand side altogether. 'This is
a consequence of weak electromechanical coupl, ing.

After neglecting the ionic current, we obtain
from Eq. (12) and the definition of f(z) as given in
Eq. (14),

For a linearly polarized incident electromag-
netic wave, H, (0) = a iH„(0) an'd using the symmetry
of G„namely, ReG, =ReG and ImG, = -ImG, we
finally obtain the following expressions for the
components of the acoustic-wave amplitude at in-
finity:

i$.(")
I

= "( ( "") " ~ 1 (30)
4mcops m~ seq, l l IG' I'

f'(z) = aiH,j ',(z)/c . (23) and

Using Eq. (22), the Fourier component f'(q, ) is
given by

CH„(0) m (3v'n)„'I' ™,
4vu&ps m~ seq, l IG, I'

f '(q, ) = + iH+„(0)/4s'. (24) (31)

Thus from Eq. (17), the amplitude of the generated
acoustic wave can be written

$'(~) =+ iH,H„(0)/4vpa&s, (25)

$, =0 and )„=H,H„(0)/4vp&up. (26)

The above expressions are exactly what one
would have obtained from the free-electron theory
of Quinn' in the local limit. Thus the Bragg-re-
flection force does not have any effect on the gen-
erated sound-wave amplitude in the local limit.

and transforming back to Cartesian coordinates,
final expressions for the x and y components of
the generated acoustic-wave amplitude in the local
limit are

with l = vp' and v, the Fermi velocity. The quan-
tity measured by Chimenti et al. ' is

I
$(~}

I
and is

given by

(32}

On comparing the above expressions with those
obtained from the free-electron theory, it is ob-
served that the amplitude

I g, (~) I
is modified by

the factor m/m*. The corresponding term in

I $„(~}I also contains this fa,ctor. In addition

I $„(~)(
contains an extra term proportional to

m/m* —1. This term can enhance or suppress
the contribution from the first term depending on
whether m/m* —1 is less than or greater than
zero. 'These features are possible only at low
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magnetic fields for which ~,r/q, l &1. If &o,r/q, /

»1, then fmG /IG I'= ~ 'r

so that one obtains the results as found in the local
limit. Thus the Bragg-reflection force may modi-
fy the generated amplitude only at small magnetic
fields. The large field amplitudes, however,
should behave linearly as in the local case.

Using the parameters appropriate for potassium,
we have calculated the amplitudes as given in Eqs.
(30)-(32) at a frequency of 10 MHz. The results
are shown in Figs. 4-8 for various values of m/m*
and q, l. The results corresponding to m/m*= 1
are the same as those one would have obtained
from free-electron theory. The results for m/m*
&1 and q, l &1 are encouraging. Here the Bragg-
reflection force plays a significant role and pro-
duces the same features as found in the experi-
mental data. (See Figs. 1 and 2. ) When I/m*
-2, our theory fits surprisingly well with the ex-
periment. However, the band-structure value for
m/m* in potassium as calculated by Ham" is only
0.83. Consequently, if the Fermi surface of potas-
sium is simply connected, this theory does not ex-
plain the data. In a subsequent paper we shall
show that the anomalous behavior of aluminum is
explained by this theory even though aluminum is
nearly-free-electron-like. The Bragg-reflection
force becomes very important when the Fermi
surface is not simply connected.

IV. ULTRASONIC ATTENUATION

AND THE HELICON-PHONON INTERACTION

In the nonlocal case, the self-consistent force
on lattice ions is considerably modified due to the
Bragg-reflection force. The dispersion relations
for coupled electromagnetic and sound waves will
be accordingly modified. Qne would, therefore,
suspect that the phenomena such as the attenuation
of sound and the helicon-phonon interaction, which
are directly linked with the dispersion relations,
might exhibit some new features when the Bragg-
reflection force is taken into account. We have in-

I2

I I I

4 8
t)o (kG)

FIG. 5. Disappearance of
the effects of the Bragg-
reflection force in the re-
gion of higher field. The
two curves are for two val-
ues of m/m*, but with ql
=10 for both.

vestigated this matter and present our findings
briefly in Secs. IV A and IV B.

A. Ultrasonic attenuation

Here we assume that a plane-polarized trans-
verse ultrasonic wave is impressed upon a metal
surface at z = 0, propagating into the metal along
the z direction perpendicular to the surface. As
in Secs. II and III, we consider the presence of a
static magnetic field normal to the surface of the
metal. As a result of the impressed ultrasonic
wave, the lattice ions will vibrate about their
mean positions producing an electric field that
causes the conduction electrons in the metal to
accelerate. The electrons in turn, transfer the
excess. energy to thermal phonons through colli-
sions with impurities in the lattice. Thus the en-
ergy of the ultrasonic phonon is attenuated as it
propagates through the metal. In the presence of
the static magnetic field there is also a rotation of
the plane of polarization of the ultrasonic wave.
The plane-polarized ultrasonic wave can be con-
sidered to consist of right- and left-circularly-
polarized waves of equal amplitudes. These two
waves suffer different velocity changes as they
propagate through the metal in the presence of the
magnetic field. This causes the plane of polariza-
tion of the ultrasonic wave to rotate by one-half
the phase difference between the right- and left-
cir cularly-polarized waves.

Both the attenuation and the rotation of the plane

l2

I

I

Ho(kG)

FIG. 4. Effects of the
Bragg-reflection force on
the amplitude I t I, plotted
as a function of static
magnetic field. Different
curves are for different
values of m/m*, but with
ql = 10 for aQ. Vertical
scale is in relative units.
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q I
= 30

I I

I

('kG)

P=IO MHz

m/m~ =2 FIG. 6. Effects of the
nonlocality parameter ql on
the shape of the dip, ap-
pearing in the amplitude vs
magnetic field curve when
the Bragg-reflection force
is included. m/m*= 2 for
all curves. The broken
line represents the local
limit.
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V'= 10MH z
ql -lO

I

Ho(ko)

FIG. 7. Enhancement of
the zero-field amplitude
and the rapid fall of the
NMDG amplitude

~ tJ as a
function of magnetic field
after including the Bragg-
reflection force. Different
curves are for different
values of m/m*, but with
ql= 10 for all.

lattice ion as

emE' im v eHO
(()m* C

m iH, m
ne7 nc m*

The constitutive equation, Eq. (27) is now,

j',(q) = c,G,[E'(q) —Z;/o, ], (36)

where, J', =neu, is the ionic current density. From
Maxwell's equation with the neglect of displace-
ment current, we obtain

n= Imq++Imq . (33)

of polarization can be described in terms of com-
plex wave numbers q' of the right- and left-cir-
cularly-polarized components of the acoustic wave
in the metal. The attenuation coe'fficient a, de-
fined as the energy of the ultrasonic wave attenu-
ated per unit length of the metal, is then given by

(f E 4wi(() (.~

The Fourier component of the self-consistent
electric fields can then be written

(4xi(c/c') J;(1—G, )
—4ifi(do()G~/C

(37)

(38)

The rotation angle 4 of the plane of polarization
can be written

C = —,(Req' —Req ). (34)

P= IO MHz

The quantities q' are obtained from the dispersion
relation of the acoustic wave. The dispersion re-
lation, in turn, is obtained self-consistently from
the elastic wave equation, Maxwell's equations,
and the Boltzmann-transport equation. We can,
therefore, carry over the notation of Secs. II and

III, provided we make the necessary changes in the
definitions of variables. For example, $' will now

represent the right- and left-circularly-polarized
components of the amplitude of the impressed
ultrasonic wave, not of the generated wave. Simi-
larly E' will be the self-consistent electric fields
instead of the electric fields associated with the
incident electromagnetic wave. Since it is the
local motion of ions that gives rise to these elec-
tric fields, we must not neglect the ionic current
here as we have'done in previous sections. With
these modifications we can write the force on a

For ultrasonic frequencies, q'«u&c, /c' one can
neglect q' in the denominator of Eq. (38). This is
Kjeldaas approximation. In this approximation,
as can be seen by substituting Eq. (38) into Eq.
(36), j',(q) = -P(q). In other words, the screening
of the ionic current by the electronic current is
complete. In this case, the fields may be written

E'(q) = (ines&/o, )$'(1/G, —1), (39)

and the Fourier component of the total force on the
lattice ion is given by

)".(e)=,~(&'(e)+ ' ('(e)}. (40)

If the mass of the lattice ion is M, then from
Eqs. (13), (39), and (40), one obtains the disper-
sion relations for right- and left-circularly-po-
larized waves:

co' im 1 Q, m
q~ =~ 1+ 1 ~ —c

~s M~t G, + m* (41)

where 0, =- e H, /Mc is the ion cyclotron frequency.
Since unity is large compared to other terms in
the brackets in Eq. (41), we may rewrite this rela-
tion as

IO

l

H (kG)

FIG. 8. Nonmonotonic
dependence of the MDG am-
plitude [ $~ ( on the static
magnetic field when the
Bragg-reflection force is
included (curve with m/m*
=3). qL=. 10 for all curves.

im 1 Q m
q = — 1+ ——1

s 2McoT G, 2' m~ (42)

m Q, 1 ImG'
(43)

and

From Eqs. (33) and (34), we then obtain the final
expressions for the angle of rotation of the plarie
of polarization 4 and the attenuation coefficient a:
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m 'q(qq'q)' ' RqG,

)m* Mal IG I' (44)

Comparing Eqs. (43) and (44) with the standard
results (e.g, Boyd and Gavenda"), we see that
the only effect the Bragg-reflection force has on
the attenuation of ultrasound in the Kjeldaas ap-
proximation is an overall multiplying factor m/mq'
for both the rotation of the plane of polarization
and the attenuation coefficient after replacing m
by m* in the usual free-electron results.

B. Helicon-phonon interaction

When a low-frequency electromagnetic (em)
wave with wave vector q (( z, is incident on a metal
surface, it cannot propagate into the metal. Qn
the other hand, if a constant magnetic field H, is
applied parallel to q with sufficient magnitude that
the electron cyclotron frequency is much larger

than the frequency of the em wave, one of the two
circularly polarized components of the incident
plane-polarized em wave can propagate thr'ough the
meta). without appreciable damping. These prop-
agating em waves are known as helicons. The
phase velocity of helicons is very small and can
be made to match the velocity of transverse sound
waves in the metal. In such a situation, the de-
generacy in the velocity of the helicon mode and
the phonon mode is lifted due to a coupling between
the two modes. This phenomenon is known as the
helicon-phonon interaction. 'The extent of coupling
between the two modes is best described by a
coupling parameter g which is obtained from the
dispersion relation of these coupled modes. The
geometries used in Sections II-IV A also apply
here, and when the Bragg-reflection force is in-
cluded, we obtain the dispersion relation for the
coupled modes:

(
2C2

tq' —q'q* ~ (1 —G )+ G,tq+, —1) G.4G
4miooG, Mv m*

=itq* 1-— (1-G )-(G.G. , -1) . (45)
m . m

G M~ - ' m*

(46)

where viq (= c'q&o, /&EGG) is the helicon velocity in the
absence of interaction with phonons, (d~ is the
electron plasma frequency, and I is the phase
velocity of the coupled modes. The coupling pa, -
rameter g is thus given by

(7= f1,/~. (47)

The djppersion relation and the coupling param-
eter )7 as given in Eqs. (46).and (47) are not altered
by the inclusion of the Bragg=reflection force.
Therefore, this force has no effect on the helicon-
phonon interaction.

This dispersion relation takes a different form
than the standard expression" due to the presence
of terms containing the factor m/m* —1, which
arises from the Bragg-reflection force. However
this is not of importance in the region of interest.
Helicons are propagating modes only at comparab-
ly large values of the magnetic field. 'The condition
for appreciable coupling between the two modes is
that their velocities be approximately equal. This
happens, for instance, in potassium for H, =10'
kQ at a frequency of 20 MHz. At such high static
magnetic fields, G is approximately equal to
1/(1+ iv, r) and the dispersion relation reduces to
that given in Ref. (15):

V. SUMMARY AND CONCLUDING REMARKS

The Bragg-reflection force was shown to be a
natural consequence of the concept of effective
mass of the conduction electrons in metals.
Though it c~ot produce any noticeable effect on
the helicon-phonon interaction, it modifies the ro-
tation of the plane of polarization and the attenua-
tion coefficient of the shear. ultrasonic wave by a
multiplying factor m/mR. The phenomenon most
significantly modified by this force is the electro-
magnetic generation of ultrasound in metals in the
presence of small magnetic fields. Here it is
capable of producing a nonmonotonic dependence
of the generated amplitude as h function of the
magnetic field. These effects will be most im-
portant for metals with m/m* appreciably dif-
ferent from unity.

We have considered only a single isotropic ef-
fective mass for all conduction electrons. How-
ever one can easily extend the ideas of this paper
to the consideration of two or more groups of elec-
trons or holes with different effective masses.
The Bragg-reflection force will be obtained by the
condition that the total momentum of the ions
balance that of the carriers. In this way, metals
with complicated band structures can be studied.
The Bragg-reflection force is expected to play a
significant role in predicting the amplitude of
electromagnetic generation of ultrasound in many



16 ELECTROMAGNETIC GENERATION OF ULTRASOUND IN METALS

metals.
Although this study was undertaken in order to

understand the anomalous behavior of potassium,
we mgst confess failure if the Fermi surface of
potassium is simply connected. On the other hand,
if the Fermi surface is multiply connected, as the
torque anisotropy data of Holroyd and Datars" re-
quire, then inclusion of the Bragg-reflection force
is necessary. At the present time the only physical
mechanism that could lead to a multiply connected
Fermi surface in potassium is a charge-density-
wave instability" of the electronic ground state.

APPENDIX

For simplicity, we consider the one-dimensional
electron gas of a monoatomic linear chain of atoms
whose reciprocal lattice vector is Q. We assume
that the average potential energy due to the lattice
ions is 2Uy cosQx and the unperturbed electronic
states are free-particle states. The action of the
crystal potential is to cause mixing of the unper-
turbed state k with, for example, k-Q, producing
a gap at k =. 'Treating this mixing by degenerate
perturbation theory, one obtains the energy eigen-
values for states above and below the gap.

tion of the electric field has two distinct effects.
Firstly it produces a uniform translation of the
probability densities in k space. Secondly and
most importantly for our purpose, it polarizes the
individual electronic wave functions. As an ex-
ample, we consider the change in the state e {k),
below the gap, in the presence of the electric
field. Treating K„~ by first-order perturbation
theory, the polarized state 4' becomes

(@ leSi&, lq. )4.
(A6)

1 8U
F~ = ———&a(")e &x

(A8}

Thus there is an extra charge density p~(x) as-
sociated with the matrix element of eEi&~ between
the lower and the upper bands:

252Q U
», (»~= &I» I* I» 1'1=»E(' ~, j»'~».

(AV)

This charge density interacts with the crystal po-
tential to produce an additional force F„on the
electron in the state k, given by

8~(k) = g (cg, + f~ o) k 2 [(c~—c~o} + 4Uq], (A1)
with U=-2U, cosQx. Averaging this force over one
unit cell, we obtain,

where, q~=g'k'/2m. The corresponding eigen-
functions are (F„)= 2eEK2 Q U, /m W (A9)

e.= eosee'~- since'" ~",
y = sine e'~+ cosa e"~~'",

(A2)

(A3)

and from Eq. (A5),

(F„)=-eE(m/m~ —1) . (A10)

for states above and below the gap, respectively.
The coefficients are given by

sin28 = 2U, /(8, —8 ) =—2U, /W. (A4)

'The corresponding effective masses m,*, defined
as

j. j. 8'g,
m* I' ak' '

can be obtained as

m/m, *= 1+2m'q2U2 W-'/m . (A5)

Under the action of an external electric field E,
the interaction Hamiltonian is X„,= eER, and 4,
in Eqs. (A2) and (A3) are the new unperturbed
states. Neglecting interband transitions, the ac-

The condition of electrical neutrality then leads to
the Bragg-reflection force F~ on the lattice ion,
which balances the force (F„), and is given by

Fs = eE(m/m* —1) . (A11)

From above it is clear that virtual interband
transitions cause polarization of electronic charge
densities which, in turn, produce a Bragg-reQec-
tion force on the lattice ion through the crystal
potential.

The derivation of the Bragg-reflection force in
the presence of a magnetic field is similar to the
discussion of this Appendix, and the result is given
by Eq. (11) of Sec. II of the text. The expression
obtained here in Eq. (All) is the limiting form of
Eq. (11) for zero magnetic field.
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