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Effect of short-range interactions on the transverse dynamics of KD2PO4
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The dynamics of KD,PO4 along the transverse x direction is investigated using a pseudospin model which

takes into account the transverse dipole moments of the hydrogen bonds and incorporates both short-range

and long-range interaction effects. A four-cluster approximation to the Glauber equations of motion for the

F. -mode pseudospin fluctuations is employed. It is found that these fluctuations have three different

relaxation times below T, and two above T, . However, in the low-frequency region the dynamical

susceptibility has a Debye-type frequency dependence with one relaxation time 7„. The temperature

dependence of 7„ is calculated within the present model and is compared to that derived from the random-

phase approximation (RPA). It is found that the relation between ~, and the static transverse susceptibility

g„ is markedly different from the RPA result 7„~ Tx„. The present theory explains in a consistent way the

available experimental data on the dynamical properties of KD,PO4 in both the longitudinal and transverse

directions.

I. INTRODUCTION

Dielectric and light- scattering measurements
on KD, PO4 have recently demonstrated the ano-
malous behavior of the protonic E-mode fluctua-
tions near the transition temperature. ' 4 Though
several dynamical models for KD, PO4 have been
extensively studied in order to explain the pro-
perties of the polarization fluctuations along the
longitudinal z directions (B, modes), ' ' very little
theoretical work has been done on its dynamical
properties along the transverse x direction. In
the present paper we investigate the dynamical
properties of KD,, PO4 on the basis of a previously
developed" pseudospin Hamiltonian which takes
into account the transverse dipole moments of the
hydrogen bonds. Relaxational processes are in-
troduced through a Glauber" equation of motion
for the transversely polarized pseudospins.

First, we apply the random-phase approximation
(RPA) to the pseudospin equations of motion. Such
an approximation was previously shown to be suf-
ficient for explaining qualitatively some important
dynamical properties of KH, PO, - (KDP-) type crys-
tals along both the z and x directions. ""How-
ever, we here show that it fails completely to ex-
plain the observed temperature dependence of the
relaxation times in KD, PO, particularly along the
x direction. This failure is attributed to the neg-
lect of protonic short-range interactions which
are known to play an important role in the phase
transition of this crystal. "'" In order to take
into account the effect of these interactions on the
transverse dynamical properties we use a time-
dependent four- cluster model similar to that applied
by Yoshimitsu and Matsubara' for the longitudinal
case. Solutionof this model result~ in a tempera-
ture dependence for the transverse relaxation time

T„which is markedly different from that predicted
by RPA. Finally, we show that the results of the
present model fit well the available experimental.
data on the dynamical properties of KD, PO, alang
both transverse and longitudinal directions.

ll. TRANSVERSE DYNAMICAL MODEL

It is well known" that the static and the dynamical
properties of KD, PO, can be described by a pseudo-
spin Ising Hamiltonian. In treating the dynamical.
properties of KD, PO4 in this model one should take
into account the existence of four pseudospins per
unit cell. This gives rise to three different modes
with B„E,and A, symmetries. '" However, when
one considers only polarization fluctuations along
the z direction (the B, mode), only one pseudospin
need be assumed. The present work extends the
dynamical treatment to include also polarization
fluctuations along the x direction (the E modes).
This is achieved by assuming the existence of
two different pseudospins in each unit cell, which
are labeled here as Z,- and Z, . With these as-
sumptions the Hamiltonian can be written'"

z= P z„z,. z,. z, z (~)P'z;. ,gz.)
E( t) Z+ -Z

It is assumed that the dynamical response of this
spin system is due solely to interactions with the
surrounding thermal bath and therefore is of a
relaxational nature. A convenient way to treat
these relaxational processes is by adopting the
Glauber kinetic Ising model. " In this model only
one spin is allowed to flip at a time, according
to a transition probability which is a function of
the various possible states of the surrounding
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spins. With these assumptions the spin equations

of motion get the following form

tf

(Z, ~ ~ ~ Z„),=2 Z, ~ ~ Z„Q P(Z&) . (2)
j=1

The moment (Z, ~ ~ Z„), is the time-dependent

average of the product of n pseudospins, the time
constant &, is the relaxation time of an individual

proton in the high-temperature limit, and P(Zy) is
the relative probability that the spin of the jth
site takes the value-Z, . while the other spins re-
main fixed in a given configuration. The prob-
ability P(Z&} is given by

exp[- PE(Z„. . . , Z„.. . , Z„}]
P(Z, ) =

exp[ PE-(Z& . . -Z& . Zz)]+exp[-f}E(Z& Z& z)]

where the energies E(Z„.. . , +Z&, . . . , Z„) are the

eigenvalues of the Hamiltonian (Eq. (1)) for the

eigenstates (Z„. . . , + Z&, . . . , Z„), N being the
number of spins in the system. It is readily seen
that P(Z, )can b. e written &~ a) &-+ )

(6)

P[Z&) ]1 Z&ta h l3 p J,, Z,
$olut&on of Eq. (5) yields the following dynamical
susceptibility along the z direction:

y p, Z, +».„E„.(4) where

III. RANDOM-PHASE APPROXIMATION (RPA)

A first-order approximation is achieved by re-
placing Z «&& Z,&Z, of Eq. (4) by the average term

Q«»Z, &(Z,),. Taking into account only linear
terms in the time-dependent quantities, Eq. (2)
becomes

+Z
'dt 2

Z + Z
2

P(1 (Z):}

Z + Zx p zEz+ Jz (5a)
2

—P1 — Z

x p,„E„+J& . 5b

Evidently, Eq. (2} couples the amplitudes (Z,),
with amplitudes of moments of higher orders up to
the Nth order, therefore in, the following we apply
approximation methods for the solution of Eq. (2).

NPz
Jz (1-(Z)') '

2

and along the x direction:

X, (~) = X„(0)/(1+iu rz),
where

T N&x ~z
T —Jz(1 —(Z)') ' * 27

The main result of Eq. (8} is that the longitudinal
relaxation time ~~ critically slows down on ap-B2
proaching T,. Such a behavior is clearly seen in

experiment. ""However, since x,(0) is known to
vary very slowly with temperature, above T„
the relation 7z o-TX,(0), of Eq. (10) implies that

7~ increases with temperature. This result is
in contradiction to experimental data" on KD, PQ4
which clearly indicate that ~~ decreases signif-
icantly with increasing temperature. In Sec. IV
we try to get a better approximation to the dynam-
ical equations by considering a self-consistent
four-cluster solution which takes into account also
short-range interactions between the hydrogen
bonds.

The average (Z), is the spontaneous polarization
which is zero above T„ the constants JB and J~
are the Four ier transforms of the interaction con-
stants (for zero wave vectors) in the B, and E—
mode configurations, respectively'6:

IV. DYNAMICAL CLUSTER APPROXIMATION

In the four-cluster approximation of the Ham-
iltonian in Eq. (1), the exact short-range inter-
actions between the four bonds surrounding a PO,
group are taken into account, whereas the other
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where Z, and Z, are defined as Z, and Z„re-
spectively. Thus we get the following three Glau-
ber equations of motion for the four-cluster trans-
verse moments.

FIG. 1. z-axis projection of the hydrogen bonds con-
necting the K-PO4 groups showing the different labels
of the four spins surrounding each group. & p,,),=&m,), ,

d
(14)

interactions are averaged in a self-consistent
way. " Thus we use here the following Hamilton-
ian:

Hz = —V(z, zz+ Z,Z3+ Z,Z, + Z,Z4) —U(Z, Z~+ Z2Z4)

—[p,E,(t) + y( Z), + g &,(t) ] (Z, + Z, + Z, + Z,)

[IJ,„E,(t)+-z'b., (t)](z, +Z, Z, Z,).
The one-particle Hamiltonians are

&, =-[ I .E. (t)+ y&», + ~,(t)

+ p„E,(t) ~ b,„(t)]Z',

where Z' stands for the pseudospin of the bonds
labeled 1 and 2 to which positive transverse dipole
moments are assigned, and Z stands for the 3 and
4 bonds to which negative transverse dipole mo-
ments are assigned, see Fig. 1. The energies U
and V are connected to the Slater energy param-
eters cp and E„ through the relations: U= —26 l

l9+ 2 6p, V = 26l —4 6p-

In the above Hamiltonians the pseudospins inter-
act with time-dependent effective fields which have
components in both the longitudinal and the trans-
verse directions. These effective fields are com-
posed of external electric fields E, and E„, the
longitudinal molecular field y& Z)„and short-range
cluster fields &, and ~„. The above Hamiltonians
are the dynamical extension of the static cluster
Hamiltonians of the type developed in detail in
Ref. 9.

As indicated by the form of H4 and H„ the polari-
zation along the x direction is represented by the
E-mode fluctuation of (Z,), —(Z,), (and (Z,),
—&Zg, ). In the four-cluster dynamical model this
fluctuation is accompanied by the fluctuations of
the higher pseudospin moments: (Z,Z,Z,),
-(Z,Z Z,)„and &Z~z,), —(Z,Z,),. Therefore
we define a vector p, whose three components p,

are the following transverse spin moments:

where m are spin operators which are derived by
multiplying each spin moment Z; ~ ~ ~ Zk in p. by
the operators

k

P [1—Z, tanh(t)e, ')].
The operators Ez are

4

e', = p ~;&Z;+y&Z), +-,' d, (0) + [p,„E„(t)+-,' n„(t)].
(15)

The spontaneous polarization &Zg, and the static
cluster-field h, (0) which have nonzero values only
below T„are derived from the static four-cluster
self-consistent equations, ' whereas the fluctuating
transverse cluster field n.„(t) is eliminated by
comparison with the Glauber equation of motion
of 0'.

r, —(Z-'), = (Z'), —tanh(P(d (0)+ y(Z),

1 d, d——&z z &, = —&Ii), .
2 dt dt

(16b)

Expanding &m ), in linear terms of the transverse
fluctuations ( p, ), and IJ.„E„(t)we obtain the follow-
ing form for Eq. (14):

d—To —( I ~},=g Mzz ~, & g I,),+ P g E, (t)zL ~,a'

where M, and L are functions of the tempera-
ture and the energy parameters &„e„and y.
For detailed calculation of M, and L see Ap-
pendix.

Above T„ the third component of ( p ), is not
coupled to the other two and therefore there are
only two modes which are polarized along the x
direction. These two modes are determined by
the upper 2 & 2 block of M, and the first two com-
ponents of L which are

+[p„E,(t)+ 4„(t)]},(16a)

and using the consistency condition
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1+P(l+ L,) R(1+L,)}
(18)2P-+3R+PL, 3+P+RL, j'

2L 8ab ab' 1 2
j.

3 + +
1+LE 1+2a+4ab+ab4ab+1ab+1b+1

(19a)

2L, Sab ab' 1 2

1+L, 1+2a+4ab+ a'b' ab'+ 1 ab+ 1 b+ 1

where

(19b)

1 1 —ab b —1 ab'-1 b —1

and

a=exp(-Pe, ), &=exp[ P(~, —~,)j.

(20)

(21)

The solution of Eq. (17) for the relaxation times of
the two modes above T„as well as numerical re-
sults for below T, are given in Sec. V.

V. RESULTS AND COMPARISON WITH EXPERIMENT

Above T„diagonalization of Eq. (17), for E„=O,
yields two relaxation times, ~", and &'„which are
approximately given by

1 8b

3(1+2a) '

1 b(2+ 3a+ 6a')
3(1+2a)

(22)

A similar procedure gives, for the longitudinally
polarized B, modes, the following two relaxation
times:

1 8ab (2a —1 —2Py)
3{1+2a)

1 b(6+ 7a —6s'+ 2Pya)
7, 3(1+2a) (23)

Since it is known" that b «1 for KD,P04, we neg-
lected in Eqs. (18) and (19) terms of the order of

It should be noted that ~, is the same for both
the longitudinal and transverse modes. It is also
noted that, in the case of y=O, Eq. (23) reduces to
the solution given in Ref. 6. It is seen from the
above equations that, for both the E and B, modes,
7, has a strong temperature dependence and is
much greater than 7, which is nearly independent
of temperature. This significant difference be-
tween 7, and ~, stems from the fact that 7, is the
lifetime of a mode in which the spin relaxation
involves transitions from the low-energy levels
which have the Slater energies 0 (in the longitudinal

case) or &0 {in the transverse case) to the high-

energy levels with the Slater energy e, . In con-
trast, 7, is the lifetime of a mode which involves
transitions from the high-energy levels to the low

ones. Since by approaching T, from above the

level with zero energy becomes stable, the longi-
tudinal mode with the lifetime 7', critically slows
down, as evidenced from Eq. (23). However, the

inclusion of the long-range interaction y allows
for a first-order transition' in which case, T',

remains finite at T,.
Below T„all three component of ( p ) are

coupled, and the elements of M, depend also
on the spontaneous polarization. Numerical
solution of Eq. (17), for T& T„shows that also
in this region one relaxation time 7", is much
greater than &", Bnd 7", . A similar treatment of
the longitudinal case yields four coupled ferro-
electric modes with 7', much higher than the other
three.

In order to calculate the dynamical transverse
susceptibility, X,(~), we introduce E,(f)
=E„exp(ivt) in Eq. (17). Solution of Eq. (17) for

X „(&o) =—N p„(g,)/2E„yields

Xy Xs X3
X» 1+i' 7», 1+gee'", 1+v»~ '

where each X, represents the temperature-depen-
dent relative contribution of one of the three E
modes to the transverse susceptibility. Above T„
X3 is zero, and X, and X~ are given by

Np,' a b(8+ 18a)
T 1+ 2ab 9(l+ 2a)

N p,„ab
T 9 (1+2a)(1+ 2ab)

(25)

where, again, terms of the order of b' were neg-
lected.

Since the high-energy level. s have relatively
small Boltzmann factors, their contribution to
the susceptibility X, and X, is much smaller than
that of the low-energy levels, which is X,. Thus
in the low-frequency region, X,(~) is dominated
by X, and therefore can be wr itten in both the
paraelectric and ferroelectric phases as

X,(~) = X (0)/(1+icdr„), (26)

where X (0) =X, and T —&,*. This result shows
that, in the low-frequency region, not only in. the
RPA but also in the dynamical four-cluster ap-
proximation, X, (&u) has a monodispersive Debye-
type frequency dependence. This behavior is
actually seen in experiment. +"

A very interesting consequence of the above theo-
ry is the relation between ~ and the static sus-
ceptibility X,(0), which is very different from the
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both 7, and ~, in the four-cluster approximation
is in good quantitative agreement with the avail-
able experimental, data of Kaminow, ' Reese et al. ,

"
and Gauss and Happ. Comparison between the
present theory and the experimental data for 7
an T ad 7' above as well as below T, is given in Fig.

nd2 Th slight discrepancy between the theory an
tKaminow's data of T„ is attributed to the fact that tha

data was obtained from a not fully deuterated DKDP
and therefore the value of ~„ is expected to be
smaller than that of a fully deuterated crystal. It
should be noted that the good agreement was
achieved with the same individual proton relaxation
time 7 = 0.31 && 10 " sec, for both the x and the z0
directions.

The effect of the spontaneous polarization on the
transverse dynamics below T, is manifested by the
discontinuity of T„at T, and its rapid decrease
below it, as shown in Fig. 2. Evidence for such
anomalous behavior of 7 below T, is found in the
measurements of Kaminow' and Gauss and Happ. '

Finally, it is noted that the temperature de-
pendence of ~„can be deduced also from the Tde-
pendence of Re)(,(&u, T). Very recent measure-
ments' of the temperature dependence of this quan-
tity in KD, PO, at w/2v = 4.6 cm ' have shown that
T Re)( (u& T) increases with T up to room tem-c~ X»

FIG. 2. Pseudo spin relaxation times in KD, PO4 as a
function of T —T, . (a) Longitudinal relaxation time, (b)
transverse relaxation time. The open circles are the

0 fullresults of Kaminow's {Ref.1) measurements of tano", on y
deuterated KD2PO4 and tan6„on 76% deuterated KD&PO4.
The full circles are the experimental data of Reese et aL.

(Ref. 12) for fully deuterated KD&PO4 ~ The full squares are
the data of Gauss and Happ (Bef.4). The line represents
the theoretical calculations of && in Eqs. (7) and (8) with
E'p = 92 K &g = 907 K and y = 36.9 'K. These energy
values give best fit to the static dielectric properties of
KD~PO4 (Ref. 6).
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relation r, ~ T)(,(0) which was derived above in the
RPA. In effect, in the cluster model, this rela-
tion turns out to be

(27)&x" TX.(0)/Li

where L, [Eq. (A5)] has strong temperature de-
pendence. For example, above T„L,=ah/(1+ 2a).
Similar results have been obtained, for the lon-
gitudinal z direction, using a phenomenological

7dynamical version of the Slater- Takagi model.
As mentioned above, measurements of tan5„

= Imp, /Rey„, which is equal to ur„ in the Debye
model, yields for T& T, in KD,. PQ4 a strongly
decreasing function of T.'4 Indeed, due to the
temperature dependence of L„&,of Eq. (27) is a
decreasing function of T, in constrast to its
behavior in the RPA. Moreover, the solution of

30—

20—

l0—

~ I . I . i . I

20 0 20 40 60 80
('K)

FIG. 3. Real part of the transverse dielectric constant
in KD PO at ~/2~=4. 6 cm ~ as a function of T —T, the2 4

circles are the experimental data of Gauss and Happ (Ref. 4).
The full line is the theoretical result. For comparison
we also bring the static transverse dielectric constant
(Bef. 9) presented by the dashed line.
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perature. This result indicates that (a) &ur, ~ 1
at 4.6 cm ', and (b) r„strongly decreases with tem-
perature, thus causing an increase in Rey, (~, T)
= y„(0)/(I+ &u'r', ), in spite of the decrease of y, (0).
Both conclusions fit well with our theoretical re-
sults. Indeed, calculation of Re&(,(~, T), based on
Slater energy values previously deduced from static
measurements on KD, PO4, ' resulted in a peak
which is located at T =300'K for u/2w= 4.6 cm ',
see Fig. 3.

In conclusion, we have shown that the observed
transverse dynamical properties of KD,PO4 clearly
indicate that both long-range and short-range inter-
actions play an important role in the dynamics of
KDP-type crystals. We have also shown that a
four- cluster theory which takes both interactions
into account does explain the low-frequency dy-
namical properties of KD,PO4 in both the longi-
tudinal and transverse directions.
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APPENDIX

and

(A5)

Note that the quantity (m'), is a static average,
i.e. , calculated for $„=0. In the following, we
present explicit expressions for Tr(m', p, ,),
&m„'&„$, and t', .

Using the definitions of m of Eq. (14) and p,, of
Eq. (13), we obtain

1+P
—,Tr(m', p, ) = 3R 2P-

2(M+ X- I.) 0

B M

3+P M+N —L

2(1+B)

where

P =,—' Tr [Z;„tanh(Pe&) ],
R = —Tr[z, ,~ Z&,2 Z;, tanh (Pqo)),

f. = —'Tr[tanh(Pea) ],
M =

—,', Tr[Z„,Z;„tanh(PE,')),

(A6)

(A7)

N = —' Tr [Z,.„Z,„tanh(Pe', .)] .

The energy operator e'; in Fqs. (A7), is the oper-
ator e', , defined in Eq. (15) with a zero transverse
field. Thus tanh(pc';) of Eqs. (A7) isa 16&& 16 diag-
onal matrix, which has the quantities tanh(pc';) as
diagonal entr ies.

Calculating the static thermodynamic average of
the operators rn' we obtain:

In this Appendix we derive the explicit form of
the equations of motion, represented by Eqs. (14)
and (17). Retaining in m only linear terms in the
dynamical transverse field $,(t) = iJ,,E, (t)+ d.,(t),
m is written

(Al)

$,(t) = Q $~( p ~&q+ (, Pp E, (t) .

Substituting Eq. (A2) in Eq. (Al), and averaging,
yield:

(A2)

&m.&g= Z M~a & tjn &1+I epP*EX() (A3)

where

= & Tr(m' p, )+ &m'&,P(

(A4)

The field („can be written as a linear function of
the amplitudes (p ), and the external field p+, (t),
in the following way:

(m,')0= —[I+ (2P+ q)(Z, ) + r&Z, Z„,Z,„)
+ 2m(Z; Z;„&0+n(Z, Z;„&0)

(m,'), = [n+ (2q—+ r)(Z, &, + p&z, Z, „Z,.„),
+ 2m(Z, .Z, „&,+ l(Z, Z,.„&,],

(m,'), = —[2q+ 2(t+ m+ n)(Z,.),+ 2m(Z, Z, „Z,.„&,

+ 2(r+P)&Z, Z;„& + 2q(Z, Z„,& ],

where

p =
—,', Tr[Z„, sech'(pe', )],

q = —'Tr[Z, „sech'(pc', . )],
r = —'Tr[Z,.„Z,.„Z» sech'(pe', )],
l = —', Tr[sech'(pe', )],
m = ' Tr[z, „z,.„sech'(pe,'. )) .
n= ' Tr[Z„,z,„sech'(Pe';)))]t.

(A8)

(A9)
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In order to calculate the transverse field coeffi-
cients $ and $, we use the dynamical consistency
condition of Eqs. (16). Expanding Eq. (16a) in lin-
ear terms of (t' ), and t"P,(t) and using Eq. (A2),
we obtain the following form for Eq. (16b):

1P=—
4

R=—1
4

1 —ab 2(b —1) ab' —1

1+ab b+ 1 ab'+ 1

1 —ab 2(b 1) ab' —1
1+ab b+ 1 ab'+ 1

Q 6,., (t .), —2P[1 —(Z)', ] Q &-, (t" .),
R f}t

(P), —-)~tQ, (t) =+M,.(t., ,),+L,Pt P, .

(A10)

2b ab'
(ah+1)' (b+1)' (ab'+1)''

ab ab'
(nb+ 1)' (ab'+ 1}''

ab 2b ab'
(nb+1)' (b+1)' (ab'+1)''

(A12)

Combining the terms of (t"-,), and t'Q, (t} and sub-
stituting (A4) and (A5) one obtains

6,-, ——,
'

Tr(m,'t" .)

2(1 (Z)', ) —(m,')„'

L =M=N=P=q=r=O,

where a = exp(-P&, ) and b = exp[-P(e, —&,)].
Also, the averages appearing in Eq. (A8) reduce

for T)T„ to

(Z, ),=(Z,. Z,.„Z;„),=0,

1 —(Z)',
2(1 (Z);) (m, ),

(All) 1 —a'b'
«, Z...)= 1+2a+ 4ab+ a'b' '

1 —2a+ a'b'
'+ 1+ 2a+ 4ab+ a b

(A13)

Finally for T& T„Eqs. (Av) and (A9) reduce
to the following analytical form:

Using the above expressions one obtains the sim-
ple form of M„, and L given in Eqs. (18) and (19).
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