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Low-temperature electrical and thermal resistivities of potassium:
Deviations from Matthiessen's rules
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The low-temperature electrical and thermal resistivities of potassium are calculated as functions of
temperature and impurity concentration. Realistic phonon spectra are used for computing the electron-
phonon interaction. The variational calculation of the transport coeAicients employs a trial distribution
function which contains a nontrivial dependence on both the energy and the angular coordinates, so that
deviations from Matthiessen's rule (DMR) in the electrical resistivity may be calculated to better accuracy
than previously possible. Both the energy and the angular dependence are found to be relevant for the
electrical resistivity, and the improved calculation gives good agreement with the experimentally observed
DMR. For the thermal resistivity our results agree with previous ones; the angular dependence is found to
be unimportant, and as a result we obtain essentially no improvement over calculations which use energy-
deyendent trial functions. The lack of agreement with the observed DMR in the thermal case tends to
confirm the earlier conclusion that another mechanism is involved.

I. INTRODUCTION

The low-temperature electrical and thermal
resistivities of potassium have undergone iritensive
study in recent years, both experimental' ' and
theoretical. ' " The general temperature depen-
dence of the electrical resistivity seems to be
well understood' [except at the very lowest tem-
peratures, below about 2 K (Ref. 13)], and the
current questions focus on the more particular
aspects such as the deviations from Matthiessen's
rule (DMR), i e , the f.ai.lure of additivity between
the residual and temperature-dependent resistivi-
ties. A number of possible mechanisms for this
effect have been discussed; among them are phonon
drag, inelastic scattering from impurities, and
macroscopic defects. These mechanisms are re-
latively complicated and have not yielded to rigor-
ous quantitative calculations useful for compari-
son with experiment. Those calculations which
have yielded results that could be compared with
experiment fall into the following category: the
electron-impurity and electron-phonon scattering
probabilities are treated as additive and indepen-

. dent of one another; the DMR then results from the
form of the nonequilibrium distribution, which is
different for one scattering mechanism from what
if is for the other, when each mechanism is
taken alone.

Recent calculations of the electrical resistivity
employ a nontrivial angular dependence in the dis-
tribution function. ~ Sondheimer" had much ear-
lier considered the energy dependence in a model
which ignored umklapp processes and found its ef-
fect to be small. In this work we treat the two ef-
fects in combination by means of a variational ex-
pansion of the trial distribution function and within

a realistic model of the electron-phonon interac-
tion. The details of the calculation are described
in Sec. II. In Sec. III we present the results which
may be summarized here briefly as follows: our
new result is for the electrical resistivity, where
we find that the energy-dependent contribution to
the total DMR is (i) comparable in magnitude with,
but (ii) occurs at higher impurity concentrations
than the angular-dependent contribution. As a re-
sult of these two features, we obtain an agreement
with the observed DMR which was previously lack-
ing, particularly in the 4He temperature range
for the less pure samples.

In the case of the thermal resistivity we have no
substantially new results to report, and we can
only confirm a number of previous ones. While the
focus of previous work has been on the energy de-
pendence of the distribution function, ""Kus" has
nevertheless treated the angular dependence in
combination with it, using the approximation of
Robinson and Dow, "and shown that its effect is
very small. Since this approximation tends to
overestimate the DMR, (as discussed in Ref. 6), it
is indeed appropriate for demonstrating the small
effect of the angular dependence on the thermal
resistivity. It is not surprising that we find a
similarly small effect with the variational method.
(Since we are primarily interested in the electrical
resistivity where the angular effect is large, we
more appropriately use the variational method,
which tends to underestimate the DMR. ) We should
point out that Leaven's" calculation is the most
accurate one which exists for the thermal conduc-
tivity. Although angular. dependence is ignored
in his treatment, the energy dependence is cal-
culated by numerical integration of the Boltzmann
equation, and hence the clean limit is predicted
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more accurately than by the variational calcula-
tions (of Refs. 10, 11, andthepresentwork, for
example}. In addition the phonon spectra and form
factor are calculated from first principles, al, -
though, as Leavens points out, the data do not
distinguish between the first-principles phonon
spectra and those calculated from a fit to neutron
data.

Incidentally, we have retained up to four terms
in our power-series expansions of the energy-de-
pendent functions in order to study the accuracy
of the resulting resistivities. It is interesting to
compare these results (Sec. III) with those of
Leaven's calculation.

II. CALCULATIONS

%'e begin this section by discussing the trial
distribution function, since it is the new ingredient
in the calculation. The deviation function 4(k) may
be introduced as usual by expanding the distribu-
tion function

=
g N(0){V',.g, (9)

where N(0) is the density of states of a single spin
at the Fermi level, and angular brackets denote
the average over the angle 8 between k and k'. The
residual (T -0) resistivities, which are due to
electron-impurity scattering alone, are just, for
the electrical case,

2~0=~&™~~mp~ (10a)

that the matrix element V, , depends only on the
magnitude of the wave-vector difference and not
on the individual wave vectors themselves. If there
is no electron-phonon scattering (i.e., at T= 0),
the solution of (2) is

4'{k)= I" v(k)r, „
where the electron-impurity scattering rate is

v, ', = N(0) (1 —cos8)v', ,(2k~sin-,'8)2v ' d(cos8)
-1

f(k) =f (E~) — ~ @k)
and for the thermal case,

W, = W...= sm/Hsl ', T~, , (10b)

about its equilibrium f (E,). The linearized Boltz-
mann equation then takes the form

X(k) = Q P(k, k'}[g(k) —$(k')], {2)

where

X(k)=, F v(k)

is the "forcing" term, With F proportional to the
applied electric field q or temperature gradient
&7.', i.e.,

e&, electrical caseF=
gk~&T, thermal ease,

(4a}

(4b}

q = (E, —p, )/k~ 7

is a reduced energy variable which we shall use
throughout. The scattering kernel P(k, k') is the
sum of electron-phonon and electron-impurity
contributions

P(k, k')=P~(k, k')+P, ~(k, k').

For illustrative purposes, consider first the im-
purity piece; its important properties are that it
is elastic and, to sufficiently good approximation
for our purposes, isotropic. Accordingly, it may
be written

P, ,(k, k') = (2w/8)V2, ( ~
k -k''~ )5( „EE), (I)-

where the isotropy is expressed through the fact

~(I)= P g ~„,q"If, ($)
n

(even)

= ~„+~,p, ($)+ ~,g, ($}

+ q'[~„+~„z,(6)+~„z,($}]. {12)

'The second and third lines give the actual form
used in the calculation. The Kubie harmonics K4
and K, are retained because these are the lowest
nontrivial orders belonging to the identity repre-
sentation of the cubic gxoup, and because their
combination (together with the constant v~) is cap-

Expressions (9) and {10)will be useful later since
we shall have to infer the strength V', , of the im-
purity kernel from the measured residual resis-
tivities of various samples. In computing the re-
sults to be shown in Sec. III, we have in fact sim-
ply taken V, ,(k —k') to be a constant. Similar
computations with other functional forms produced
essentially the same results.

The electron-phonon kernel P~ has neither of
the properties mentioned for P, , Its inelasticity
gives rise to nontrivial energy dependence of the
deviation function, and its anisotropy gives rise
to nontrivial angular dependence. To incorporate
these into the calculation we generalize (8) by
writing

4'(k) = F v(k)r(k)

and we then expand 7 in powers of the energy vari-
able q (5), and in Kubic harmonics of the angular
variables 8 and Q (denoted by k}:
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able of producing. a minimum in the [110]direc-
tion, while remaining large in other symmetry di-
rections [100] and [ill] which are shown in Fig. .

1. This is the behavior expected (at least in the
case of the electrical resistivity) on the basis of
the sharp peaking of electron-phonon umklapp
scattering strengths about the [110]directions. "
The q expansion contains constant and quadratic
terms in the ease of the electrical resistivity; in
the thermal case [owing to. the form of F (4b)],
linear and cubic terms are present. Generally

one has even (odd) powers of q in the electrical
(thermal) case, as is well known from previous
studies of the energy dependence alone. In the
Appendix it is shown that the same feature occurs
in the present case, in which nontrivial angular
dependence is included as well. %e have briefly
studied the effect of adding higher-order- terms in
the q expansion, and this will be discussed in
Sec. III; it does not alter our basic conclusions.

The electron-phonon contribution to the scatter-
ing kernel is"

(14)

contains the squared matrix element between
single-orthogonalized-plane-wave states of an
operator involvi~ the electron-ion pseudopotential
V and the phonon polarization vector 4 for the
mode O'. Both this and the phonon frequency (d,
are assumed to be evaluated at wave vector k-k'
reduced to the first Brillouin zone; they are gen-
erated by means of a fifth-nearest-neighbor force-
constant model, fit to inelastic neutron scattering
data and sound velocity data of Cowley, %oods,
and Dolling. " Most of the results to be shown in
Sec. III were obtained using the Bardeen pseudo-
potential form factor. ' To demonstrate the sensi-
tivity of the results to the choice of the form fac-
tor, we repeated some of the calculations using
the Ashcroft one."These choices follow in the

FIG. 1. Brillouin-zoneedges are projected onto the
Fermi surface to exhibit the face-centered-cubic struc-
ture of the reciprocal lattice. Zone corners are in the
I100j and flllj directions. [110) is the directLon of
closest approach to the zone faces, and the location of
umklapp-scatter ing "hot spots".

spirit of B,efs. 4, 5, 9, and 10.
Because of the complexity of P~, the finite order

expansion (12) cannot be an exact solution of (2),
but the usual variational interpretation applies: a
resistivity functional (to be written down shortly)
is minimized with respect to the expansion param-
eters in (12). The minimization produces the least
upper bound on the exact resistivity [i.e., that
which would be calculated from the exact solution
of (2)]. To state this concretely, we write the
right-hand side of (2} as E%(Q, and introduce the
inner product of two functions f(k) and g(k) as the
usual k space summation

(f ») = »gf((()»((») =
»+ f&'»f((»(»(»)

Then the variational resistivity, as a functional of
e(k), is

p(g»} = (@,P4')/(X, 4)'

(write W instead of p for the thermal case), where
»I (R) is given by (11) and (12). The minimization
procedure is a straightforward extension of Sond-
heimer's method. "

For discussion and plotting purposes in Sec. III
it is convenient to review the conventional notation
for the various contributions to the total electrical
resistivity (16}:

P ~@]= P(T» Po}= Po+ Pr = Po+ PI + &»

where p, =p(0, p, ) is the residual, and pr= p(T, p,)
—po the temperature-dependent, resisitivity; pI
= p(T, 0) is the ideal resistivity, and & = pr —p~ fs
the deviation from Matthiessen's rule. Qf course
p~ and & are functions of both'po and the tempera-
ture, and will sometimes be written as such, e.g. ,
pr = pr(T, p,}. In the case of the thermaL resistiv-
ity, the appropriate parameter in terms of which
to describe the impurity dependence is TW„rather
than W, which is (10b} inversely proportional to the
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temperature. So the analog of (17) is

W(sll) = W(TI TWO) = W~+ Wr = W, + Wi+ 5, (18)

where 6 is the deviation from Matthiessen's rule.
Incidentally, we shall apply the terms "residual"
and "temperature-dependent" to the thermal as
well as the electrical resistivity, with the under-
standing that "residual" applies to the tempera-
ture-independent quantity TW, (not just Wo}, which
appears as an argument in (18).
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We discuss first the electrical resistivity. To
give a brief overview of the effects of the pious
trial functions, we plot resistivity versus tem-
perature of Fig. 2 for the four choices indicated.
The top curve results from the simplest trial func-
tion r(k}= constant and thus represents 'the dirty
limit of the temperature-dependent resistivity,
p„(T, ~). The reinaining curves. represent im-
proving approximations to the pure metal: in de-
scending order, the trial functions include angu-
lar-dependence alone, energy dependence alone,
and finally, the combined dependences. The ef.-
fects of the two dependences are approximately addi-
tive, with angular dependence contributing slight-
ly more than one-third of the total improvement.
The difference between the top and bottom curves
represents the maximum DMR n(T, ~) (Eq. 17)
predicted by the general trial function, and it
compares well with the DMR found inthe measured
resistivities of Ref. 1.

A more meaningful comparison of the measured
and calculated resistivities is given in Fig. 3,
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FIG. 2. Temperature-dependent electrical' resistivity
calculated with Bardeen's form factor for four choices
of trial function: (A) T(&) =constant, (B) angular depen-
dence alone (K4 and E& added), (~) energy dependence
alone (g added), and (D) combined dependences [five
nontrivial parameters —see Eq. (12)] .
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FIG. 3. Calculated and measured temperature-depen-
dent resistivities as functions p 0. Calculated curves
correspond in the clean limit to those shown on Fig. 2.
Note that angular and energy dependences f(B) and (&),
respectively] are important at different values of po.
Circles correspond to samples with po= 55, 5.5, 1.8, and
0.9 ~ cm, reported in Ref. 1.
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where calculated resistivities pr(Ts p, ) are plotted
as functions of p, at selected temperatures. These
clearly exhibit the second important feature of the
energy-dependent contribution —namely, that it
occurs for larger values of p, than the angular-
dependent one. This feature. is essential for under-
standing the data at 3 and 4 K. Moreover, the
theory predicts that still dirtier samples should
exhibit further DMR near 8 K, while at 3 and 4 K
the dirtiest sample shown is already quite close to
saturation (i.e., to the dirty limit).

We must now discuss the sensitivity of these re-
sults to the details of the calculation. First, to the
choice of form factor: the overall magnitude of
the resisitivity is quite sensitive to this choice;
iq fact, if the Ashcroft form factor" were used,
then the calculated resistivities would lie every-
where below the measured ones (see for example
Refs. 4, 9) rather than above them as in the case
of the Bardeen form factor" (Fig. 3). Byadjusting
the Ashcroft form factor within the range of the
accuracy to which it may be determined" by
other measurements, one may in fact reproduce

-I3
3.2

the observed magnitude of the resistivity. ' We
have done this, and the results are shown in Fig. 4.
These plots demonstrate the important remaining
point that DMR are not very sensitive to the func-
tional form chosen as long as the resistivities
themselves are comparable for the two choices
being compared. Incidentally, the DMR are sen-
sitive to the magnitude of the resistivity (or more
precisely, to its umklapp component, which is
most affected by the choice of form factor); the
fractional DMR (i.e., 4/pr) scales roughly linearly
with p~. This behavior is discussed in detail in
Ref. 6, and is evident in the calculations of Refs.
4 and 5 as well.

Next we must discuss the sensitivity of our re-
sults to the trial function. To do this we exploit
the approximate additivity of the effects due to
angular and energy dependences to examine the
nature of the convergence of each expansion taken
by itself. First, the Kubic harmonic expansion
has been examined elsewhere, "and the improve-
ment achieved by going beyond K6 is very slight.
'The larger corrections obtained by including higher
powers in the energy expansion are exhibited on

Fig. 5. These corrections are small at 4 K and
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FIG. 4. Repeat of Fig. 3 with Ashcroft's form factor
used in place of Bardeen's form factor. Core radius pa-
rameter R, adjusted from Ashcroft's quoted value
1.13 to 1.16 A. to fit resistivity in magnitude. See Ref.
20.
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FIG. 5. Repeat Fig. 3, with augmented energy depen-
dence in the trial function. Curves C, C', and &" cor-
respond to the retention of terms up to g, ri, and g~,

respectively, in the energy expansion. Angular depen-
dence is retained only in curve B. (Bardeen form factor
used, as in Figs. 2 and 3).
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somewhat increased at higher temperatures, but
in all cases occur only at the smaller values of pp.
The&tate of agreement with the data is not altered.

Before presenting the thermal-resistivity re-
sults, we should repeat that since the angular de-
pendence is unimportant, we can only confirm
here the conclusions already reached by other
authors. Perh'aps it is useful nevertheless to
present these results for comparison with the
electrical resistivity since the calculations are
parallel, and to review the state of agreement (and
disagreement} with experiment for the thermal
case.

First, to compare the effects of the angular and
energy dependences over the temperature range of
interest, we plot 8'~T ' versus T on Fig. 6, for a
series of successive improvements to the trial
function. The top curve results from the simplest
trial function v(k) = constant [or 4(k) -

q cos8, see
'kqs. (4), (5), (ll)s and (12)] and thus represents
the dirty limit, Wr(T, ~) [Eq. (18)]. Ignoring the
small splittings, the three remaining curves rep-

' resent, in descending order, the retention of rP,
g', and g' terms in the trial function. 'The small
splitting of the top two curves represents the in-
clusion of angular dependence. We find, as in the
electrical case, that the effects of angular and
energy dependence are (to order rP) approximately
additive, and therefore omit the (presumably
small) angular-dependent corrections from the

. g' and g' calculations. This result confirms a
previous conclusion drawn by Kus, "who treated

34 xlO
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angular dependence through a quite different ap-
proximation (discussed earlier) and found a simi-
larly small effect.

To make a comparison with the data' and with
Leavens'" calculation, it is instructive to plot
W~ versus S;T at selected temperatures, as
done on Fig. V. The solid curves represent the
same trial functions shown on Fig. 6. The g' cor-
rection is very similar to Ekin's result (not
shown}. The rP and q' corrections improve the
calculation in the clean limit, although Leavens'
clean limit (being exact, except for the negligible
angular-dependent corrections) is slightly better.
Note, however, that the g' calculation seems to be
an excellent approximation close to the dirty limit.
Moreover, the maximum slope of the theoretical
curve does not seem to be affected greatly by im-
provements to the trial function, beyond the q'term.
Hence all of the calculations fail to explain the
large slope exhibited by the data. Figure 7 drama-
tizes the conclusion that another mechanism (such
as those mentioned at the beginning) is responsible
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FIG. 6. Calculated temperature-dependent thermal
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FIG. 7. Temperature-dependent thermal resistivity
as a function of the "residual" resistivity ~'OT. Solid
lines are our calculated results, corrwsponding to those
of Fig. 6. Triangles represent calculation by Leavens
(Ref. 12). Arrows near margin represent his clean and
dirty limits. Circles represent data of Ref. 3.
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for the observed DMR in the thermal resistivity.
It is clear on the other hand that for the electri-

cal resistivity, no additional mechanisms need be
invoked for temperatures down to 3 K.

A concl.uding point which is not very important
for the present work, but which may have rele-
vance for other metals with larger DMR, is the
fact that the contributions from energy and angu-
lar dependence to the total improvement in the
calculated resistivity are not perfectly additive.
Although the departures from additivity are small
in potassium, it is interesting that these depar-
tures may have either sign (i.e., the interference
between the energy- and angular-dependent con-
tributions may be either "destructive" or "con-
structive"). This is illustrated on Fig. 8, where
we have plotted the quantity

~(B,C; D) = [np(D) —&p(B) —&p(C)]l&p(D),

where, for example,

~p(D) = p(&) p(D)—
is the improvement gained on going from the sim-
plest trial function (A) to the more sophisticated
one (D). Referring to Fig. 3, where (D) repre-
sents combined angular and energy dependences,
and '(B) and (C) represent the separate depen-
dences, respectively, we see that u(B, C;D) is a
measure of the departure from additivity of the
two individual improvements np(B) and &p(C). The
interesting feature of Fig. 8 is that X)(B,C; D) is
positive somewhere, representing "constructive"
interference between energy- and angular-depen-
dent contributions. This positivity occurs at lar-
ger p, values, where the improvements &p(D),
etc., are small. It is not surprising that. S should
become negative in the region where the improve-
ments are larger, since there would be a natural
limit on additivity if the individual improvements
were to approach 50/~. (In such cases it would not
be sensible to speak of additivities in the sense
used here. ) Thus the two significant features of
Fig. S are that S is generally small for potassium,
and that it can in principle be positive (indicating
"constructive" interference)

APPENDIX

In the text we retain only even (odd) powers of
the energy variable q in the electrical (thermal)
conductivity calculation. We present here a gen-
eral proof that the exact deviation function 4(k) is
an even (odd) function of q at each angular position
k on the Fermi surface. To begin, we decompose

0.25
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the exact function

(Al)

into even and odd functions, E and 0, of q. 'The

angular dependence (k) of each function may be
considered arbitrary. In the resistivity functional

p(4) = (@,P4)(X, 4) ', (A2)

the denominator simplifies because of the evenness
(oddness) of X(q) (see 3, 4) in the electrical (ther-
mal) case, as follows:

[(X,E), electrical case

~. (X, O), thermal case. (A3)

However, both even and odd components contri-
bute to the numerator

(4, P4) = (E,PE)+ (0, PO), (A4)

while the cross term vanishes as we demonstrate
shortly. Since the collision operator P is positive-
definite, both terms contribute positively to the
resisitivity unless one of the functions E or 0
vanishes identically. Since the exact 4 (k) mini-
mizes p {4']., it follows that 0 vanishes identically
in the electrical case, while E vanishes identically
in the thermal case.

To complete the proof we now need only show
that the cross term vanishes from the numerator.
Using the definitions (2), (13), and (15), we write
out the cross term

FIG. 8. Departures from additivity of the improvements
(to the calculated electrical resistivities) gained from
energy and angular dependences in the trial function.
The quantity Q(B, &; D), defined in the text, is calculated
from the plots on Fig. 3. The positive values occurring
at larger po values indicate that larger DMR are pre-
dicted by a trial function containing both energy and

angular dependences than by the addition of the separate
DMR arising from each dependence taken alone.

(E&PO)= d'kd kQ~g (k k')~' dEdE'
ks T@3v~ (2v)6 6

le "-e "'I
IJ

&&[5(E- ' EKu), )+ 5(E E'+h(u, )] E(k, q)[0 (k, q) -—0(k', q')], (A5)
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where a decomposition into energy and angular

(d'k) integrations was made, and the matrix ele-
ment's exclusive dependence on the angular vari-
ables was made explicit. If the transformation
E ——E and E' -E' is made, then the products EO
both change sign, while the rest of the integrand

remains unchanged since

f (E)f (E )
I
e " —e "'

I

' =f'(- &)f'(-E')
I
~" e"—

I

'
~

Hence the total integrand changes sign and conse-
quently must vanish. This completes the proof.
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