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A first-principles potential for an itinerant spin-polarized electron gas has allowed a more funda-

mental study of ground-state properties in itinerant ferromagnets. The contribution of additional

terms accounting for the highly inhomogeneous spin-density profile, found in most ferromagnetic

materials, is presented. These are evaluated rigorously in the high-density limit, and results are

given for arbitrary ratios of spin-up and spin-down densities. Forms are also derived for extend-

ing the results to lower spin densities.

I. INTRODUCTION

The numerical sophistication for calculating
ground-state properties of solids has been increasing
rapidly. In the last decade more and more accurate
self'-consistent techniques have been developed,
reaching the point where the fundamental question of
the importance of electron-electron interactions can
now be tested. '

Initial studies were naturally confined to simple me-
tals. Recently, however, greater effort has been made
toward a first-principles understanding of complex me-
tals; in particular the transition series.

Such systems, being itinerant ferromagnets, have an
unequal density of spin-up and spin-down electrons.
Thus, a first-principles exchange and correlation po-
tential must depend on both spin densities.

The first to calculate a form for the spin-polarized
exchange and correlation potential were von Barth and
Hedin' (vBH). Assuming slowly varying spin densi-
ties pt(r) and pl(r) their exchange and correlation
energy E"' was approximated by a local form EI"', i.e.,

E"'(pt(r ), p&(r ))=E~"'

dr pt{r)+pi{

(pt(r) pl(")~

In Equation (1), ~„, is the exchange and correlation
energy per particle of a spin-polarized interacting elec-
tron gas.

Wang and Callaway' have applied this potential to
various properties of nickel and iron. Their detailed
study shows that the vBH potential produces
significant improvement over the non-spin-polarized
potential. Nevertheless, sizable discrepancies between
theory and experiment do remain' raising the possi-
bility that nonlocal contributions to Eq. (1) are

impor tant.
The purpose of this work is to present such correc-

tions to Eq. (1) with the hope of resolving some of
these fundamental questions.

In Sec. II we give a brief' formulation and rigorous
results valid in the high-density limit (HDL). In Sec.
III we derive forms which are indispensable for a fun-
damental extension of these results to metallic densi-
ties.

II. FORMULATION AND RESULTS IN THE HDL

The additional nonlocal contributions we wish to
consider here are

E„)' d+rBt't pl{ r ), p~( r ) '7pt{ r )

+8(i(pt(r), p((r)) I&p((r)I'

+ Ptt (pt( r ), p~( r )) P'pt( r ) Qp~( r )] (2)

and E"'=E~~'+E"„~'. To determine the coeScients 8"'
consider two weak external fields Vt{k) and V~(k)
(of Fourier component k) applied to an interacting
uniform electron gas of arbitrary spin densities pt and
p~. Allow Vt(k) to couple only to the spin up and
V~( k ) to spin down. In other words, the perturbation
Ht is given by

Ht = Vt(k) pl{k) + V~(k) p)(k)

where pt(k) and pl(k) are the spin-density up and
down operators, respectively.

The analysis now proceeds in identical fashion to
that presented by Rasolt and Geldart (RG) for the
two-component electron-hole liquid. The only
difference being the sign of the interactions. We write
below only the final results.

First to second order in H&,
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hE""(k) + b, T, (k) = —, [(p, (k))'x, i(k)

+(pi(k)) xtt(k)

—2pi(k)pi(k)xii(k)}

x [xii(k)xii(k) —(xii(k))'} '

—(2vre /k )(pi(k + pi( )'
(4)

Here the X's are the reducible spin-spin response
functions. In terms of the irreducible response func-
tions n(k), the X(k) are given by

From Eqs. (11)—(13), we see that to evaluate 8"' all

we need is the expansion of the vr(k) to order k',
1.e.,

vrii(k) = aii' + bilk

vrii(k) = ail' + bilk

7PI J(k)Q I J+QIJk

The difficulty of evaluating Bxc clearly resides in cal-
culating the b coefficients. We restrict our calculation
here to the HDL, in which case identical to RG we

see that Eqs. (11)—(13) simplify to

vr ii(k) + (4vrev/k 2) tl(k)
XII(k) =

e(k}
(5)

1 1 1+
n II{k } m I'I(k)

= const +BI I k '

vrti(k) + (4vre'/k')h(k)
xii(k) =

~(k)

vrit(k) + (4vre'/k ) h(k)
XIJ(k) =

e(k)

h(k) -vrit(k)vvii(k) —(vrtt(k))'

e(k) -1+(4vre /k )[vrii(k) + vrtt(k)

+2' I J( k)]

(8)

(9)

-) 1 (pi(k))' pi((k))'
(10)

and AT~(k) is the kinetic energy of the noninteract-
ing electron gas to second order in Hq, i,e.,

1

2

1 1+ =const+BJJ k
k} ~JOJ{k

~ (k) =const+BxJ k
n. II(k) m JJ(k)

From the above relations, it is evident that the
analysis required to evaluate the b's follows closely
that given in RG. For the sake of brevity, we will not
repeat this lengthy analysis, but simply write down the
final results for B"'.

The reader interested in finer details will note that
subtle differences do arise from the screened interac-
tion [Fig. 4(c) of RG] having only a single spin per
bubble diagram.

Defining the dimensionless quantities C"' as
where vrioi(k) and vrioi(k) are the Lindhard function
(for a single spin) for spin up and spin down, respec-
tively.

Using Eqs. (2)—(10), we get the desired relations
between B"' and the irreducible spin functions vr(k)
given by the coefficients of the k ' term in the expan-
sion of the following functions:

I 'I

+ =const+BII k2, (11)
n'JJ( k)
b, (k) 7r (k)

+ = const+ 8JJk, (12)
~„(k)
4{k) m J'J(k)

mIJ(k) =const+BI J
k'

a{k)

~xc I I ~xc J J

II =
4/3 ~ JJ =

4/'3
PI PJ

Bxc
( ) 2/3

we get

Ci'i = [1/(6vr')'"] (Zcii —
—,', vr)

Cit = [1/(6vr')' '](Z~ii —,', vr)—
C"' = [2/(6 vr')' '] Z

where

(14)

(15)

I I I

1
1

H(P.y) 9y +13y 1
l [G( )] y'(3 —y )

I
36 G (p,y) (y'+1)' 4

' (y'+1)'

1 1 1 1 l(P,y) 1 l(P,y) 1 J(P,y)
12 (yv+1)v G(p,y) 2 G(p,y) 6 G(p, y) 2 G(p,y)
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T

H(p, y) 9y+13y I 1H(1/p, y) 9y'+13y'
72 G(p,y) (y +I) 72 p G(1/p, y) (y +I)

I 1 I 1 1 I l(P,y) 1 /(P, y) I J(P,y)
12 p2 (y2+I/pt) (y2+1) G(p,y) 2 G(p,y) 6 G(p.y) 2 G(p,y)

and Ztt is identical to Zii with p I/p. In Eqs. (16)
and (17),

and

G(p, y) =R(y)+I/p —y tan '(I/py)

R(y) =1 —y tan '(I/y)

H(P, y) =(I/P')(y'+1/P') '

I (P,y ) = —(1 +y') ' —H (P,y )

J(P,y) = —(I+y') ' P[H(P,—y)]'

(20)

(21)

(22)

with P —= (p, /p, )'".
Equations (14)—(22) have been evaluated for a

range of spin-up to spin-down density ratios P, and
the results are displayed in Fig. 1. The most striking
feature of these results is the strong and dift'erent

dependence of each of the C"' on P. No single com-
ponent calculation is adequate for predicting this wide
range of variation.

The above calculation is formally valid in the HDL.
It can be argued that ferromagnetism does not even
exist in the HDL, hence what use are these results?
First, single component studies strongly suggest that
the variation of C"' away from the HDL should be
weak. Hence application of the above results should
give a good indication of the importance and trends of
E"„f. Secondly, any approximate scheme for extending
the above results to metallic densities can now be test-
ed against the rigorous results in the HDL.

Clearly the extension to the metallic range is impor-
tant. In Sec. III we derive exact simplified relations for
bk' with the intent that these will make such a funda-
mental extension possible.

III. GENERAL FORMS FOR b33 bjj, AND blj

1-33{k) = y33( k ) + &33( k )P33( k) r33( k)

+ &3j(k}Pjj(k)rj3(k) (23)

r» r&&

In this section, we derive expressions for b3;, b j j,
and blj which are exact to all order in e'. Clearly a
straightforward substitution in Eqs. (11)—(13) then
yields B"' for tne full range of spin-up and spin-down
densities.

We proceed from the reducible scattering functions
r33( k ), I j j( k ) and I

3 j{k )' Their graphical
representation in terms of the irreducible' scattering
functions y33(k), hajj(k}, and y3j(k) are displayed in
Fig. 2. Their relation to the desired screening func-
tions ~33(k), ~jj(k), and ~3j& k) are shown in Fig. 3.

In the usual matrix notation' the following set of
equations for I ( k) represent Fig. 2:

2.0— 2.0

l.5—

l.0— I.O

CXC 0.5— 0.5

-0.5—

- l 0--

-l.5 I

0.5
I

1.0

P

I

l.5

-0.5

-1.0

—1.52.0

rii r.I

FIG. 1. Calculated HDL contributions to the exchange
and correlation gradient coeScients (see Sec. II) for spin-
polarized electron gas as a function of spin-up to spin-down
densities p = (p3/pj) '

FIG. 2. Graphical representation for the reducible scatter-
ing functions I 33, I jj, and I 3j in terms of the irreducible
scattering functions y33 pjj and y3j.
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r„{k)=y„(k) +yt, (k)P„(k)r„(k)
+ytt(k)P„(k)I tj(k) {27)

7T)f = r

ref

and

I t/(k) =yti(k) +I tt(k)Ptt(k)yii(k)

+ I lj(k)PJJ(k)yjj{k)

I jt(k) = yjt(k) + yjl(k)P11(k) I 11(k)

+yJJ{k)PJJ(k)I jt(k)

Vjt{k) = yjt(k) +I Jj(k)PJJ(k)yjt(k)

+rjt(k)Ptt(k)ytt(k)

(28)

(29)

{30)

FIG. 3. Graphical representation for the irreducibje screen-

ing functions vrtt, mjj, and mtj in terms of 1
11

I Jj and I tj.

where P
1 1( k ) and P

J j( k }are given by

Pt t(k) = R 11(k)6

= S,(p + —,
' k) S,(p ——,k) S„ (3&)

I 11{k}= yt1(k) + I ll(k)Pll(k) ytt(k)

+ I 1J(k)PJJ( k ) yj, (k)

+ yJJ{k }Pjj{k }~jj(k }

{24)

and

PJJ(k) =Rjj(k)h
= Sj(p + —k)SJ(p ——k) 5 (32)

+y/t(k)Ptt(k)I tl(k)

I Jj(k) =yjj(k) +I Jj(k)PJJ(k)yjj(k}

+ I Jt(k)P11(k) ytj(k)

(25)

(26)

with p —= (p,po) and St, SJ are the futl single-particle
propagators for spin up and down, respectively.

Some matrix algebra using Eqs. (23)—(32} yields
the following relations:

and

I tt(k) —r,
,
t(0) = I 11(0)[Ptt(k) —Ptt(0)]rtt(k) +r;i(0) [Pii(k) —Pti(0)]I it(k)

+[rti(0)PJi(0)5yit(k) +(I+rtt(0)Ptt(0))sytt(k)][1+Ptt(k)r;t(k)]
+ [r„(0)P„(0)Sy„(k) +(I + r„(0)P„(0))Sy„(k)]P„(k)r„(k),

r„(k) —r„(0)= r„(0)[p„(k)-p„(0)]ri,(k) + r„(0)[p„(k)-p„(0)]r„{k)

+ [r„(0)P„(0)hy„(k) +(I + r„(0)P„(D))ay„(k)] [1+Pi, ( k) r„(k)]
+ [ri, (0)Ptt(0)5ytt(k) +(I+I ii(0)Pii(0))5yit(k)]P|t(k)1 ti(k)

(33)

(34)

rti(k) —r, i(0) = rti(0) [Pii(k) —Pii(0)]I (i(k) + rtt(0) [Ptt(k) —P„(0)]I'„(k)
+ [rt, (0)P,I(0)5y„(k) +(I +rtt(0)Ptt(0))5yt, (k)][1+PiJ{k)I„(k)]
+ [rti(0)Pii(0) yet(k) +(I + rt t(0)Pl|(0))hytt(k)]P„(k) r, i(k)

where hy(k) = y(k) —y(0). Now define the following vertex functions:

Att(k) = A, + I tl(k}P11(k
A„(K) =-) +r„(k)I „(k)k,

and

Atj(k) =I tj(k)PJJ(k)A,

(3S)

(36)

(37)

(38)
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where X is a column vector with components Ap =1. Some additional matrix algebra then yields

ml ~(k ) —r7lt(0) = All(0) [Pll(k) —Pl)(o)]All(k) + All(0) [Pll(k) —P/t(0)] All( k )

+ [Atj(0)PJJ(0)S vjt(k) + Att(0)Pt t(0) bent t(k))Ptt(k) Att(k)

+ [A„{o)P„(o)gy„(k) +A„(o)P„(o)sy„(k) 1 p „(k)A„(k),
7rll(k) —7rll(0) = All(0) [pll(k) —P//(0)]All(k) + All(0) [Plr(k) pll(0)] All(k)

+ [A I l (0)P
l l (0) 5y I ~

( k ) + A
I I (0)P

l I (0) 5y l I ( k ) ]P
I I ( k ) A

I I ( k )

+ [A„(Q)P„(0)sy„(k)+Att(0)p„(0)gy„(k)]Pl, (k) A„(k),
and

{k)—mt J(0) = Atj(0) [Pjj(k) —Pjj(0)]AJJ(k) + Att{0) [Ptt(k) —Ptt{ )~Atj(k)

+ [Atj(0)PJJ(0) 5&jJ(k) + Att(0)Pt t(0) 5&tj(k)]PJJ (k) A, j(k)

+ [ tj(0)PJJ(0)5yjt(k) + Att(0)Ptt(0)hatt(k)}Ptt{k) Atj(k)

(40)

(4l)

[In Eqs. (39)—(41) A is the transpose of A. l The great simplification of Eqs. (39)—(41) is immediately recognized
when we focus only on the b coefficients. Then

b, =tr, [A, f' {0)R I', (p) A f' (0) + A (' (0)R I', (p) A fl {0)]

dSJ, , dSt(p'), , dSJ (+tr, tr, — (p) yj't(p, p') +yj'j(p, p') (p')~t, dpt d

dSt 2 , dSt , 2 , dS
+ (p) pt't(p p ) (p ) +pt'j(p. p ) (p )

dpt dp1 dpt

b
$ I tr, [A f'l(0) R fl (p) A f'l (0) + A f'l(0) R l-, (p) A f'$ (0) ]

dSt 2, dSJ(p'), , dSt(p )+tr trz (p) ptj(p p ) +ptt(p p
dp, j

'
dp, j

'
dp, jdSj, dSJ(p'), dSt+ (P) yjj(P P ) + Yjt(P P )
d

{P )dPJ, dyj dyj

bi) ——tr„[Af'l(0)R ll (p) Af'((0) + A f't(0)R ll (p) Af'l(0)]

(42)

(43)

dS; 2 , dSJ , 2 , dSt+ trp tip (p) yj'j(p, p') — — (p') + yj't(p, p ) (p )

1

dSt 2 , dSJ , 2 , dSt+ (P) Vtj(PP )
d

{P)+Ytt(PP)
d

{P )
dpt dpj dpj

(44)

In Eqs. (42) —(44),

d4
( o a ~ )

(2m) 4i

and, e.g. ,

(45)

8 tt(k) =8 tt (p) +8 tt (p)k + - . .

~tt«) =~t't{p p') +~t't(p. p')k'+ ' '

(46)

(47)

ds 8S BS
Afl(0) = ' (p) —= ' (p)+ ' (p) . (48)

p, t
and p, j are the chemical potential of spin up and

down, respectively.
These exact relations for b (and hence for 8") are

obviously very convenient as the complicated equa-
tions describing the (two-body) electron-hole correla-
tion has been reduced, as far as possible, in terms of
the one-electron propagators and their derivatives.

Finally, we note that even with the above relations,
an extension of b to metallic densities is a formidable
task. However, previous analysis applied to a single
component clearly demonstrates that the above rela-
tions will allow a first-fundamental study of B"' for a
spin-polarized system at metallic densities.
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