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Effects of in-band defect-induced phonon resonant modes on phonon-assisted defect tunneling*
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Transition rates for off-center or molecular-defect reorientations show polaron-like effects with one- or few-

phonon assisted tun@cling at low temperatures becoming Arrhenius-like processes at higher temperatures.
Perturbation of the phonons by heavy and/or loosely coupled defects can produce in-band resonant modes. A
simple model is used to show that such resonant modes can have significant effects on transition rates and, in

particular, can extend the range of Arrhenius behavior to temperatures substantially lower than those
predicted by models which use Debye phonons unaltered by the presence of the defect.

I. INTRODUCTION

Phonon-assisted tunneling of atoms and molecules
in solids is a process which plays an important
role in the dynamics of paraelectric and parael-
astic defects' and in ultrasonic attenuation in
glasses. ' It has been suggested as the fundamental
mechanism for hydrogen diffusion in transition
metals. " In addition the theory of this process
occurs in other, and apparently different, contexts:
for example, in small-polaron theory" (where the
basic theory originated in the work of Holstein' and
Yamashita and Kurosawa') and in the theory of op-
tical-absorption- spectra line shapes. ' A particul-
arly interesting feature of these theories is the
occurrence at sufficiently high temperatures, of
Arrhenius-like rate processes in which the activa-
tion energy has a well-defined quantum-mechanical
significance.

In a recent investigation of the phonos-assisted
tunneling of off-center and molecular impurities in
alkali-halide crystals, Shore and Sander' have
pointed out that the perturbation of lattice phonons
by the defect might have significant effects which
are omitted from customary treatments of this
problem. It is the purpose of this paper to develop
a simplified theory of these effects for the case of
in-band defect-induced phonon resonant modes. We
conclude that such effects can reasonably be ex-
pected to produce significant alterations in defect-
reorientation rates especially at low temperatures.

In order to fix the terminology, we will study the
application of the theory to the calculation of tran-
sition rates of off-center or molecular defects in
the presence of a degeneracy-lifting applied elec-
tric or stress field. In Sec. II, a model Hamiltonian
is presented, and in Sec. III, a derivation of the
required transition rate is outlined. High- and low-
temperature limiting forms of this transition rate
as well as numerical calculations for intermediate
temperatures are discussed in Sec. IV. Section V
contains a discussion of a generalization of the

model which contains features expected to arise
from the presence of an in-band resonant mode.

II. MODEL HAMILTONIAN

H =HD+HI, +HDI, (j )+HDI. (2)+H~+H s (1)

H~ describes the kinetic and potential energy of
the defect in a rigid lattice through tunneling ma-
trix elements, 6,, ,

H = 4,. i j (2)
& ~ J

Higher excited libration or vibration states are
omitted. Without loss of generality the energy zero
can be chosen so that 6«=0. By symmetry, b, &

The form of the 6 matrix has been tabulated
for (100), (111), and (110) defects by Gomez
et al.' Eigenstates of H~, called tunneling states,
are linear combinations of the directed states ~i)
and have been tabulated by Gomez et al." and
Bridges. "

H~ is the perfect-lattice Hamiltonian

H~=g R~~,'a, .
a

HD~(z) is that defect-lattice interaction which is
linear in lattice displacements

(3)

HD~&, &= g D,(a)(a, —a~) ~i).(z
~

. (4)

The model we use has been discussed by a num-
ber of workers. ' " We present only enough detail
to establish notation and terminology.

A representation is used in which the defect is de-
scribed by directed or pocket states ~i). For a
(100) system, for example, there are six such states
for which i =x,x,y, y, z, Z corresponding to the six
off-center positions or dipolar orientations. The

'

lattice is described by phonon creation and annihil-
ation operators, at and a„where 0 is an abbrevia-
tion for wave-number vector and branch index.

The model Hamiltonian is
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D1pp(v) D 100

= —, ia, (h/2M, &d, )
~

x [2e,(o)q„—e, (o)q, —e,(v)q, ],
for (110) defects

D, ~p(v) =D, „,(v}=i(h/2M, &p,)'~'

& {—,'u, [e,(v)q„+e,(v)q, —2e,(v)q, ]

+ 2n, e„(v)q ],
and for (111)defects by

D, „„(v)= D, „„(&7)= i (-,'u, (h/2M, &d, )' &'

(5)

(6)

x {[e„(v)q„+e,(o)q„]+ [e„(v)q,+e,(v)q, ]

+ [e,(o)q, +e,(v)q, ]). (7)

Other D, (v) coeffic. ients can be found by cyclic per-
mutations. M, is the mass of the crystal, e,.(v) the
ith component of the g phonon eigenvector, and the
strain coupling coefficients n are given in the nota-
tion of Bridges. " The omission of off-diagonal
~i) (j ~

terms in Ho«» is often called the Condon
approximation and asserts, in effect, that the 4,.~
are phonon independent. " There is some experi-
mental evidence supporting this approximation in
some cases."

HD«» is a defect-lattice coupling due to defect-
introduced mass and force-constant changes. It
is thus quadratic in lattice displacements and mo-
menta and is chosen diagonal in the directed repre-
sentation as HD«» was. HD~(y) produces a static
relaxation for a given defect orientation (new
equilibrium positions of lattice atoms) but no phon-
on frequency or eigenvector changes. HD«, &

per-
turbs the phonons. Until Sec. V, HD«» will be
assumed to be zero.

H~ and H~ are external strain and electric field
interactions with the defect which has the form

Phonon eigenvector conventions used here are de-
scribed in Ref. 12. A frequently used additional
assumption treats only the coupling of the defect
to lattice strains in which case D,(v) i.s proportion-
al to (&0,)' '. Although this assumption is known to
be a crude one'" it does lead to a relatively simple
expression for transition rates and will be used in
this paper where our aims are primarily qualitative.
This additional assumption is valid only for long-
wavelength acoustical phonons and will be referred
to as the long-wave limit (LWL) of Ho«». In this
LWL the D,(v) coe.fficients are for (100) defects

where p,. and S,. are tabulated by Bridges. " These
bias terms will, in general, split the degeneracies
of the tunneling eigenstates of HD.

A = P [D,(v)/h&uv](a. ,+a,') ~i) (i
~

(10)
j~Q

and the transformed Hamiltonian (with Ho«» =0) is

H =e He" =HD+Hi+H~+H~ +H„, (11)

where

H g&;; 10=&&I ~w(Z IF;;&~& I*& .+'!)) ~

l ~ 2 fy

(12)

H =-E i i (13)

Here

F,,(v) = [D,.(o) —D, (v)]/h &dv, (14)

E„=g ~D, (v) ~'/n &pv (15}

E„ is the seU-trapping energy associated with lat-
tice relaxation about a defect in a directed state.
By symmetry it is independent of i. H„can be
eliminated by redefinition of energy zero.

Suppose that H~ is zero and an external field is
applied so that defect orientational degeneracy is
completely lifted and

III. TRANSITION RATES

A quantity useful in the explanation of defect-
lattice behavior is the transition rate zo,, for the
defect reorientation process i -j occurring at a
given temperature and energy difference E, —E~.
One way to calculate this rate is to take H~+H~+H~
as the unperturbed Hamiltonian and HD+HD«»
+H»(„as the transition-producing perturbation.
This was done in early work with" and with-
out"'"'" including HD~(2) HDz (, ~

however, turns
out not to be small and this perturbation approach
is invalid. Perturbation theory can be in great
measure avoided by eliminating HD«» from H by a
unitary transformation the effect of which is to in-
troduce static lattice relaxations about each of the
directed states. "' 1he required unitary operator
is exp(A), where

HE p; 'E

H, = g S,. Ii&(i~,

(8)
(16)H, l'1) =E,. ]i)

with all E, different and the ~i.) directed states.
We investigate transitions between. eigenstates of
H&+H~ produced by HD. These eigenstates are
~i) II, jn,), where II, ~n,) are eigenstates of H~.



EFFECTS OF IN-BAND DEFECT-INDUCED PHONON. . .

2

h
dse'"4'exp g, s I „0

where

&u, , = (E,—E,)/.5, .

g, (s) = (n, +1)e '"++n, e'"~'

n. = [exp(nor. /ar) —P,

(18}

(19)

(20)

and b, ,, is the dressed tunneling matrix element,

6,, = 6,, exp( —R,),
with dressing exponent

(21)

Calculating the transition probability for a transition
i —j to first order in IID (only a single tunneling but
phonon processes to all orders), thermally averag-
ing over initial phonon states, summing over final
phonon states and converting to a transition rate
one finds

Debye model of the host crystal.
Expression (23) contains four parameters h, A,

Q, and w characterizing HD, H»&», IJ~, and H~,
respectively. The crudeness of the LWL-Debye
approximation becomes evident if B, is evaluated
using observed values of the quantities appearing
in Eq. (26). One typically finds such R, to be un-

physically large. For instance, for KCl:QH such
an estimate of 8, gives a value of 84. The ob-.

served" a/2vhc is 18 cm '. Equation (21) would
then imply an absurdly large value for the bare
tunneling matrix element. This inconsistency of
the theory arises, at least in part, from the use
of the LWL-Debye approximation. The calculation
of R, from observed quantities is also quite sensi-
tive to how local electric and stress problems are
treated. '

IV. LOW- AND HIGH-TEMPERATURE TRANSITION RATES

R,, = I"„0 n +~ (22)

The temperature-dependent reduction of the bare
4, , to the dressed 6,, is the analog in the present
context of the increase of carrier effective mass
in polar crystals due to the polaron effect.

We now consider a special case of Eq. {17), that
of a 90' reorientation transition for a (100) defect
with two approximations: (i) The LWL form, Eq.
(5), for D, (cr) and (ii.) the phonons treated in the
acoustical Debye approximation. This wi'Ll be
called the LWL-Debye approximation. Equation
(17) then becomes

@)Gp = & 2 1 —exp (27)

where R is given by Eq. (25), T,=h~/&,

(n+ 1)!(2n+1)! ++ 2w~
m =1

The dependence of w, Eq. (17), on temperature
has been studied primarily in two temperature
ranges. Gosar and Pire" have shown that for T
much less than the Debye temperature 0 the follow-
ing series represents the w of Eq. (24):

kk=(~k'kk)*k *'J S e' *[kkk" —k], (23)

where 4 is the bare 90' tunneling-matrix element,
ie is the bias splitting,

d~ v[(n„+ l)e '"'+n„e'"'], {24)

de ~(n„+2), (25)

and Q is the Debye frequency. The -1 occurring
in Eq. (23) has been inserted, following Holstein, '
to eliminate so-called diagonal transitions and
suppress a nonphysical divergence of the integral
in Eq. (23) for ~=0. For simplicitywewillhence-
forth suppose» 0, i.e. , transitions in which the
defect must give energy to the lattice. The zero
T value of the dressing exponent is

k

A, Q' 3n'0' 1 2 3
4 32~'p5 5 c', c', (26)

where p is the crystal density and e„c,are long-
itudinal and transverse sound velocities used in the

r, = (8/2v)(3/R, )'~'. (29)

This Gosar-Pire series is convergent for all T
and lends itself readily to calculation, but is a good
approximation to g) only for T «8, As we will see
below, T must in fact be less than T,.

For T & T„S=1 and R = R, in Eq. (27). The re-
sulting form of Eq. (27) is the same as the w one
gets by expanding exp[ f(s)]- 1=f(s) in (23) and
neglecting the temperature variation of R. The
transition process described in this case is one-
phonon- assisted tunneling. Subsequent terms
coming from the expansion of exp[f(s}] or in the
Gosar-Pire series describe two-, three-, and
more-phonon- assisted tunneling processes. T, is
the temperature above which multiphonon-assisted
tunneling begins to be important. If we require
T I,

~ T & To then

w o~ = w, =- (n.'/hk) exp(-2R, )(8vR, /g') T, (30)

showing the characteristic linear in T dependence
of one-phonon processes. Within some, perhaps
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narrow, temperature range xv, is nearly the same
as goop. This fact alone does not assure that either

'll, ' th' t p t g, b
good approximation to gp. Furthermore, expanding
exp[f(s)] to get au, is not obviously an approximation
which is expected to be valid at low T since f(s)
does not vanish as T approaches zero.

The other temperature range in which there is
a, useful approximation for Eg. (23) is T&6. In
this case the steepest descents argument of Hol-
stein' applies. f(s) becomes a rapidly vanishing
function of s for increasing ~s

~
and can be replaced

in the integral by its Taylor expansion to second
order in s. The integral is then a Gaussian and one
finds

u =re~-=— exp —— (31)

with the activation energy, in temperature units,
given by

E= —8 61 (32)

Typically T,«E„so the bias dependence of u„ is
weak. Equation (31) is the well-known Arrhenius or
hopping limit of phonon-assisted tunneling. Note
that the bare tunneling matrix element occurs
whereas the dxessed form ~ occurs in gq.,~ and se, .
lt is to be emphasized that E given by (32) is deter-
mined entirely by R and 6, i.e., H~g(z) and Hg It
has nothing whatever to do with 4 or the rigid-
lattice potential barriers which determine L. In-
terpretations of the activation energy F. have been
offered by Stoneham' and by Norgett and Stone-
ham. " It is difficult to interpret the prefactox in

(31}as an "attempt frequency. " It is interesting to
note that for T&2E [1—(T~/4E)]2, w„deere saewsith
increasing T although for such temperatures the
neglect of higher libration or vibration states be-
comes increasingly questionable.

One expects goo~ and w„ to be good approxima-
tions to gy so long as T «8 and T& 6, respectively.
It is not clear from their derivations howhigh T
may be for mo~ or how low T may be for ze„ to be
good approximations. Norgett and Stoneham, " sing
a slightly different form of defect-lattice coupling
such that the D&(o) are proportional to (&o,)' in-
stead of the (ro,)'~' characteristic of the LWL,
have shownby numerical calculation that so„can be
a good approximation to gg for T as low as about
(-,')6, but did not investigate lower temperatures.

To investigate these questions further, we have
calculated the integral in Eg. (23) numerically for
two strengths of defect-lattice coupling and for
temperatures from 209 to ~ 6. For the purposes of
this calculation rather than use Eq. (23) it is more
convenient to deform' the real axis s contour down-
ward in the complex s plane so as to xun parallel

cosTqy[e~~~~ —1]dy, (33)

where

g(y) ~A dxx csch(x/2T) cosxy . (34)

g(y) was calculated by Simpson's rule for small y
and by Fllon s method for larger y. p and the in
tegral over y in (33) were calculated by Romberg
integration.

Figure 1 shows a plot of w from Eq. (33) along
with goop, av„and ge„. %e have chosen 6 = 200 K
and T,= 5 K which are characteristic of typical host
crystals and bias fields. Two different H»&»
strengths represented by R, =3 and 5 are shown.
Numerical integration of Eg. (33) becomes imprac-
tical for Bo much larger than 5, due to near cancel-
lations of large positive and negative contributions.

cv l04
Cl

hC

Tb
l07 I I I I I I I I I I I I I I

20 40 60 80 l00 l20 l40 l60 l80200220240260

FIG. 1. .Various approximations for the transition
rate ge vs T. Solid curves belcnv T=60 K are coop, Eq.
(27). Solid curves above T = 100 K are goA, Eq. {31).
The points indicated by small circles are so&, Eq. (30).
Crosses mark numerically calculated so, Eq. (33). The
points e indicate To, Eq. (29). The calculations frere
done for T~= 5 K, 8= 200 K, and g 0= 3,5.

to the real axis, but through i-k/2kT .This path
goes directly over the integrand's saddle point,
makes f(s) real, and reduces the oscillatory char-
acter of the integrand. This transformed integral
is

w = (n,'/I)t) exp[-2R+ (T~/2T)]
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to the integral. For the parameters used, an upper
limit of y =0.06 in Epl. (33) is more than sufficient
so long as T&10 K. Figure 2, upper two curves,
shows the same calculated values of zv plotted
against 1/T.

We can reach the following conclusions, at least
for the case considered.

(i) The Gosar-Pire series, w cp, is a good ap-
proximation to u only for T& T, even though the
series converges for all T and might be expected'
to be a good approximation for T & To so long as

(ii) In its range of validity, Tp & T & T„w, is a
reasonably good approximation to w so that the ex-
pansion of exp'(s}] is an acceptable approxima-
tion in this temperature range.

(iii) The Arrhenius approximation w„ is excellent
for T &0 and quite good down to T-0.36 for R, = 3

and T -0.4Q™for R, = 5. Stoneham's" calculations
which found w„good down to at least T-0.58
correspond to R, =5 and R, =18.75.

250 125 50 25 20
g-2 I I I I I

~ g6
I

g 0
C4

~ Q

—e~

(35)

n, 3 4
Rp(90 ) 240 p 9Q + p

P Ti Ct Cr
(36)

Typically, for such systems, ny» c2 so that even
in the LWL-Debye approximation it is evident that
60 tunneling will be more strongly reduced by
dressing effects than will 90' tunneling so that,
somewhat surprisingly, 90 tunneling is a faster
process than 60' tunneling at low temperatures.
This feature of (110) systems was first pointed out

by Kapphan and LGty" and has been further studied
experimentally by Jimenez and LQty" and theoretic-
ally by Shore and Sander. ' The fact that R,(60'}
&Rp(90') along with Eq. (32) for the activation ener-

gy E can explain the observation" that E600&E9p&

for the (110) off-center system RbBr:Ag'. As
Bridges" has pointed out this result is paradoxical
in terms of a static potential model without dress-
ing effects.

From Fig. 1 it is evident that knowledge of the
curves ~Gp or w, for T& T, and u~ for T& —,'6 can
be sufficient to allow a good approximate ge vs T
at intermediate temperatures to be simply drawn
in.

It is interesting to note in connection with the
LWL-Debye approximation that for the cases of 60'
and 90' reorientation transitions of (110) defects
the zero-temperature dressing exponents are given

by

Q 9 3 4 3 2
R (60)= —+—+ 2' —+—

240&g~2 2 ' c' c' 1 c5 ~5t r t

I I I I I I I I I I I I

8 % 2432 404856647280889654

1/y t10-3K-')

FIG. 2. Transition rates vs reciprocal temperature.
The upper two curves show av calculated from Eq. (33)
as in Fig. 1. The points ~ near these curves are cal-
culated from Eq. (31). The lower curve is so' calculated
from Eq. (33) with resonance mode modification (37) for
Bp= & q= 1~ (d +2p'c = 21 cm ~, S/2'= 5 cm ~, e
=. 200 K. The points ~ near this curve are calculated
from Eq. (31) with &', Eq. (42) replacing &. Solid
straight lines are extrapolations of high-temperature
Arrhenius behavior. The dashed line shows a range of
near Arrhenius behavior near T = 20 K with an activation
energy of 300 K in contrast to the high-temperature
activation energy of 400 K.

V. EFFECTS ON AN IN-BAND RESONANT PHONGN

MODE ON TRANSITION RATES

The rate given by Eq. (23) is based on the LWL-
Debye approximation in which the defect-phonon
coupling rises smoothly with phonon frequency as
(pc,)' '. If an off-center defect is heavy compared
with the ion it replaces and jor the harmonic
coupling between the defect and the lattice is weak-
ened, H»(» can have the effect of producing in-
band resonant phonon modes in the acoustical
bands. '~ This is known to occur, for instance, in
the case of the off-center system RbCl:Ag in which
the infrared-active resonances have been ob-
served ' and studied theoretically. "' Character-
istic of an in-band resonant mode is an enhance-
ment of the amplitude of relative motion of the de-
fect and its near neighbors. " Such an enhancement
will lead to a peak in the frequency-dependent

H»&» coupling coefficients D,(v) in the vici.nity of
the resonant mode. In this section, we investigate



A~[I+KS(&u)],

where

(37)

the effects on transition rates to be expected from
the associated modification of the LWL-Debye
approximation.

A motivation for this investigation is provided by
the observation 2 29 that in RbCl;Ag' under strain
90' reorientation process are proportional to a low

power of T for T &3 K and become Arrhenius-like
functions of T with an activation energy of about
50 K for T&3 K. Although it would be attractive
to think of this as an example of phonon-assisted
tunneling and the change in T dependence as a
transition from a low 7', Eg. (2V), to a high 7', Eq.
(31) form of m, this would appear to be ruled out
since that transition occurs near —,8 which is about
85 K for RbCL. The high-T Limit of phonon-assisted
tunneling is, of course, not the only process ex-
hibiting Arrhenius behavior. Classical. thermal
activation over a static barrier or thermal excita-
tion to a state in which rapid reorientation motion
can take place also produces such temperature de-
pendence. However, before the phonon-assisted
tunneling mechanism is abandoned it needs to be
properly investigated with the inclusion of perturb-
ed phonon effects. Equations (27) and (31) are
based on t;he LWL- Debye approximation which, as
we have just argued, we expect to be a poor one
for RbCl:Ag' because of the resonant modes of this
system

In order to estimate the effect of resonant modes
on ao we replace A~, which in our model is the
form taken by the IF,&(c) ~' of Eg. (1V) times the
density of phonon states, where it appears in Eqs.
(23)-(25) by the resonant-mode modified form

the fraction of the states in the resonant-mode
region is f and if the resonant enhancement of amp-
litude of relative motion of the defect and its
nearest neighbors is g then the resonant-mode al-
teration of A will be

8~ = B~'(C/&u) -B&a'[I +fS(~)](C/&) [1+PS(&)]

(39)

ox'

a~-[I+(y+g'+/g')S(&)] (40)

From Fig. 2 of Ref. 28 it can be seen thatg ean be
of order 10 so that K =f+ (1+f)g' can be of order
100. D. Tonks and I have examined" the appropriate
projected densities of states for RbCI:Ag' where
the perturbed-phonon I ifschitz Green's functions
arg known fx om infx ared-absorption observa-'
tj.ons ' ' and found that g -300 for this case. De-
tails of this calculation are outside thy spope of
this paper.

Consider how the approximations and results pf
Sec. IV are altered if expression (37) is used where
A&u occurs in Egs. (24) and (25). The Gosar-Pire
series, Eq. (27), is derived by special tricks which
do not appear to genera, lize to this xesonant-mode
model, but analogs of Egs. (30), ur„and Eq. (31),
zo„, are readily found. We shall see, however,
that the expansion exp[f(s)] -I+f(s) on which m, was
based is no longer a good approximation so that
the resonant mode analog of zo, is no longer a good
approximation to the rate ge'. A resonant-mode
enhancement of the Linear defect-lattice coupling
will clearly lead to an increase in 8, and E and a
reduction of rates. One finds that, so long as the
resonance is narrow (6«gals),

S(&)= 1, Ks- z6&&o&&us+ z6,

S(&u) =0 elsewhere.

(36)
Ro =Ro(1+2qQ/3&v„), (41)

The center of the resonant mode is v„and 4 is its
width. This step-function fox m of the resonant-
mode peak is convenient for calculation and the
infinite slopes associated with it do not produce
spurious features. Calculations with a suitable
Gaussian form for S(&o) give essentially the same
results as the 'step-function form. The transition
rate defined by substituting expression (37) for
A&@ in Eqs. (23)-(25) will be called ce'.

The value of K in expression (35) can only be
derived by detailed considex"ation of the interaction
of the defect with phonons in the resonant mode re-
gion. K will be determined by projected densities
of states foj: perturbed phonons. K.can be quite
large. The factor Av arises from the product of
a density of states factor B~' and a coupling factor
~E,&(a) (' which in the I WL is of the form C/v. If

where

(42)

(43)

are the new resonant-mode-altered values of the
dressing exponent (26) and the Arrhenius activation
energy (32). For K=300, AA/%=6=165 K, &o„/2wc
= 21 cm ', and 6/2wc-5 cm ' corresponding to fea-
tures of the A, resonance in RbCL:Ag', g turns out
to be about unity. Note that one resonant-mode
effect is that of increasing the activation energy
E ' to a value higher than would be predicted on the
basis of H~~(» alone, i;e., on the basis of strain
coupling parameters through Eqs. (26) and (32).
Note also that in the case consider'ed Q/~z 5 so
that the resonance enhancement of 8, is a Ly,rger
effect than the enhancement of E. This suggests
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that an effect of the resonance will be to reduce
low-temperature rates, which depend sensitively
on R„much more than high-temperature rates
and could tend to straighten out the upper curves of
Fig. 2 and extend the Arrhenius region to lower
temperatures. This is indeed the case.

The lowest curve in Fig. 2 shows transition rates
calculated numerically from Eq. (33), using the
generalization (3I), q=1, 0=200 K, and w„and 8

from the last paragraph. Note that this resonant-
mode-altered zo' remains Arrhenius-like down to
40 K, which is only —,'e. Another region of near-
Arrhenius behavior with an activation energy of 300
K occurs near T =20 K. At high T w' is well given
by Eq.

(31}withe�'

from Eq. (42} substituted for E.
This is shown by the two high-T points on the
lowest curve of Fig. 2.

The low-T rates so' are not, however, given by
Eq. (30) with R,' from Eq. (41) substituted for R, .
Figure 3 shows T'=20 K rates gg' as a function of
increasing j for various values of Rp For g not
too small these rates are proportional to exp(-aq),
where a is an R,-dependent constant. If the expan-
sion of exp[f(s)] were valid for the resonance case,
arguments analogous to those leading to Eq. (30)
show that sv,

' would be given by Eq. (30) with R,',
Eq. (41), replacing R,. If this were valid a would
be given by 4QR, /3cu„which is 8.9 R, in the case
considered here. In Fig. 3, it can be seen that
calculated values of a are smaller than this and
although a does increase with R, it is not propor-
tional to R, .

Call T„ the temperature above which w' is
Arrhenius-like in its temperature dependence. One
can get a rough idea of how T„depends on the inter-
play of H»&» and HD«», that is on R, and q, in
our model. Suppose T„ is 20 K. This requires,
for a given R„ that the resonance-modified Ar-
rhenius rate [Eq. (31}with E replaced by E' Eq.
(42)] evaluated at T =20 K be equal to the low-
temperature rate given by the curve for the same Rp
in 5'ig. 3, extrapolated to higher g if necessary.
g must be adjusted to accomplish this. One finds
that as R, is increased from 1 to 5, the required
value of g increases from about 1 to about 100. If
we take the case of RbC1:Ag', for which g -1, as
representative of physically reasonable values of

q we see that a resonant-mode reduction of T„ to a
temperature as low as 20 K is plausible only for
values of Rp not much greater than unity. Shore
and Sander' found Rp to be about 5 for the 90 -re-
orientation process in RbCl:Ag'. It is therefore
questionable whether the observed Arrhenius be-
havior of this process above T=3 K could be an
example of resonant-made extension of the temp-
erature range of phonon-assisted tunneling Ar-
rhenius behavior. A more detailed investigation of

= 1O~

«l~ 10

I'
.1 .2 .3 J .5 .6 7 .8 y

FIG. 3. Transition rate so' as a function of q for
various values of go. For q not too small gy' is pro-
portional to exp(-aq). The a values are indicated for
each curve.

this system is in progress and will be reported
elsewhere. "

It is interesting to note that in the off-center
systems Cu' in KC1, KBr, KI low-temperature
rates are so slow as to have been unobserved till now

while Arrhenius behavior is observed at higher
temperatures. " Cu' is a heavy substitutional im-
purity in potassium halides ~d so is a possible
candidate for producing a resonant mode which, as
we have just argued, could have as its consequence
a marked suppression of low-temperature rates so
that only Arrhenius rates would be observed and
the Cu'-potassium-halide systems would appear to
be "classical, " i.e. , no obvious quantum-mechan-
ical tunneling would be observed. "

Ne conclude that the effects of a resonant phonon
mode on phonon-assisted tunneling rates of a defect
can include an extension of Arrhenius behavior of
transition rates to temperatures well below M2

Nearly Arrhenius behavior with a lower activation
energy can occur at even lower temperatures.
These effects arise because of enhancement of the
effect of linear defe.ct-lattice coupling for phonons
in the resonant-mode frequency region. This leads
to reductions of both high- and low-temperature
rates in comparison with rates calculated in the ab-
sence of a resonance. The low-temperature re-
duction is much greater than that of the high-temp-
erature rate.
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