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This work is a result of search for an efficient and accurate scheme for the calculation of solid-state

properties from the k-space integration inside the Brillouin zone (BZ). A survey shows that because of the
lack of a satisfactory interpolation method the presently available BZ schemes are either too complicated or
too specialized to be desired for accurate and vast applications. A scheme which uses a small number of first-

principles k points {-150) to achieve a high accuracy has been obtained. The special feature of the scheme

is the utilization of a set of coordinates which allow the interpolation and integration to be carried out in a
systematic one-dimensional manner. The problem associated with the band crossing and band switching in

real crystals can also be handled easily within the scheme. The quality of the scheme has been satisfactorily

tested by a direct comparison of the calculated density of states with the exact results for the tight-binding

band models. The electronic density of states for Cu has also been calculated to demonstrate the applicability

of the scheme in real crystals. %'ith its simphcity, generality, and accuracy, the present scheme should be

very useful for the calculation of various spectral properties of solids. The application of this scheme in the

study of impurities and disordered alloys and in connection with the. empirical parametrization of the
electronic structure of solids is also discussed.

I. INTRODUCTION

The importance of the techniques of k-space
interpolation and integration in the Brillouin zone~ 3

(BZ) has been well recognized in the field of band-
structure calculation. Besides being an indis-
pensable part in many important calculations such
as the self-consistent band calculations and
Green's-function formalisms for the impurities
in crystals4 ' and for the disordered alloys, 6 '3

the BZ integration is the basic tool for the band
calculation of various solid-state properties such
as density of states, optical spectra, charge den-
sities, photoelectric spectra, and susceptibility
functions, etc. More theorists and experimental-
ists now thin before seem to be more interested
in these calculations. Although many sophisticated
BZ schemes are available, we find, from the sur-
vey to follow, that there is no simple scheme
which has the desired uniformity and efficiency for
vast and accux ate calculations. The search for
such a scheme motivated the present work.

Another motivation for the present work is its
connection with the application of a parametriza-
tion scheme for the electronic structure based on
Green's-function method" (GFM) of Korringa,
Kohn, and Rostoker (KKR)" I recently developed

by Chen and Segall. " That scheme pxovides an ef-
fective means for modifying the ab &gitio potentials
to yield energy bands E„(k}in agreement with the

experimental data. Means for obtaining the wave
functions @„(k)and related quantities from the
parametrized quantities has also been implement-
ed. ~s In order to apply the pararnetrization scheme
more effectively, it is necessary to have a good
BZ scheme which serves not only to relate the

parametrized E„(k) and y, (k) directly to the ex-
periments but also to extract band parameters
from the data. It is believed that that paramet-
rization scheme, when coupled with the BZ scheme
developed in this paper, would become a very use-
ful tool for the quantitative study of the electronic
structures in crystals.

Most of the properties mentioned above can be
represented by a general spectral function,

where the energy parameter u'=-& +t.o contains an
infinitesimal positive imaginary part, f ( k) is a
function of E„(k) and the matrix elements M(k),
and &o(k) is either the E„(k) or the difference in
band energies. The integration in Eq. (1},by
symmetry, can be reduced to that in a smaller
volume so-called the irreducible wedges of the BZ
(IBZ). While the real part R (cu) and the imaginary
part f{(d) of Eq. (l) can be related to each other by
dispersion relations, the functions which are cal-
culated more often are the f(&g),

E(sD = I d*l f(k l((~ —~(k)),
'

and the integrated function

An accurate numerical evaluation of these integrals
usually requires the use of very fine mesh, say 10
k points or more. However, because the calcula-
tion of E„(k) and M(k), particularly for electrons,



normally involves large matrices and lengthy nu-
merical procedures, a direct. calculation of these
band quantities on such fine mesh is considered
impractical. %hat is usually done is to calculate
the E„(k) and M(k) on a coarse first-principles
grid containing, say, N~ points in the IBZ and then
to interpolate them on a finer mesh. The difficul-
ties in the BZ interpolations have arisen primarily
from the piece-wise continuous nature of the bands
and from the nonrectangular geometry of the BZ.
The constraint on the integration space imposed by
the IBZ and the singular behavior of the integrand
cause further difficulties. Thus, special numeri-
cal techniques are required for the BZ integration
and interpolation.

Considerable work has been done for the BZ inte-
gration in the past and many sophisticated schemes
are now available. The main schemes include (i)
the root sampling method" "; (ii) the linear dis-
crete method"; (iii) the linear analytic method"'";
(iv) the quadratic (QUAD) scheme" "; (v) the hy-
brid methods" "; and (vi) the tetrahedron
scheme. "" A comprehensive comparison of the
first five schemes can be found in the review
papers by Gilat." The tetrahedron scheme has
also been discussed in some detail by Bath and
Freeman. " A critical comparison between the
two popular methods (iii) and (iv) was made by
Gilat and Herman. ~ Although the computational
details are different for different schemes, the
integration techniques used can generally be char-
acterized as being either the sampling of k points
in the IBZ or the summation over many microzones
in which the integrations are carried out analyti-
cally in a linear or quadratic approximation. It is
pexhaps fair to say that all these integration
schemes can give accurate results if sufficiently
fine mesh is used and accurate band quantities on
the mesh are available. Therefore, the. problem of
BZ integration is really not in the integration itself
but lies in the problem of obtaining accurate band
quantities on the mesh —i.e. , the problem of BZ
interpolation.

The main interpolation methods employed in the
past can be represented by three approaches: (a)
the three-dimensional numerical interpolation, '
(b) the model Hamiltonian interpolation scheme, ""
and (c) the local k. p method. ~ The first method
has been limited to the linear and quadratic inter-
polations since the number of terms increases dras-
tically fast with the order of interpolation. Treating
the band crossing" is a major problem in this ap-
proach. To aqhieve adequate accuracy, a large
number of first-principles k points, N», (N» & 10')
is needed. In the model Hamiltonian approach, the
parameters required for the Hamiltonian matrix
elements are determined from fitting the band en-

ergies at selected k points and the resultant Ham-
iltonian matrix is then used to generate band en-
ergies on the integration mesh. There is no prob-
lem for this method to deal with the band crossing
and band switching and the N~ needed is not large.
Although a model Hamiltonian can be made to yield
bands appropriate for certain spectra like the
photoemission, there is a basic question about its
capability in pinning down the energy accurately
(say, to 10 ' Hy). Yet the major objection to this
method is in its lack of uniformity, namely, dif-
ferent Hamiltonians are needed for different types
of bands or even for different energy ranges of the
same band structure. For example, a 4@4 ortho-
gonalized-plane-wave (OPW) model Hamiltonian,
which may work well for the lower energy bands
for Al, is certainly not good for a d-band metal or
for the higher energy bands for Al. Moreover, the
diagonalization of the model Hamiltonian on the fine
mesh can be very time consuming. There is also a
question about obtaining the wave functions and the
related quantities from this method. The local
k p method represents a combination of the above
two approaches. In this approach the band en-
ergies (and energy gradients) are extrapolated
from the closest first-principles k point using the
k ~ p Hamiltonian. In order to apply this method,
several bands above the energy range of interest
have to be included. Since only a finite number of
bands are included in the calculation, the accuracy
is not uniform throughout the energy range. To
achieve accuracy, a large N~ is also needed. This
method may also produce spurious discontinuities
in the bands. ~

Thus from the above and from the disc'ussion in
sec. VI, we conclude that, because of the lack of a
good interpolation scheme, the pre'sently available
BZ integration schemes are still too complicated
or too specialized to be desired for accurate and
vast calculations. However, since the above
schemes have been developed to a high level of
sophlstlcatlon~ 1t 1s very diff lcult to Qlake a slgnl-
ficant improvement without considering a new
approach. The most desired improvements, in our
opinion, mould be the development of a general
numerical interpolation scheme which uses a
small N~ to achieve the desired accuracy.

In Sec. II we show that the BZ interpolation can
be carried out accurately and efficiently using sys-
tematic one-dimensional procedures based on a
system of coordinates which conveniently define
the geometry of an IBZ.

In Sec. III, bvo BZ integration methods which
are compatible with the interpolation scheme are
investigated. The first method is a direct numeri-
cal integration and the second method divides the
IBZ into a bundle of thin wedges (TW). The angular
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dependence of the integrand in each TW is treated
as constant so that only one-dimensional integra-
tions along the axes of the T%' are needed —a ray
integration. Both methods have been tested on the
single tight-binding band models for the sc, bcc,
and fcc crystals and the results are presented in
Sec. IV. There the calculated density of states
g(E) and the integrated density of states 4(E) are
compared with the exact results. " %ith a. /, -150,
the scheme has achieved the desired accuracy:
E(k) is accurate to 0.001 of the band width and the
accuracies of the averaged

~

r g/g
~

and
(
~4/4

)
are

found to be 0.5% and O. l%%u~, respectively. Some
numerical results from previous schemes are also
quoted for comparison.

The ray integration turns out to be more accur-
ate and more useful, particularly in the applica-
tion in real cx"ystals. In Sec. V, we show that the
band crossing and band switching can be handled
easily within the ray scheme. The density of states
for a Cu electronic band structure has also been
calculated to demonstrate the applicability of the
scheme in real crystals. The final section (Sec.
VI) contains a summary and discussion, where
the present approach is related to the previous
schemes and a brief discussion is made of the
application of the scheme in the study of impuri-
ties and disordered alloys.

II. COORDINATES AND INTERPOLATION

Since all the IBZ of the symmorphic space group"
can be decomposed into one or several tetrahedrons
or triangular prisms, in practice, we only need to
consider these two geometries. Below we shall
discuss the case of the tetrahedron only. The re-
sults can be readily extended to the other case.

Consider the tetrahedron I"ABC shown in Fig.
1. pisthecenterof theBZand ABC ispartof the
zone surface. First; we note that any k vector
(I"P) inside I'ABC can be expressed in terms of
the three basis vectors q, (IA), g, (AB), and j,
(BC):

set of coordinates for the k space inside the tetra-
hedron.

Qne advantage of using these coordinates is that
the BZ intexpolation can be cast into systematic
one-dimensional procedures. In order to simplify
the presentation, we shall consider a single band
first. The application to the multiple bands in real
crystals will be delayed to Sec. V. Let us start by
considering the intexpolation along a line, say IA,
in Fig. 1. We observe that the energies E(n) of a
smooth band along IA can be interpolated accurate-
ly from several calculated E(a,.} on a reasonable
grid fo,.}with a reasonable interpolation method

(e.g. , the I agrange's formula), i.e.,

E{o)=QL, (o.)E(u, ),

where I., (n) are the interpolation coefficients and

the number of n,. in the summation depends on the
order of the interpolation rule. To generalize -Eq.

(5) 'to any k point inside the IABC say (Q p 'y)

we need to calculate the E(k) at a set of grid points

(n, , P, ,y }with i from 1 to 8„, j from 1 to N~, and

m fx'om 1 to gc and with &x=Pa=yz=0 and ~g =Isy
= y„=1. Then E(n, P, y) can be obtained from the

C
triple one-dimensional interpolations:

E(o.', P, r) =gP gL;(n)L;(P)L (y)E(o.;,P„y ) ~

f, j m

Again, the numbers of terms in the summations
depend on the orders of interpolation schemes us&.

We note that the interpolation coefficients L, (a), .

L, (P)&and L (.y) in Eq. (6) are independent of each
other and with a proper choice of the mesh and the
order of interpolations they can be repeatedly used
in the process of integration. For example, the
same set of (L, (n }}can be used for all the k points
on the same plane with the same a. The same
situations hold for (L&(p)} and (L (y)}. In practice,

k= ~Q, +~Pq2+ot Pyqs. (4)

where a is the I'A'/IA, p isA'I, /A'B', andy =LP/
I.M shown in Fig. 1. The values of z, p, andy
defined above all range from 0 to 1. In fact, these
three parameters define three sets of independent
planes: All the k points with the same ot lie o6 a
plane parallel to ABC; a given p defines a plane
paraQel to +BC; and y represents those planes
starting with pA. B and ending with p4C. The end
point of a k vector defined by Eq (4) (i.e. , P. in

Fig. 1) corresponds to the point where the three
planes, respectively, corresponding to a, P, and

y intersect. Thus the (o, , p, y) form a convenient

FIG. 1. Any vector I'& inside the tetrahedron, lggC
can be conveniently expressed in terms of Q&, $2, and

$3 and the three normalized coordinates (n, p, y} defined
in Eq. (4}.



high-order interpolations can be carried out with
great efficiency.

Another advantage of using these coordinates is
that the normalizations (n, P, and y all range from
0 to 1) make it easy to set up integration mesh and
the interpolation grid and thus simplify the com-
puter coding. Finally, using these coordinates,
the interpolation in Eq. (6) is never across any
symmetry plane or any symmetry axis so that the
band crossing and band switching in real crystals
(see Sec. V) can be avoided and a smooth interpo-
lation using Eq. (6) is always possible.

III. INTEGRATION SCHEMES

A. Direct integration

The direct integration is a brute-force numeri-
cal evaluation of Eq. (3), which can be rewritten as

grations for P and ~ which involve piece-wise func-
tions in the integrands.

B. Ray integration

Here we consider a second and more useful inte-
gration method. This approach divides the tetra-
hedron into a bundle of thin tetrahedrons (TT).
This can be done simply by dividing the triangle

A.BC into smaller ones as schematically shown in
Fig. 2. The integration of I(&u) can be expressed
as the sum of those in the TT's

l(z}=+I~(a}=gJ d d}k}!'f(}k}}}(w—w(k}}.

If the TT is thin enough, the angular dependence
can be approximated as constant and I, (a) be. comes

z(ro} = &ra fssf(ic},
Z I~t)( 4) —&

(7) I, ((o)=aQ; I dk;k,'f(k;) 5((u-(u(k, ))

where s is the surface of the triangle A'&'C' (see
Fig. 1) and the k measures the vertical distance
from I' to s. The surface integral can be decom-
posed into line integrals

ds k = dzodt k,
where gg is the distance fromm' to JM and t=LP.
If the vertical distance from I' to the plane A. BC
is II, that from 4 to BC is 5 and the length of the
gc line is T; then A, =~II, so =npS', t =n py T, and
II% T =6V with V the volume of the tetrahedron
I'ABC. Eq. (7) finally becomes

1 1 1

J((u) =6V dn dP dyn Pf(n, P, y).
0 o, ru(n, a, y) ~ co

(9)
Eq. (6) can now be applied effectively in Eq. (9).

The summation over the o, provides the energies
on the interpolation grid on the surface specified
by ~. The summation over the p,. then gives the
E(k) on the interpolation grid along the line IPM.
The line integral over y can now be evaluated nu-
merically. Following the line integral, the inte-
grations over P and then o. can be carried out using
one-dimensional numerical procedures. %e note
that the fact that integration limits for 0., P and y
all range from 0 to 1 has essentially transformed
the geometry of the tetrahedron into that of a cube.

We should point out that although Eq. (2) can be
cast into a similar expression

(12)

where AQ, is the solid angle element of the TT, A,
is along the axis of the TT and the summation in-
cludes all the roots k„satisfying &g -up(k„) =0 along
the axis. The k,. can be related to z by k, =zk, with

k, the length of the axis. Then ~Q, becomes
b, s,. ~ k, /k,'=3V(b, s,./s)/k~3-=3V5, /k, ', where V is the
volume of 1'ABC and t},—= hs, /s with as, the area at
the end of the TT and s the area ofABC. Thus

I,. (~) becomes

Similarly, the J(&u) becomes

j(e) =3VP t}; dn; n, f(n;).
M(C ) Q)

Thus the BZ integrations are replaced by those
one-dimensional ones along the bundle of rays
(the axes of the TT). We shall refer to this meth-

"~(& -~(n P y)) (1o)

caution must be exercised in the numerical inte-
FIG. 2. A simple @ray to divide IA.+C. into thin tet-

rahedrons is to divide ggg Ago small triangles.
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od as the "ray integration. " We note that the roots,
the derivatives, and the integrations can all be
obtained accurately with one-dimensional numeri-
cal procedures. As will be clear later, this ray
integration turns out to be a more effective method
in the real application.

IV. TEST AND COMPARISON

To test the applicability of the methods developed
in Secs. II and III, we have tried them on the single
tight-binding band models for which the exact den-
sity of states g(E)" are available for comparison.
The band energies for the sc, bcc, and fcc are, re-
spectively, given by Eqs. (17a), (17b), and (17c)
below.

E(k) =-cos(k,a) —cos(k„a) —cos(k, a), (17a)

E(k) = -cos(-,'k„a) cos(-,'k,a) cos(-,'k, a), (17b)

E(k) = -cos(—,'k„a) cos(-,'k„a) —cos(-,'k„a) cos(-,'k, a)
—cos(—,'k, a) cos(—,'k„a), (17c)

where a is the lattice constant.
The IBZ for the sc (i.e., I"XMR) and for the bcc

(i.e., I'PNH) are themselves tetrahedrons and the
IBZ of fcc contains three irreducible tetrahedrons
(i.e., I'XWU, I LWU, and I'LWK). The expressions
for the g(E) and for the integrated density of states
C (E) which have the same normalizations as those
used by Jelitto" are those corresponding to Eqs.
(9), (13), and (14) with the function f set equal to
a constant factor a'. The members which deter-
mine the N, value are the set (N„,Ns, Nc) which
define the interpolation grid. For simplicity, the
set (N„,Ns, Nc) will also be used as the number of
points in the interpolation formulas for o. , P, and

y, respectively. Also, Lagrange's formula for
the interpolation and Bode's" rule for the integra-
tion will be used.

Table I shows the deviations in the interpolated
energies AE normalized to the band width 5' for
three selected sets of (N„,N»Nc). The corre-
sponding values for the N~ are also listed. The
results are based on a sample of 1000 k points in
each tetrahedron. We see that the average abso-
lute deviations (~d, E/W~) for all cases are less
than 10 ~ and the maximum deviation ~b, E/Wt, „is
about 3x10 '. To get an accuracy corresponding
to a maximum AE/W of 10 ', a N, =150 (i.e., N„
=N~ =Nc =6 for sc and bcc and N„=6,1V~ =Ac =

for fcc) is needed for all the three lattice struc-
tures.

The g(E) and @(E) have also been calculated for
the three sets of (N„,Ns, Nc) listed in Table L
The fine mesh in the direct integration is equiva-
lent to dividing q» q» and q, of Fig. 1 into 100
equally spaced meshes. The E(k) on the fine mesh

were interpolated using Eq. (5). As menticned
earlier, the direct integration for the I(tu) [or the

g (E)] which involves piece-wise functions is not
expected to be as reliable as the J (+) [or the C (E)].
Therefore, in the application of the direct integra-
tion, the C (E) was calculated from Eq. (9) first
and then the g(E) was obtained from the numerical
differentiation:

g(Et) =[@(E;+t)—C (Et-, )]/(E;+. —«-.) ~

Figures 3 and 4, respectively, show the compari-
sons of the 4 (E) and g(E) calculated in this manner
with the exact results. " In each figure, the solid
curves are the exact results and the circles are
the calculated values. The (N„,Ns, No) used are
indicated in the figure captions. The integrated
@(E) are seen to fall on the solid curves without
apparent. deviations. The resultant g(E) shows
very little noise and fall well on the exact curves
except at energies close to Van Hove's singulari-
ties where small deviations are detectable. A
comparison of Fig. 4(a) with a plot»' in Ref. 2 for
the results based on the same band model from
other schemes shows that the qua. lity of our cal-
culations is at least as good as the best results
presented there.

The g(E) and 4 (E) have also been calculated di.-
rectly from Eqs. (13) and (14) for the ray scheme.
In the calculation, each irreducible tetrahedron
was divided into 40x40 thin wedges in a manner
sketched in Fig. 2. Each ray is further divided
into 50 fine meshes for the integration. The roots
n„needed for both Eqs. (13) and (14) were obtained
by fitting three successive fine meshes to a quad-
ratic function. The resultantg(E) and 4(E), when

plotted, look essentially the same as those from
the direct scheme shown in Figs. 3 and 4. But a
detailed quantitative comparison below shows that
the ray scheme gives even better results.

Table II lists the average absolute percentage
deviations based on the energy points shown in

Figs. 3 and 4. All the ()A@/4 ~) tabulated are less
than 0.5%. For aN, -150, the(~AC/C ~) can be re-
duced to 0.1% for the sc, bcc, and fcc. Thus, it

TABLE I. The maximum deviations 10~ ~AE/W~~ and
the average absolute deviations 10 (IEE/Wtj) of the
interpolated energies normalized to the band width W for
a sample of 1000 k points in each irreducible tetrahedron
for three sets of interpolation grids.

io'ICE/ivl io'&IAE/wll
NA N& Nc sc' bcc fcc sc bcc fcc sc bcc fcc

6 4 4 66 66 147 213 205 149 5 8 4
6 5 5 106 106 250 134 312 110 2 4 3
6 6 6 166 166 391 9 9 112 &1 &1 3
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for sc and bcc, respectively, withN~=N& ——N~ —-6, and (c) is for the fcc withN„=6 andN& ——Nc ——4.

is clear that the C (g} can be computed accurately
and easily from our scheme. For the g(E}, we see
that the ~g for sc and bcc are larger and more
sensitive to the different'„used than those for
the fcc. The deviations from the ray integration
are in general smaller than those from the direct
scheme. With a N~-150, the ray integration can
bring the (~ag/g~) down to -0.5% for all the three
crystal structures.

Since we are not in a position to compare the
above results directly with other schemes, it is
useful to quote some published results for the
numerical tests on other schemes for a qualitative
comparison. Janak et al."found that a 2V-point
three-dimensional Lagrange interpolation with a
X~ = 3345 gave an rms deviation of 5x10 ~ Ry and
a maximum error ~E „.of 5xlO ' By for the en-
ergy bands of Pd. The maximum error became as
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binding bands given in Eq. (17) for the three lattice structures. The solid curves are the exact results (Ref. 37) and
the circles are the calculated values from the direct scheme as described in. the text. (a) and (b) are the results for se
and bce, respectively, with+&=+q=W&= 6, and (c) is for fce withNz= 6 and N&=Wc;=4.

large as 0.05 By with a N, value of 89. To get the
maximum error to 0.01 By a&~-1000 was needed. 2'

Hodges et gE."used a 9X9 model Hamiltonian with
14 parameters for Cu and found an rms ~E of
0.008 By and a ~E .,„from 0.025 By while Mueller"
used a slightly different version with 11 parameters
and obtained an rms ~E of 0.006 By and a AE,„
= 0.013 By. In a, systematic parametrization of

g„(k) for the noble and transition metals up to high
energies (12 eV above Zz), Smith and Mattheiss"
found the rms ~E varying from 0.0035 to 0.0186
By and ~E „.from 0.012 to 0.0VV By. Connolly, s'

who used a 9x9 tight-binding Hamiltonian with 2V

parameters in a nonlinear fitting of the Cu and Fe
bands, was able to achieve an rms ~E-0.003 By
and a gE,„-0.01 Ry. For the integration, Ken-
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nard et al.4s tested the QUAD scheme on the para-
bolic band in fcc. With a N~ = 1024, they obtained
deviations of 9.84%, 5.59%, and 8.56%% in the den-
sity of states from an integration mesh of 5000,
25000, and 100000 k points in the BZ~respectively.
Regarding the convergence at Van Hove's singu-
larities, Janak' tested the Gilat-Raubenheimer
scheme on the density of states for a 2-OPW band
structure around the symmetry point L, and pointed

I

out that the error still exceeded 1% even with aN~
as large as 10000.

Finally, we note that the tetrahedron scheme
recently has been applied successfully to the sus-
ceptibility function l((q, &u) for the electrons in
crystals. "" Rath and Freeman" have tested the
accuracy of the scheme by calculating the Lindhard
function l((q, u& =0) in the sc crystal. They found
that maximum errors of 2.5% and 1.5%%uc and aver-
age errors of 1.25% and 0."15% resulted from using
meshes corresponding to dividing the I'X into
12 and 16 equal spaces, respectively. The same
test in the hcp crystal has also been made by Ling-
5rd." Using meshes with 1152, 9216, and 31104 k
points in the BZ, he found that the errors for the g
at q=2k~ were 15%, $%p, and 2.2% respectivejy.
More relevant for comparison with our results are
the corresponding volume deficiencies (i.e. , a@/C)
quoted by Lingkrd, which were 7.83%, 1.98%%up and
0.86% respectively.

To summarize, we note that this section has
shown that our scheme can achieve accurate re-
sults with a small /, . With N, -150, the deviations
4g/g 10,(l~g/gl& -0 5%,an«IA~/CI& -0.

1%%u, are
within both experimental and theoretical uncertain-
ties. These results are superior to those from
other schemes with a much larger N, .

V. APPLICATION TO REAL CRYSTALS

A. Band crossing and band switching

So far we have only considered the case of a sin-
gle band. In real crystals, particularly for the
electronic structure, we have complicated multiple
bands and there is a new difficulty arising from
band crossing and band switching. To be more
specific, let us consider the first six bands~ of Cu
shown in Fig. 5. In each part of the figure, the
bands are plotted as a function of k starting from
the center of the BZ, I', and ending at a point on
the XS'U face as indicated by the dot in the sep-
arate picture above the bands. The circles are the
first principle energies and the solid curves are
obtained by connecting lines between 200 energies
interpolated from the circles with Lagrange's
formula. The coordinates (~, Il, y) are defined
according to Eq. (4) with q, =I'X, q, =XW, and

q, =WU. A comparison between Figs. 5(a) and

TABLE II. The average absolute percentage deviations
(in %) for the calculated density of states, (~ng/g~&, and
for the integrated density of states, (~ns/4~&, from the
direct integration scheme (direct) and the ray integration
(ray) for three sets of interpolation grids. The average
is computed from those energies corresponding to the
circles in Figs. 3(a)-4(c).

(l&g/gl &

Method Nz N~ Nc sc bcc fcc sc bcc fcc

direct
direct
direct

ray
ray
ray

6 4 4 0.90 2.92 0.56 0.21 0.49 0.13
6 5 5 0.71 1 ~ 60 0 ~ 62 0.07 0.12 0.18
6 6 6 0.58 1.51 0.61 0.04 0.07 0.18

6 4 4 0 81 2 90 0 40 0 21 0 51 0 13
6 5 5 0.68 1.09 0.35 0.07 0.12 0.18
6 6 6 0.58 .0.59 0.33 0.09 0.06 0.13

5(b) shows several changes: The degenerate a,
band splits into two bands and complicated band
switchings occur. The most noticeable is that the
A, band crosses the upper g, band in Fig. 5(a) but
the two bands switch to one another in Fig. 5(b).
Band switching also occurs between Figs. 5(b)
and 5(c). Thus, if the bands are labeled according
to the smooth curves (i.e. , according to the sym-
metry) along the d, axis, some of them become
discontinuous off the ~ axis. On the other hand,
if bands are labeled according to the ordering in
the energy, they have cusps and corners along the
symmetry axes and on the, symmetry planes as
shown in Figs. 5(a) and 5(b). As Janak" pointed
out, this problem of band crossing and band switch-
ing is the root of difficulties in the BZ interpola-
tion for real crystals.

However, we note that the band switching occurs
only when the symmetry characters of the two k
directions under consideration are different and
the band crossing causes troubles only on the sym-
metry axes and on the symmetry planes. In other
words, these problems do not happen in the general
k directions. Although bands do contact at the gen-
eral k points, as Herring" showed that they do,
the occurrence is rare and even if they do the bands
are smooth (having continuous gradients) and can
be properly labeled according to the ordering in
energies.

In this connection, we recall that our ray scheme
has converted the BZ integrations into those along
the axes of the thin tetrahedrons (the rays). All
these rays are in the general k directions and never
cross any symmetry planes except that the end
points fall on the zone surface. Thu$, if band
quantities are available at the N„grids {o,) along
the rays, they can be labeled according to the or-
dering in energies and the interpolation and inte-
gration can be carried out in a straightforward
manner. The remaining question is how to obtain
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these quantities at these(n, .) from the first-prin-
ciples grid.

We also recall that any k-dependent function in
a ray in terms of (o. , P, y} is a function of z only
and has the values of P and y fixed. So our prob-
lem is to obtain the E„(o„p,y) at o,. with i from 1

to N„According t.o Eq. (6), we have

E„(,P, r) =PAL, (P)& (r)E„(o;,P;, r ).
(18}

For i cN„ the band index n can be taken as that
labeling the order of energy. For i =N„(n, =1)
the k usually falls on a symmetry plane and we
need to treat it as a special case. This special
case can be handled easily: First, we label the
first-principles bands for ~ = 1 according to their
symmetry characters. Then, we apply Eq. (18)
to obtain the E for the end point of each ray. Final-
ly, we rearrange the band indices according to the

ordering in energies before we apply the ray inte-
gration. Since the special case can be handled
very easily with our coordinate system, our
scheme can now be applied to real crystals.

B. Density of states for Cu

To demonstrate the applicability of the above
procedures, we have calculated the density of
states g(E) for Cu. The first-principles E„(k)
were calculated using the Chodorow potential~
in the KKH method with a maximum angular mo-
mentum l =2. The first-principles grid used cor-
responds to N„=6 and Ne =No = 4 (i.e., N» = 147).
The integration mesh used is the same as that in
Sec. IV. Theg(E) were calculated at an energy
mesh corresponding to an interval of 0.03 eV.
Straight lines are connected between two succes-
sive calculatedg(E, )to give the curve in. Fig 6. .
The quality of the calculation can be seen from
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FIG. 6. Density of states of Cu calcuIated from the
ray integration using the interpolation procedures
described in Sec. V. The energy bands used in the cal-
culations are the same as those shown in Fig. 5.

the smoothness of the curve below and above the d
band. The general feature of the g(g) and the
stx'engths of the major peaks are in agreement with
the published Cu density of states. ~ We feel that
the curve shown in Fig. 6 represents the true
spectra for the band structure considered.

VI. SUMMARY AND DISCUSSION

This work is a result of-search for a simple and
aeeurate BZ interpolation and integration package.
The main feature in this work is the utilization of
a system of convenient coordinates (a, P, y) which
allows systematic application of one-dimensional
numerical procedures in the interpolation and inte-
gration. The difficult problem associated with the
band crossing and band switching in real crystals
can also be handled easily within our scheme. In
its first trial, the scheme has produced very good
results for the tight-binding band models and for
the density of states of Cu. Therefore, our objec-
tive to produce good spectra using a small number
of first-principles k points has been accomplished.
With its simplicity, accuracy, and uniformity, the
present scheme should be attractive to workers
interested in calculating the spectral properties,
particulax ly in the angular dependent spectra.

It should be pointed out that the present ap-
proach is connected with previous schemes and
has incorporated many of their good featuxes.
One idea which is common between the original
tetrahedron'8 schemes and our ray integration
is that the microzones used fill up the volume
of the BZ exactly. Another common advantage
is that both approaches do not require the cal-
culation of the energy gradients V+(k) on the
first-px'inciples grid. Our concept of using the
rays in the nonrectangular coordinates resembles

the idea used in the constant energy search routine
in the KKH method developed by Faulkner et al.~'

and improved by Butler et gl.~' However, our idea
of using the one-dimensional integration was orig-
inally motivated by Bansil's" work on the special
directions in the BZ. In that work, Bansil opti-
mized the ray integrations in a small number of
"special directions" to represent the integrated
function. This technique is similar to that in the
"special points" in the BZ used by Chadi and
Cohen4' for smoothly varying functions of k.- It
may be possible to use Bansil's approach by choos-
ing special directions fox' special cases, but as a
general scheme his approach is not expected to be
accurate. One important reason for this is that
the angular dependence of the ray integrals often
varies very violently (e.g. , constant energy sur-
faces in pure crystals usually have cusps and dis-
continuities) and the variations are different for
different functions. Clearly a remedy for this ap-
proach is to include a sufficiently large number of
rays. This point has been demonstrated in our
test in See. IV and in a work by Overton and

Schuch, "who employed amore elabox'ate one-dimen-
sional integration scheme with a mesh corresponding
to using 105 k points for each of 489 rays (i.e. ,
N, = 51345) to achieve highly accurate phonon den-
sity of states and the Debye e. This and earlier
(Sec. 1) considerations clearly bear out the
importance of the interpolation scheme. Thus we
can say that our greatest accomplishment in this
work is to have obtained a simple interpolation
scheme which enables us to incorporate the x'ay

integrals in real application.
Although we have only demonstrated the applica-

bility of our scheme in pure crystals, we expect
that the technique can be extended to deal with i'm-

puritles ' and dlsordex'ed alloys. In the scat-
tering formalism for these systems, "the im-
portant and difficult part of the calculation is the
BZ integration with the appropriate Green's func-
tions as the integrands. In addition to the expres-
sions like gq. (2), the principal parts of Green's
functions have to be evaluated. For aQoys, there
is a further complication which arises from the
fact that the poles of the alloy Green's function
are complex numbers" so that the spectral density
functions are not the & function but are spiky
functions with finite widths. "'" To evaluate these
integrals, it is important to locate the poles of the
Green's function or the peaks of the spectral den-
sity functions, which can be handled with our in-
terpolation method. There is another px oblem
which is associated with the singularities of the
free-election Green's function, but a treatment of
that problem has already been studied. " Thus,
with the ability to locate the sjngular structures of
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the integrands, we expect that a systematic and
efficient treatment of these functions can be
achieved with the one-dimensional ray integrations.
Hopeful signs related to the above have been found
in the recent studies of the alloy electronic struc-
ture based on the muffin-tin potentials using the
average-t-matrix approxlmatlon and the coherent
potential approximation. "

Finally, we note that here we have presented the
results for the first trial of our scheme and we ex-
pect that further improvements can be made in dif-
ferent aspects of its application. For example, an
improvement in the accuracy may be achievable by
subdividing the thin tetrahedrons used in the ray
integration into microtetrahedrons in which the
original tetrahedron integration results" can be
used. The accuracy can also be improved if the
energy gradients 7'~ E are also included in the cal-
culations. However, improvements as such rep-

resent a fine tuning for the application. The pres-
ent scheme as it stands is already accurate and
efficient enough for vast applications. We plan to
couple the present scheme with the GFM param-
etrization scheme'~ mentioned earlier for a sys-
tematic empirical parametrization of the electronic
structure of metals. %e believe that such a sys-
tematic correlation between the band structures
and the experimental data in metals can improve
our present understanding of the electronic struc-
tures and the fundamental processes in crystals,
which in turn can provide a better basis for the
study of more complex systems such as impurities,
disordered alloys and surfaces, etc.

ACK NO%I.EDGMENT

I wish to thank Professor B. Segall for .informa-
tive discussions.

~partially supported by a grant from the Auburn Uni.-
versity Grant-in-Aid program.
For a review of this topic, see Befs. 2 and 3, and the
references therein.

G. Qilat, Methods Comput. Phys. 15, 317 (1976).
3Q. Gilat, J. Comp. phys. 10, 432 (1972).
4K. H. Johnson and F. C. Smith, Jr., in Computational

Method in Band Theory, edited by P. O. Marcus, J. F.
Janak, and A. B. Williams (Plenum, New York, 1971),
p. 377 and xeferences therein.

~B. H. Lasseter and P. Soven, Phys. Bev. B 8, 2476
(1973).

~P. Soven, Phys. Bev. 8 2, 4715 (1970).
~B. L. Qyorffy, Phys. Bev. B 5, 2382 (1972).
A.-B.Chen, Phys. Bev. B 7, 2230 (1973).
L. Schwartz and A. Bansil, phys. Bev. B 10, 3261
(1974).

~0A. Bansil, Solid State Commun. 16, 885 (1975).
~~A. Bansil, L. M. Schwartz, and H. Ehrenxeich, Phys.

Bev. B 12, 2893 (1975).
2H. Ehrenreich and L. M. Schwartz, Solid State Phys.
31, 150 (1976).

' G. M. Stocks, B. L. Gyorffy, and W. E. Temmerman,
Bull. Am. Phys. Soc. 22, 348 (1977).

~4B. Segall and F. S. Ham, Methods Comput. Phys. 8,
251 (1968).

~5W. Kohn and N. Bostoker, Phys. Bev. 94, llll (1954).
6J. Korringa, Physica (U'tr. ) 13, 392 (1947).
A.-B.Chen and B. Segall, Phys. Bev. B 12, 600 (1965).

~SA.—B. Chen and B. Segall (unpublished).
~ M. Blackman, Proc. B. Phys. Soc. (Lond. ) A159, 416

(1937).
2 D. Brust, phys. Bev. 139, A489 (1965) and Methods

Comput. Phys. 8, 33 (1968).
Q. Gilat and G. Dolling, Phys. Lett. 22, 715 (1964).
G. Qilat and L. J.Baubenheimer, Phys. Bev. 144,
390 (1966).
J. F. Janak, » CotRpstatsonal Methods fn Band +h&orye
edited by P. M. Marcus, J. F. Janak, and A. B. Vhl-

liams (Plenum, New York, 1971), p. 323.
F. M. Mueller, J. %'. Garland, M. H. Cohen, and K. H.
Benneman, Ann. Phys. (N.Y.) 67, 19 (1971).

2~F. M. Mueller, in Computationa/ Methods in Band
Theory, edited by p. M. Marcus, J. F. Janak, and
A. B. Williams (Plenum, New York, 1971), p. 305.

28J. F. Janak, D. E. Eastman, and A. B. %'iOiams,
Solid State Commun. 8, 271 (1970).

27J. F. Cooke and B. F. Wood, Phys. Bev. 8 5, 1276
(1972).

28J. Bath and A. J. Fx'eeman, phys. Qev. 9 ll, 2109
(1975) and references therein.

29P. A. Lingard, Solid State Commun. 16, 481 (1975).
30Q. Qilat and F. Herman, Ann. Phys. (N. Y.) 67,

432 (1971).
3~L. Hodges, H. Ehrenreich, and N. D. Lang, Phys.

Bev. 152, 505 (1966).
32F. Mueller, Pgys. Bev. 153, 659 (1967).
33J. W. D. Connolly, in Electronic Density of States,

Natl. Bur. Stand. Special Pub. No. 332, edited by L. H.
Bennett (U.S. GPO, Washington, D.C., 1971), p. 27.

34C. Y. Fong and M. L. Cohen, Phys. Bev. Lett. 24,
306 (1970).
N. V. .Smith and L. F. Mattheiss, Phys. Bev. B 9,
1341 (1974).

36J. F. Janak, A. B. Williams, and V. L. Moruzzi, Phys.
Bev. B 11, 1522 (1975).

3~B. J. Jelitto, Phys. Chem. Solids 30, 609 (1969).
+A. %'. Luehrmann, Adv. Phys. 17, 1 (1968), whexe the

Brillouin zones fox all the symmorphic space groups
are available and are analyzed.

39See, for example, , Handbook of Mathematica/ Eunc-
tions, 10th ed. , edited by M. Abramowitz and I.A. Stegun
Plat. Bar. Stand. Appl. Math. Series. 55, 1972),
p. 886.
The exact 4 (E) are obtained from integrating the ex-
pressions g(E) given by Eqs. 39(a) to 39{c)in Bef. 37.

+See Fig. 3 of Bef. 2.
J. F. Janak, D. E. Eastman, and A. B. Williams, in



3802 AN-BA1V CHEN

Electronic Density of States, edited by L. H. Bennett
(Natl. Bur. Stand. Spec. Pub. 323, 1971), p. 181.

3E. B.. Kennard, D. Koskimaki, J. T. Waber, and F. M.
Mueller, In E/ectmnic Density of States, edited by
L.H. Bennett (Natl. Bur. Stand. Spec. Pub. 323, 1971),
p. 795.

44Th+ same Cu potential used by B. Segall, Phys. Rev.
125, 109 (1962) and by G. A. Burdick, Phys. Rev. 129,
138 (1963) but vrith a lattice constant of 6.8090
a.u.
C. Herring, Phys. Rev. 52, 365 (1937).

48See, for example, see Fig. 7 of Ref. 32, Fig. 1 of
Ref. 42, and N. V. Smith, Phys. Rev. B 3, 1862 (1971),

Fig. 19.
and ¹ V. Smith, Phys. Rev. B 3, 1862 {1971),Fig. 19.

4~J. S. Faulkner, H. L. Davis, and H. W. Joy, Phys.
Rev. 161, 656 (1967).

48W.H. Butler, J. J. Olson, J. S. Faulkner, and B. L.
Gyorffy, Phys. Rev. B 14, 3823 (1976).

~D. J. Chadi and M. L. Cohen, Phys. Rev. B 8, 5747
(1973).

50W. C. Overton, Jr., and A. F. Schuch, J. Comp. Phys.
14 59 (1974)
'B. Segall and A.-B.Chen, Phys. Rev. B 16, 2556
(1977).


