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The Frenkel-Kontorova model (which consists of a chain of atoms connected by springs able to slide in a
sinusoidal potential well) is applied to the problem of a charge-density wave moving through a periodic lattice
under an applied external electric field. Computer experiments are reported for this model which partially
support I.ee, Rice, and Anderson's result which states that an incommensurate periodic lattice does not pin a
charge-density wave. Experiments for a chain of atoms containing impurities partially support the conjectures
made by the present author which state that weak random impurities need not pin a charge-density wave. For
impurity strengths actually encountered in real systems, however, the charge-density wave most likely will be
pinned.

I. INTRODUCTION

The reported obserVation of a very large peak in
the conductivity of the "one-dimensional metallic
conductor" tetrathiafulvalinium-tetracyanoquinodi-
methanide (TTF-TCNQ) at around 60'K by Coleman,
Cohen, Sandman, Yamagishi, Garito, and Heeger'
has stimulated a good deal of study of this com-
pound. The temperature at which this peak occurs
is just above the temperature at which. a metal to
insulator transition occurs. The insulating phase
is believed to be caused by a Peierls distortion. '
Recent x-ray and neutron-diffraction experiments
on both TTF-TCNQ and another one-dimensional
compound, potassium cyano-platinide (KCP), have
provided evidence for the existence of a Peierls
distortion in these compounds. "Bardeen' re-
vived a theory of superconductivity in one dimen-
sion due to Frolich, ' which suggests that the
Peierls state should actually be superconducting
rather than insulating. Below 60' (in the Peierls
phase), however, TTF-TCNQ is an insulator rath-
er than a superconductor; the large conductivity
is only observed in the "fluctuation regime"
around 60'K. The Frolich model, ' being a jellium
model, however, does not take into account
effects of the periodic lattice or impurities.
Lee, Rice, and Anderson' found that if the
Peierls distortion is incommensurate with
the periodic lattice, the electronic charge
density will not be pinned; rather, it will
be able to slide through the lattice freely, and thus
conduct electricity. I eung has found, however,
that if twice the Fermi wave vector is nearly com-
mensurate with the lattice, the charge density
wave will exist in a phase in which it is commen-
surate with the lattice, ' even if the resulting wave
vector is not 2k~. This effect is similar to the
"locking in" of a spin density wave to a periodic
lattice which is almost commensurate with it9 (the

so-called "commensurability transition"). Lee,
Rice, and Anderson' have argued that in addition to
the electrostatic interaction between charge den-
sity waves on the TTF and TCNQ chains, the pres-
ence of random impurities and other imperfections
in the lattice can result in pinning of the charge
density wave, and hence to insulating behavior.

The present author has argued, "using pertur-
bation theory, that weak random impurities need
not pin the charge-density wave. Nagaoka pointed
out that this result, which was only proven for non-
substitutional impurities, is also true for substi-
tutional impurities. " Random impurities can be
thought of as a disordered lattice which is cex'tainly
incommensurate with the charge-density wave, and
thus, should not pin the wave, in the same way that
periodic lattice incommensurate with the wave does
not pin it. Lee, Rice, and Anderson find a phonon
self-energy which diverges as the phonon frequen-
cy goes to zero and argue that this implies that a
gap must form in the phonon spectrum for the
char ge-density wave, implying that the wave cannot
slide freely. They also argue that if the concen-
tration of impurities is very small, the charge-
density wave can always distort so that a crest or
a trough lies at each impurity site with little cost
in energy necessary to distort either the wave or
the lattice to accomplish this. McMillan has also
found that dilute impurities lead to a gap in the
collective mode spectrum of the charge density
wave, wh1ch lmplles some sort of plnnmg. The
present author has argued that the average over
impurity distribution of the interaction energy be-
tween the wave and random impurities must be in-
dependent of the position of the wave relative to the
impurities by translational invariance of the average.
Since fluctuations usually scale as the square root
of the length of the system, whereas the interaction
of the wave with an externally applied electric
field scales as the length of the system, the wave
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mill not be pinned in place by random impurities
in the thermodynamic limit. The problem with this
treatment is that it is not clear that perturbation
theoxy is applicable to such a highly nonlinear
problem, in which large distortions can take place
under the influence of the impurity potential at very
little cost in energy.

II. APPLICATION OF THE FRENKEL-KONTOROVA MODEL

TO A CHARGE-DENSITY %AVE INCOMMENSURATE

VfITH THE PERIODIC LATTICE

There exists a model system called the Frenkel-
Kontorova model which has been studied exten-
sively as a one-dixnensional model suitable for the
study of dislocations in solids. " This model con-
sists of a periodic chain of masses connected by
springs which are situated in a sinusoidal poten-
tial well of the same or different periodicity. If
me identify the sinusoidal potential as the potential
produced by the charge-density wave, this model
could be used in the study of the motion of charge-
density waves in a periodic lattice. There are, of
course, major diffexences between these models.
For one thing, in the ease of the charge-density
wave, it is precisely the Peierls distortion of the
lattice which produces the charge density wave,
whex'eas in the Frenkel-Kontorova model we as-
sume the presence of a sinusoidal potential which
is independent of the distortion of the lattice from
the start. This is probably not a serious problem
because me may simply assume that a Pelerls dis-
tortion is always present and that distortions of the
lattice in our model represent additional distor-
tions. Second, the sinusoidal potential in the Fren-
kel-Kontorova model is rigid, mhereas the charge-
density wave is able to distort. Nevertheless, the
fact. that the charge-density wave's acoustic-pho-
non velocity (the charge-density wave's acoustic
phonon is the so-called "sliding mode" at zero
mave vector) found by I ee, Rice, and Anderson is
of the order of the electron Fermi velocity, which
is much larger than the lattice's acoustic-phonon
velocity, indicates that the charge-density wave is
much more rigid than the lattice, so that the rigid
sinusoidal potential is not a bad approximation.

The potential energy in the Frenkel-Kontorova
model is

V =0.5~ g (x„,-x, —b)'
j=1

2Trx;—V~ Qcos
j-1 a

where xj is. the position of the jth atom in a chain
containing N, atoms, a is the force constant for the
harmonic potential linking a pair of atoms, V, is
the strength of the sinusoidal potential, and a and

b are the periodicities of the sinusoidal potential
and chain of atoms, respectively. Whereas in
treatments of dislocations in solids the chain and
sinusoidal potential are taken to represent adjacent
planes of atoms, here the sinusoidal potential mill
represent the electrical potential interaction of the
char ge density mave and the chain of atoms, which
represents the underlying lattice.

Frank and Van der Merwe, "and more xeeently,
Snyman and Van der Merwe" have studied this mod-
el in connection with epitaxial crystal growth. They
find that for

I, [(b —a)/a] & 2/II, (2)

&/bf, = —8 F,'/a + —,'It.u,'.
Thus, me see that if a =25, the system is pinned

where l, =(It.a'/4V, )I~', the chain will have abso-
lute minimum energy if it distorts in such a way
that each atom liesat a trough of the sinusoidal po-
tential. In such a case, there mill clearly be pin-
ning, because if me apply the same sufficiently
small force to each atom (this is equivalent to
applying a uniform electric field to the ion-charge-
density-wave system}, there will clearly be a re-
storing foxee to oppose it, due to the sinusoidal
potential.

For the charge-density-wave problem a chain of
atoms with the same periodicity as the sinusoidal
potential is the trivial ease of no charge-density
wave. Thus, since the energy lowering of the sys-
tern due to the charge-density mave clearly only
exists when a charge-density wave is present, this
commensurability transition will not occur in this
case. For the charge-density-mave pxoblem, the
first important case in which commensurability
matters is when a =2b. (Similar results can be
obtained for a = Mb, where M is any interger & 1.)
The system mill have minimum energy if we place
the undistorted chain in a configuration in which
every minimum of the sinusoidal potentialhastwo
RioI118 symmetrically plRced around I't (I.e., olle R

distance —,'a to the left and one a distance —,'a to the
right of the minimum) and then allow the lattice to
distort so as to minimize its energy. Elementary
calculations show that if /, ' is»1, the potential
energy per atom is approximately given by

&/(N, E,) = -8 E,/cI,

where N, is the number of atoms in the lattice and
where F, =2IIV,/a. If the lattice constant of the
chain is too small by u, to be commensurate, me

first stretch each spring by uo, place the lattice
in the configuration described above, and then al-
low it to distort. (If the lattice constant is too
large by uo we compress each spring by uo. ) In
this case we find that
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because sliding the chain by about —,'a raises the
energy from the above amount to zero. Note that
the actual charge-density wave, unlike the sinu-
soidal potential in the Frenkel-Kontorova model,
disappears completely when we displace the wave
—,'a. Since the above energy is linear in the number
of atoms in the chain, the system will be pinned in
the thermodynamic limit. We also see that if Qp

& —,'Fo/u, there will no longer be a negative pinning
energy and thus the system will not be pinned. This
is the analogue in the Frenkel-Kontorova model of
Leung's result' for the locking in of the charge-den-
sity wave; namely, if up is less than a critical val-
ue the wave will become commensurate.

We will now determine whether or not there will
be pinning when the wave is neither commensurate
nor nearly commensurate. We will study this by

performing a "computer experiment". on the Fren-
kel-Kontorova model as follows: We apply a force
o to each atom (assumed to be due to the electric
field) and for convenience we include a damping
term proportional to the velocity (-ydx, . /dt for the

j th atom), which we take to be much larger than
the inertial term m d'x,. /dt' (i.e., the motion of
each atom is assumed to be overdamped). Thus,
the chain is able to relax to a relative minimum

energy state in the sinusoidal potential as it moves,
but the high damping prevents the creation of ele-
mentary excitations. With the above assumptions
we obtain the following first order differential equa-
tions of motion:

function of center-of-mass position were not
changed significantly by varying cr. Experiments.
were performed for chains of various lengths rang-
ing from 100 to 900 atoms. In Fig. 1, the results
for the pinning energy, the differenceWetween the
maximum and minimum potential energies per atom,
for each chain is plotted as a function of N,
where N, is the number of atoms in the chain, for
a few different values of the ratio b/a below the
critical value of 0.91 at which the chain distorts to
be exactly commensurate with the sinusoidal poten-
tial. Extrapolation of these curves to the N, -~
limit provides evidence that pinning energy ap-
proaches zero in the thermodynamic limit for all
the cases considered. Thus, we conclude that if
the chain is neither commensurate nor nearly com-
mensurate, it is not pinned, in agreement with Lee,
Rice, and Anderson's' conclusions. The probable
reason that Lee, Rice, and Anderson do not obtain
pinning in nearly commensurate case as we do is
that they assume that the charge;density wave has
periodicity of twice the Fermi wave vector, thus
excluding the possibility of the wave locking into
the periodicity of the lattice (i.e. , they assume that

I I I
/ I I I I ) I

0.8—

~ 27
y '=+n(x, —x, —b) —F, sin —x, +o, (5a)

0.6—
dx' 2'

y '= —a(2x, -x, , —x,.„)—F, sin —x,. +o (5b)

for jc1 or N, ;

dx+ 27T
y

' = —n(x„—x„—b) Fsin x„+o—, (5c)
dt a a-& p g N~

0.4—

where F, =(2v/a) V, . These equations can be
solved -by successive iteration to obtain the posi-
tion of each atom as a function of time. Each "ex-
periment" is started with the atoms in the lattice
placed at their "natural" separation b. The poten-
tial energy was calculated from Eq. (l) for each
iteration and found to be a periodic function of the
position of the center of mass of the chain with pe-
riodicity a as expected. The value of the parameter
I, [defined after Eq. (2)J which was used was 7, the
value used by Frank and Van der Merwe" and
Snyman and Van der Merwe. " A convenient value
of the force 0 equal to 0.1Ep was chosen which was
generally not varied in successive experiments. A
few experiments were repeated for other val-
ues of o, but the results for the energy as a

0.2—

l
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N 2
a

I
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FIG. 1. Pinning energy per atom E/N is plotted
against N, ' for chains of atoms containing no impur-
ities. 0 represents chains in which b/a =0.31416
(E/N, is in units of 10 I"~ for these chains) and ~
represents chains in which b/a =0.89536 (E/N, is in
units of 10 EpQ).
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the charge-density wave's potential always mixes
electronic states on opposite sides of thy Fermi
level). Such a state is most likely a metastable
state when the system is nearly commensurate.

III. IMPURE LATTICE

Here the case of a lattice containing substitution-
al impurities will be considered. In order to a-
dapt the Frenkel-Kontorova model to this problem,
we choose a set of N& out of the N, lattice sites on
the chain at random (c =N, /N, is the impurity con-
centration}. Qn each of these sites we place an
impurity potential, in addition to the potential of
the ions in the pure lattice. Then, if v(x —x&) is
the impurity potential on the jth site, the addition-
al interaction of the impurities with the charge-
density wave is [assuming that the charge density
of the wave is proportional to —cos(2'/a)] pro-
portional to

cos .

where v(k) is the Four ier transform of v(x) and j is
summed over those sites containing impurities
[if v(x —x, } is an even function of x —x~]. Thus, the
effect of having an impurity on a site is to add a
potential V ~

= v(2x/a) to the potential V, for that
site in Eq. (l).

We will now consider what happens when a force
is applied to each atom, using the methods de-
scribed in the Sec. II for a few impurity concen-
trations. Experiments have been performed with
chains of length varying from 100 to 10000 atoms.
In these calculations the ratio of the perfect lattice
potential strength V, to the spring constant a for
the perfect lattice is taken to be the same as. that
used in the calculation of Sec. II. In Fig 2, a plot
is made of pinning energy per atom as a function
of N, '~' for a lattice with a 5(@ concentration of
impurities with an impurity potential strength of
0.5V, . The curve clearly shows no sign of extrap-
olating to zero as 1V, approaches infinity. We in-
terpret this to mean that the system is pinned. De-
tailed behavior of a pinned lattice is further illus-
trated for another lattice in Fig. 3, in which the
energy and the positions of the first ten atoms are
given as a function of number of iterations. Locat-
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FIG. 2. Pinning energy is plotted as a function of
N~ for chains with b/a =0.31416 containing substitu-
tions/impurities. 0 denotes an impurity potential
strength of 0.5VO with a 50% impurity concentration and
~ denotes an impurity potential strength of 0.2VO and a
50% impurity concentration. A denotes a 0.2VO impurity
strength and a 5+ impurity concentration.
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FIG. 3. Plots of the energy and positions of the first

10 atoms of a chain at successive time intervals (earliest
time is the lowest plot in the figure) in an experiment
in which there was an impurity concentration of 5.3%,
the impurity potential strength was 5.0 Vo, 0/a =0.64,
and N, =100. The first and seventh atoms (denoted by x)
contained impurities. The potential energy of the chain
is also listed in units of E~ to the left of each plot.
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ions of impurities are also indicated in the figure.
%e see that at the first energy minimum, the im-
purities lie at minima of the potential. At the first
energy maximum they lie further away from the
minima, and on further iterations some impurities
lie at potential minima and some at potential max-
ima and some lie in between. Qf course, since
there are 100 atoms in this lattice but we are only
seeing the first 10, me do not see the locations of
all the impurities which contribute to the energy.
Clearly, in this ease, the relevant pinning energy
is the energy difference between the first energy
maximum and minimum, which was plotted in Fig.
2.

A plot is also made in Fig. 2 of pinning energy
per lattice site as a function of N, '~' for an im-
purity potential strength of 0.2V, . In this case the
pinning energy per lattice site appears to extrap-
olate to zero as N, approaches infinity, indicating
that the system is not pinned for this impurity
strength, in agreement with Ref. 10 which predicts,
that for a sufficiently weak impurity potential the
system is not pinned. From a comparison with the
corresponding pure lattice in Fig. 1, me can see
that any pinning which occurs for the impure lat-
tices is due to the impurities.

As mas mentioned earlier, according to Lee,
Rice, and Anderson's argument for pinning, which
says that the wave (and) or lattice distorts to put
each impurity at a minimum in the sinusoidal po-
tential, a dilute concentration of impurities should
be more effective in pinning than a higher concen-
tration. For example, for a 5% concentration of
impurities, there are on the average 20 springs
between each pair of impurities to share any dis-
tortion which places both impurities at potential
minima. A simple calculation of the distortion en-
ergy necessary to place a pair of atoms at poten-
tial minima (i.e., a calculation in which the re-
quired distortion is shared over the springs which
exist between the impurities) shows it to be of the
order of the impurity potential strength (about 0.2
V,). Thus, we might think that there exists a great-
er tendency for pinning for a lattice containing a
smaller concentration of impurities. Neverthe1ess,
a plot of pinning energy per lattice site versus
N, '~' for a lattice containing a 5%%uo concentration
of impurities for impurity potential strength equal
«»0.2V, (see Fig. 2) does not give any indication
of there being pinning as Ã, goes to infinity.

IV. CONCLUSIONS AND COMPARISON WITH OTHER WORK

Our calculations support the result of Lee, Rice,
and Anderson' that the periodic lattice does not pin

a char ge-density wave if it is incommensurate with
it, at least away from the nearly commensurate
case. %"e also conclude, however, in agreement
with Leung's result, ' that when. the wave is nearly
commensurate, the system distorts in such a may
that the lattice and wave become commensurate.
The range of values of the lattice constant over
mhich the lattice "locks-in" to being commen-
surate with the sinusoidal potential due to the
charge density wave increases as the force con-
stant of the interatomic potential decreases or the
strength of the interaction between chain and sinu-
soidal potential increases.

Qur results for impure lattices support the con-
clusions of Ref. 10, in that the charge-density
wave is not pinned by sufficiently weak random im-
purities. If the impurity potential is sufficiently
strong, however, the system does get pinned.

The force constant K for a TTF or TCNQ chain
can be estimated from /=Mug~', where u~ is the
Debye frequency and I is the molecular mass (for
TTF-TCNQ me assume a Debye temperature of
about 100'K). In the calculations of this paper we
have taken the ratio Ka'/2vV, = 33 from which we
estimate that V, =2xl0 ' eV. Thus, an impurity
potential of 0.2V, (at which the system is not pinned)
corresponds to «&0 ' eV. Since the impurity
potential must be so weak for the system not to be
pinned, it is quite likely that the TTF-TCNQ
charge density waves are pinned by random im-
purities, but if the effect of impurity potentials
could be reduced in a one-dimensional conductor
by having highly polarizable molecules to screen
the impurity potential, the charge-density waves
might not be pinned and we could possibly get the
large collective conductivity that people have spec-
ulated about.

The probable reason that McMillan" obtains a
gap in the collective mode spectrum for a eharge-
density wave in a lattice containing substitutional
impurities, independent of the strength of the im-
purities is that his long wavelength "phase excit-
ations" involve a rigid sliding of the charge-den-
sity wave as a whole relative to the lattice, and
there is alw'ays a restoring force for such rigid
translation of the charge-density wave from its
equilibrium configuration relative to the impurities.
It has been shown, '6 however, for weak interaction
betmeen the charge-density mave and the lattice
that such rigid sliding motion decays into phonon
excitations in lowest order and therefore is not a
mell-defined excitation. Thus, we mould expect
damping of McMillan's zero wave-vector mode
which could mipe out the gap 'in the excitationspec-
trum.
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