
PH YSICA L RE VIEW 8 VOLUME 16, 5 UMBER 7 1 OCTOBER 1977

Renormalization-group approach to the Ising model with a free surface
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We use simple position-space renormalization-group procedures involving only nearest-neighbor interactions
to discuss the critical behavior of the ferromagnetically coupled semi-infinite Ising model with a free surface

in two and three dimensions. In three dimensions for suitably enhanced surface couplings there are surface
transitions and simultaneous surface-bulk transitions as well as the bulk transition. A phase diagram, critical
exponents for the various transitions, and some representative magnetization profiles are calculated. Despite
their simplicity, the renormalization transformations exhibit complete sets of fixed points for describing the
various phase transitions and yield phase diagrams which are a significant improvement over mean-field

theory. However, the calculated magnetization profiles show some unphysical features due to the finite

cluster size on which the transformations are based.

I. INTRODUCTION

Position-space renormalization-group {RG) meth-
ods' have been used with remarkable success to
calculate the bulk critical properties of Ising-like
models. Svrakic and Wortis' have shown how the
approach can be extended to systems with free sur-
faces. The Ising model with a free surface has
experimental relevance in questions concerning
surface critical behavior in magnetic systems and
surface segragation phenomena' in binary alloys.
We refer to Ref. 2 and to recent articles by Binder
and Hohenberg"' and Binder and Landau' for refer-
ences to earlier theoretical work on this system
based on other calculational methods and to experi-
mental literature.

Svrakic and Wortis (SW}' have carried out a sim-
ple RG calculation of the bulk and surface critical
properties for the semi-infinite ferromagnetically
coupled Ising model with dimension d= 2. In this
paper we report results obtained for d= 3, 2 using
a similar approach. The d= 3 phase diagram is
more complex than for d= 2, since in addition to
the bulk transition there are surface transitions
and simultaneous surface-bulk transitions for suit-
ably enhanced surface couplings. We compute a
phase diagram, critical exponents for the various
transitions, and some representative magnetiza-
tion profiles. Our renormalization transforma-
tions, which are based on the lowest-order Niemei-
jer-Van Leeuwen cumulant and cluster expan-
sions"' and involve only nearest-neighbor inter-
actions, are too simple to yield really reliable nu-
merical predictions, but they exhibit a complete
set of fixed points describing the various transi-
tions and provide phase diagrams which are a sig-

nificant improvement over mean-field theory. Re-
normalization transformations based on small
clusters have been extremely successful in pre-
dicting the bulk critical properties of the Ising
model. ' Our calculations indicate that position-de-
pendent properties are much more sensitive to this
type of approximation. The magnetization pro-
files we obtain show some unphysical features due
to the finite cluster size.

In Sec. II some results obtained using mean-field
theory are reported. In Sec. III the renormalization
transformations are described. In particular our
reasons for considering other weight functions for
the surface spins than the majority-rule weight
function of Ref. 2 are given. In Sec. IV some nu-
merical results for d= 3, 2 are presented and dis-
cussed.

II. MEAN-FIELD THEORY

We will be concerned with the three-dimensional
semi-infinite Ising model with ferromagnetic near-
est-neighbor interactions on a simple-cubic lattice.
The Hamiltonian is given by

where the spin variables 0 take the values +1. Fig-
ure 1(a) shows the mean-field phase diagram as
obtained by Binder and Hohenberg, ' Lubensky and
Rubin, ' and others for the case that J~g Ju if spins
~ and P are both on the surface, and J ~= J„
otherwise. The surface enhancement b, is de-
fined by J~~ (1+2)J~. T„' is the bulk critical tem-
perature. Phase P is paramagnetic, whereas
phase BF (bulk-ferromagnetic) has a bulk spon-
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FIG. 1. Mean-field phase diagram for the Ising model
with enhanced surface coupling J~~

= (1+6)J~. P, BF,
and SF refer to the paramagnetic, bulk-ferromagnetic,
and surface-ferromagnetic phases. 0, E, and S repre-
sent lines of ordinary, extraordinary and surface trans-
itions. SB denotes the multicritical point of the surface-
bulk transition. K~~

= J[~lk&T, E& = J&/k&T. 0 denotes
the origin.

taneous magnetization. For 6 greater than a criti-
cal enhancement b,„there is an additional phase
SF (surface-ferromagnetic) with T& T~~ in which
the system has a. spontaneous magnetization at the
surface which decays exponentially to zero bulk
magnetization with increasing distance from the
surface. Lubensky and Rubin' refer to the transi-
tions along lines 0, E, and S as the ordinary,
extraordinary, a,nd surface transitions, respec-
tively. At the multicritical point SB a simul-
taneous surface-bulk transition takes place (the
X= ~ transition in the continuum approach of

Lubensky and Rubin). For T& T~ the surface mag-
netization is less, equal, or greater than the bulk

magnetization for b, & b,„h= A„b, & b,„respec-
tively. We refer to Refs. 5 and 8 for the mean-
field critical exponents for the various transitions.
In mean-field theory b,,= +, and the branch of sur-
face transitions approaches point SB as T —T;- {a s,)'.

Figure 1(b) shows the mean-field phase diagra. m

in the variables K„=J„lksT, K~= J~lkeT Not. e
that the critical enhancement b,, is simply related
to the coordinates (K, K~) = (1+6„1)K~of point
SB.

The renormalization transformations we use in-
volve three independent spin couplings K

(K~~ Kg Ky) where Kg is the coupling between
nearest-neighbor surface spins, K, is the coupling
between a spin in the surface layer and its nearest
neighbor in the next layer, and all other nearest-
neighbor couplings equal K~. For comparison with
the RG results we have calculated the mean-field
phase diagram in the variables K with a procedure
similar to that of Ref. 5. The mean-field equa-
tions for the layer magnetization m,. have the form

m, = tanh(4Kgm, + K,m, + h, ),
m, = tanh(K, ~i+ 4Kt, ,+ K~ns, +,),
m, = tanh[K~(m, , +4m&+m, .„)+h,.], i & 2,

(2a)

(2b)

(2c}

where k,. denotes the field acting on each spin in
layer i. The phase diagram obtained from Eqs.
(2) is shown in Fig. 2. It is similar to Fig. 1(b)
except that there are surfaces of ordinary, extra-
ordinary, and surface transitions and a line of
surface-bulk transitions. A larger variety of mag-
netization profiles is also possible than before.
The bulk transition occurs for K~ = K ~

= —,
'. The

critical surface for surface transitions satisfies

(1 —4K„)[1—(4+ e '~~' n')Kr~] -K,'= 0,
where the bulk correlation length $ is given by

(3)

C

b Kb
e '~~& a'=(1/2K~)(1 4K~ [(1 2K~)(1 6K~)]'~').

FIG. 2. Mean-field phase diagram in the variables
X~~, Kj, Kb. S denotes the critical surface for surface
transitions. The line of surface-bulk transitions SB
divides the plane of bulk transitions E& =E~& into surfaces
0 and E of ordinary and extraordinary transitions. 0
denotes the origin.

This surface intersects the K, axis at K) = 4. In-
serting K~= —,

' into Eqs. (3) and (4), one sees that
the line of urface-bulk transitions is given by

4K)) + 6K~ —1=0.
Some qualitative shortcomings of the mean-field

phase diagram are readily apparent. The critical
surface S should intersect the planes K, = 0 and
K~=0 in Fig. 2 in straight horizontal lines K(, = con-
stant, since the surface layer has exactly the
same critical coupling as a planar Ising model if
K, = 0 or K, = 0. Although the first intersection is
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horizontal, the second is not. That the critical
surface goes to K = 0 as K, is increased is also
an unphysical consequence of the mean-field ap-
proximation. According to mean-field theory a
surface transition can always be produced by

making K, sufficiently large, regardless of how

weak the surface and bulk couplings are. How-

ever, the exact critical surface approaches a non-
zero K) as K, is increased with K~ held constant.
In the limit K, -~ a spin in the surface layer is al-
ways in the same state as its nearest neighbor in

the next layer, and the system is exactly equivalent
to a system with one less layer and new couplings
K,', =K, +K„K,'=K,'=K, . In summa. ry the exact
critical surface for surface transitions K„(K„K~)
should satisfy the rel.ations

Surface
aakAFTVTT gv vvv wgT vvTTvvg vga

7
I [ Ix
~

~

x

Kg

Kb

x
I

Kt(0, Kq) = K„,(0, 0),

K„(K„O)= K,(0, 0),

K„(,K,) =K,(K„K,) -K„

(6a)

(6b)

(6c)

the second two of which are violated in mean-field
theory.

III. THE RENORMALIZ ATION TRANSFORMATION

To construct a renormalization transformation
we apply the method of Niemeijer and van Leeu-
wen"' in the manner outlined in Ref. 2. As in

Fig. 3(a) the simple cubic lattice is divided into
cubic cells of eight site spins, to each of which
a single cel1. spin is assigned. For all cells other
than the layer of surface cells we use the majority-
rule (MR)' weight function in assigning cell spins.
For reasons discussed below, we have considered
two modified weight functions for the surface cell
as well as the MR weight function used in Ref. 2.

Nienhuis and Nauenberg'" have derived formu-
las for calculating the bulk spontaneous magnetiza-
tion with the RG approach. They show that a non-
zero spontaneous magnetization implies a magnetic
eigenoperator of the low-temperature fixed point
with eigenvalue y„= d, where d is the dimension of
the system. To calculate the spontaneous magne-
tization it is advisable to choose the weight func-
tion relating the cell and site spins so that the
ferromagnetic ground state is mapped upon itself.
Then there is a corresponding low-temperature
fixed point at K= ~, and the existence of the eigen-
value y„=d is guaranteed, even in an approximate
calculation.

Since we are interested in surface transitions,
which are basically two-dimensional, as well as
bulk transitions, it is desirable to choose the sur-
face weight function in such a way that any state
in which all the surface spins are parallel is
mapped onto a, similar state. This allows for low-

(b)
FIG. 3. (a) The rescaling procedure illustrated for

d =2. The dots represent site spins and the crosses cell
spins. For d =2 there are four site spins per square
cell and for d =3 eight site spins per cubic cell. (b)
The majority-rule weight function divides the weight of
the illustrated configuration equa1ly between cell-spin up
and cell-spin down. Weight functions M1 and M2 assign
ce11-spin up to the configuration.

temperature surface fixed points with infinite sur-
face couplings but other couplings finite and the
magnetic eigenvalue' y„=d —1 consistent with a

1
spontaneous surface magnetization. The usual MR

weight function' does not map a configuration with
all the surface site spins para. llel onto a configura-
tion with all surface cell spins parallel and in the
same direction since half of the weight of the con-
figuration shown in Fig. 3(b) (and of the configura-
tion with all spins reversed) is assigned to cell
spin up and half to cell spin down. However, the
following two modified surface weight functions
(and others as well) do have this property:

Weightfunc5on M1. M1 is the same as for MR
except that the configuration of Fig. 3(b) is as-
signed to cell-spin up and the spin-reversed con-
figuration to cell-spin down.

Weight function M2. The cell spin for the eight-
site surface cell is determined by applying the MR
to the four surface-site spins except if the sum of
the four spins is zero. In this case the MR is ap-
plied to all eight site spina.

M1 represents perhaps the minimum modifica-
tion to MR necessary for low-temperature surface



3216 THEDDORE W. BURKHARDT AND ERICH EISENRIEGLER 16

fixed points at K„=~ with the other couplings finite.
If all couplings except K„are zero and one sums
over the site spins in the second layer, M2 re-
duces to the two-dimensional majority rule for
square cells of four site spins, although it is not

unique in this respect. %e will see that the criti-
cal surface calculated with M2 satisfies Eq. (6b)
exactly, whereas this is not the case with MR and

Mi.
In the lowest-order cumulant expansion"' in

which the interactions between cells are treated
as first-order perturbations or in the two-cell
cluster approximation of SW, the recursion re-
lations in zero magnetic field have the form

K,', =f„(K~,fC, ) K~},

K,' =f,(K~~, K~, Kb),

K~ =f~(K~) .

(7a)

(7b)

Note that the bulk coupling transforms indepen-
dently oi K, and K,. Lengthy but straightforward
explicit expressions for the functions f in Eqs.
(7) can be constructed following Refs. 1, 2, and
7.

To compute magnetic critical exponents and the
spontaneous magnetization, it is necessary to
introduce infinitesimal fields h, coupling to the
spins in layer i. In the same approximations lead-
ing to Eqs. (7a)-(7c) the fields transform as

sh'(K)
(9)

and dividing by the number of spins per layer.

m,.(K) = Q T,,(K)m~(K')
f

Bh"K
(K)tg eh)

The quantity b '~ "=4, where b= 2 is the length-
rescaling factor, is the factor by which the num-
ber of spins per layer is reduced.

(ga)

(9b)

IV. RESULTS

A. d=3

)) K

~Fbi
at(~, a,o)

~ E
at (c )finite' K

Figure 4 shows the phase diagram and seven as-
sociated fixed points of Eqs. (7a)-(7c) obtained
with a cluster calculation as in Ref. 2 but with
weight function M2 for the surface spins. The
critical surface for bulk transitions is the plane

K, =K,*. A point in the plane remains in the plane
under application of the renormalization transfor-
mation. Points with K~&0 and K~& 0 are mapped
toward K~= 0 and K, = ~ by the transformation re-
spectively.

The paramagnetic phase P with K~&K~~, the bulk
ferromagnetic phase BF with K, &K~~, and the sur-
face ferromagnetic phase SF with K~&K~ are

where Sh,'./eh, . has the form" shown in Table I.
A recursion relation for the magnetization per
spin m,. in layer i may be obtained by differen-
tiating the transformation law for the extensive
free energy F~(K, h) =F„,(K', h'} with respect to h,.

BF

at (ce,oo, cn)

TABLE I. Matrix T;J. Elements A&, B;, C& depend
Gn K)) KJ Ktl, whereas A, B, C only depend on K~.

Kb

Ct Ag 0 0 0

z Bh'g
Tip

Bhg

C2 Bg 0 0 0 ~

0 0 ~ ~ ~

A4 C4 B 0 0 ~ ~ ~

0 B C A 0 ~ ~ ~

0 A C B 0 ~ ~ ~

0 0 B C A ~ ~ ~

A C B . ~ ~

0 0 0 B C

0 0 0 A C

~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ $j

6K
b

FIG. 4. RG phase diagram calculated with the cluster
approximation and weight function M2 for the surface
spins. The paramagnetic, bulk-ferromagnetic, and
surface-ferromagnetic phases are mapped onto fixed
points P, BF, and SF, respectively. The critical sur-
faces for the ordinary, extraordinary, and surface trans-
itions are mapped onto fixed points 0, E, and 8, and the
critical line of surface-bulk transitions is mapped onto
fixed point SB.
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mapped onto the completely attractive fixed points
P, BF, and SF, respectively. The critical sur-
face for surface transitions is mapped onto fixed
point S, which has a single repulsive eigenvector
parallel to the K) axis. The critical surfaces for
the surface and bulk transitions intersect along
the critical line of surface-bulk transitions. The
line of surface-bulk transitions is mapped onto
the fixed point SB, which with one repulsive eigen-
vector in the plane K~= K~ and one out of the plane
has the topology of a multicritical' fixed point. The
line of surface-bulk transitions divides the plane
K~= K~ into critical surfaces for the ordinary and

K~
Ot'

Kb

FIG. 5. RG results for the critical surface of surface
transitions K)~(K~, K~) obtained with the cluster approx-
imation and weight function M2. The properties of an
exact solution, Eqs. (6a) —(6c) are satisfied to a good
approximation. In an exact solution the two upper curves
would be replaced by a single horizontal line, and the
lower two curves would coincide.

extraordinary transitions, which are mapped onto
fixed points 0 and E, respectively. Both of these
fixed points are completely attractive in the plane
but are unstable, as is every point in the plane,
with respect to perturbations away from the plane.

We have calculated the phase diagram and the
fixed points with surface weight functions MR,
,lI1, and M2 and with the first-order cumulant
approximation"' as well as the two-cell cluster
approximation of Ref. 2. The general appearance
of the phase diagram is the same in all the calcu-
lations. In the RG results the exact conditions
Eqs. (6a) -(6c) are all satisfied to a good approxi-
mation, as shown in Figs. 4 and 5. In the calcu-
lations with M2 Eq. (6b) is satisfied exactly. With
the other weight functions K„(K„O) decreases
monotonically by less than 10%%uo as K, goes from
0 to ~. The RG phase diagram represents a con-
siderable improvement over the mean-field phase
diagram of Fig. 2 as far as the behavior for large
K, is concerned.

Table II shows the location of the various fixed
points in some of the cases we considered. " In
Table III the RG results for several critical cou-
plings and fixed-point values are compared with
exact values or best estimates. The K)( coordi-
nate of fixed-point S and the K„coordinate of 0,
SB, or E yield values for the bulk critical cou-
plings K,"=', I&",

=' of the Ising model. The relevant
eigenvalues y, and y„(we follow the notation of
Ref. 2) of these fixed points determine the usual
bulk critical exponents. b,„the critical enhance-
ment for the case J,=Z~, can readily be deter-
mined from the intersection of the phase diagram
with the plane K, =K~, as indicated in Fig. lb. The
eigenvalue y„describes the instability of a fixed
point with respect to a surface magnetic field. '

We refer to Ref. 2 for a detailed discussion of
the relationship between the eigenvalues y and the
singularities of the free energy. For the ordinary
transition the singular part of the surface free
energy is found to have the form

TABLE II. Coordinates (K)) Kg KQ) of the various fixed points. MR, M1, and M2 denote the weight function of the
surface cells.

Cluster, MR Cluster, Ml Cluster, M2 Cumulant, M2

P Paramag. phase
BF Bulk ferromag. phase
SF Surface ferromag. phase
S Surface transition
0 Ordinary trans ition
SB Surface-bulk trans ition
E Fxtraordinary trans ition
E' xtra fixed point of

cluster M1, cluster M2

(o, o, o)
(oo oo ao )

(1.20, 0, 0)
(O.854, O, O)

(0.305, 0.305, 0.305)
(0.340, 0 ~ 306, 0.305)
(1.95, 0.332, 0.305)

(O, O, 0)
(oo oo oo )

( , o, 0)
(o.665, o, o)
(0.262, 0.2 93, 0.305)
(0.381,0.290, 0.305)(,0.228, 0.305)
(~, 0, 0.305)

(o, o, o)
(oo oo oo )(,o, o)
(O. 569, O, O)

(0.0937, 0.186, 0.305}
(0.481, 0.176, 0.305)
(~, 0.228, 0.305)
(~, 0, 0.305)

(o, o, o)
(~ ~ ~)
(,o, o)
(0.519, 0, 0)
(0.0925, 0.186, O. 298)
(0.446, 0.175, 0.298)
(M, 0, 0.298)
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TABLE III. Critical couplings and relevant eigenvalues of the various transitions for d=3.
MR, Ml, and M2 denote the weight function of the surface cell.

Cluster, MR Cluster, M1 Cluster, M2 Cumulant, jg2
Exact value or
best estimate

KC

Z'*2
C

d~3

d~3

&2
Xg

0
Jag

SB

ySB

3'ag

0.305

0.854

0.114

1.21

2 ~ 19

0.462

1.84

1.13

0 082c

1.21

&.98

0.305

0 ~ 665

0.215

1.21

2.19

0.972

1.73

1.04

0.28 c

1.33

0.305

0.569

0.357

1.21

2 19

0.891

1.66

0.791

0 7~c

1.56

0.298

0.519

0.307

25

2.79

1.01

2.15

0.557

0 79

1.97

0.222

0.441

0.6+ 0.1'
1.56 + 0.04

2.50 + 0.02

1.875

1.0+ 0.2"

Reference 5.
Estimated from Ref. 5 using Eq. {12b).

c The last significant figure shown is uncertain by +2.

(d I)/yd=' (12a)
1

where t is the relevant reduced termperature vari-
able and h is tl - bulk magnetic field. y, and y„
represent the relevant bulk eigenvalues for d= 3.
The relevant surface field h, is a function of h„
h, and h in our approximation.

At the multicritical' fixed point SB there is an
additional relevant eigenvector in the plane K~ = K~
with eigenvalue y, corresponding to perturbations
in K(, and K, away from the line of surface-bulk
transitions. Denoting the corresponding relevant
variable by t, one finds the following form for the
singular part of the surface free energy:

SB (d, )], t, h h,f, It, t„L,h, ) —E 'P ~, , („,~ ( ).

Formulas which express the critical exponents
in terms of the y's and numerous scaling relations
between the critical exponents follow from Eqs.
(10) and (11). For example, using the definitions

df
C - -t - '-t'1 - '-t"

S gt2 ™&
&h1

g2f g2f 82f
Il y "-- t "1 g t Seh' ' ' &h &A,

' ' &hj. 1

and expressions'" for the bulk exponents in terms
of y, and y„, and remembering that h, depends on
both h, and h, we deduce such relations from Eqs.
(10) and (11) as

and

po, ss (d 1 &o,ss) y&d=s

yo, ss (2~o, ss d+])/yd=s
1

~OsSB
S

p, ' =-min(p ' s, p —v)=p —v,
yOsSB yOs SB + PO ~ SB POs SB

j. 11 1 S

= max(y11', y+ v) = y+ v .

(12b)

(12c)

(13a)

(13b)

(13c)

(13d)

In Eqs. (13a)-(13d) the exponents n, p, y, and v

represent the bulk critical exponents for d= 3.
All the scaling laws for the ordinary transition
whi~h follow from Eq. (10) are consistent with
phenomenological scaling theories. ""'" For the
case of the SB transition Eqs. (13b)-(13d) con-
tradict the exponent relations P, = Pd=' —v'=' and

y, =y„=yd=', ys =yd='+ v"' proposed in Refs.
5 and 6 on the basis of a high temperature series
analysis. Additional series and Monte Carlo re-
sults would be useful in clarifying this discrepancy.
In a RG analysis such as ours an exact scaling re-
lation between the surface-bulk exponents and the
bulk exponents for d= 2 and 3 is not impossible but
would be surprising, since the surface-bulk ex-
ponents and the d= 2 bulk exponents are deter-
mined by quite different fixed points SB and S,
respectively. Using standard arguments'" one
can show that the critical surface for surface
transitions has the asymptotic form t, —t~ on ap-
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proaching the line of surface-bulk transitions t,
= t= 0, where the crossover exponent P is given by

ySB/yd=3 (14)

This behavior is consistent with the infinite slope
8K„, aK~ of the critical surface of surface transi-
tions as K, approaches K~, which is evident in
Figs. 1, 2, and 4. In mean-field theory P = ~, as
mentioned in Sec. II. At the surface-bulk transi-
tion, the surface magnetization is characterized
by exponents P, a,nd P~&s = Ps&s/P, depending on
whether the line of surface-bulk transitions is ap-
proached along a t or t, -like direction, "'" respec-
tively.

As mentioned in Sec. III and discussed more ex-
plicitly below, the eigenvalue y„=d —1 is con-
sistent' with a nonzero surface magnetization at
the extraordinary transition, i.e. P, = 0. Calcu-
lating the leading corrections to the constant value
on approaching the transition temperature involves
other details of the renormalization transforma-
tion besides the eigenvalues and eigenvectors, and
we have not carried out a complete analysis. How-
ever, our transformations appear to be consistent
with the mean-field result of Ref. 8, according to
which the magnetization at the surface and its
first temperature derivative are continuous at the
extraordinary transition temperature. Intuitively,
one would expect a fairly smooth temperature de-
pendence of the surface magnetization and non-
divergent' susceptibilities y» and X„as found in
mean-field theory, in an exact solution. Since the
surface transition takes place at a higher temper-
ature„ the extraordinary transition takes place in
an effective field extending roughly a bulk cor-
relation length into the sample, which weakens
the singularities in the surface free energy.

Since the RG bulk critical couplings and eigen-
values in Table III show sizeable deviations from
the accepted values and depend rather sensitively
on the choice of weight function, the numerical
predictions for the surface quantities should not
be taken too seriously. All the values of d, we
calculate are smaller than the series estimate'
of 0.6+0.1. It is encouraging that our values of
y„are not wildly inconsistent with the value 1.0
s3.2 obtained using Eq. (12b} from estimates of
p y reviewed in Ref. 5. We have already mentioned a
discrepancy between Refs. 5 and 6, and our scaling-
law analysis in the case of y~~. We know of no series
estimates of y, . Determining the exponents of the
surface-bulk transition experimentally would be
very difficult since precise adjustment of the
ratios of the coupling constants would be
required.

Magnetization profiles may be calculated with an
iterated form of Eq. (9a)

(K&o&) g [T(K(o&)T(K&'&) ~ T{K'")]&&m&(K'
'

)

(15)

The number of iterations n is chosen large enough
so that m;(K'""&} may be replaced by its fixed-
point value m, (K'"') = m, (K*) to a high degree of
numerical accuracy. The fixed point magnetiza-
tion satisfies Eq. (9a) in the form

m,.(K*}= Q T,,(K*)»&q{K*).

From Eq. (16) it is clear that T,,(K~) must have
eigenvalue 1 if the fixed point K* is associated
with a nonzero magnetization.

At fixed points BF, SF, and E one expects a non-
zero magnetization. With our RG transformations
T,*, does indeed have eigenvalue 1 at fixed point
BF, where all the couplings are infinite, and the
eigenvector has the expected form m,*=1 for all
i, corresponding to a completely saturated mag-
netization. With weight functions M1 and M2 the
fixed points SF and E have coordinate K~ = ~, and
y„=d —1. Using Eq. (Bb) and the definition of y„1 fty

as the largest magnetic surface eigenvalue, one
sees that the maximum surface eigenvalue of T,*~

is b~&i '~ ' = 2'~i '. Thus with weight functions M1
and M2 T,*& does have the surface eigenvalue 1 at
fixed points SF and E necessary for a nonzero
surface magnetization. " With weight function MR
a difficulty referred to in the previous section is
encountered: Fixed points SF and E have finite
rather than infinite values of Z(~(, and y„ is slightly

1
less than 2. Thus, the maximum surface eigen-
value of T,*& is slightly less than 1, and straight-
forward application of Eqs. (15) and (16) leads to
the unphysical result of a zero surface magnetiza-
tion in the SF phase or on the E critical surface.
For this reason, we prefer weight functions M1
and M2 for approximate calculation. The results
of an exact calculation would, of course, be in-
dependent of the choice of the weight function.

Typical magnetization profiles for enhanced and
weakened surface couplings, calculated using Eq.
(15) and the cluster approximation, "are shown in
Figs. 6(a)-6(b). The temperature is just below the
bulk critical temperature. For the SF phase and
weight functions Ml, M2 typical profiles are simi-
lar to Fig. 6(a) except that the bulk magnetization
is zero.

A disconcerting unphysical feature of the pro-
files is the presence of plateaus of 2, 4, 8, 16, . ~ .
layers, which are clearly associated with the re-
scaling procedure. The plateaus arise in repeated
multiplications with the matrix T,&

in Eq. (15) be-
cause the elements A„A, B„B(see Table I) are
much smaller than the elements C„C. In the li-
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face exponent P, to bulk exponent P a.t a distance of
the order of a bulk correlation length from the sur-
face. The a.nsatz is consistent" with the scaling
law Po, s B

P —v, Eq. (13b), which our RG a,nalysis
predicts at both the ordinary and surface-bulk
transitions. In mean-field theory' J(i/$) approach-
es its large-argument limit with corrections which

decay exponentially with characteristic length $.
The small number of nonzero elements of the ma-

trix T,&
in Table I stems from the fact that only

nearest-neighbor interactions between the cell
spins are included. A matrix with this form is con-
sistent with the plateau structure discussed above.
However, for i well away from the surface and m,
slowly varying, the transformation law for the
magnetization [Eq. (9 a) ] is compatible" with any

ansatz of the form of Eq. (17a). We have addressed
the question whether for suitable choices of A, B,
and C the matrix can be made consistent with an

asymptotic exponential decay with characteristic
length $. Substituting exponential profiles for
m, (K) and m,.(K') into Eq. (9a}, one finds that the
following conditions must be satisfied

(18a)
I I I

0 10 20
I I I I I

30 40 50 oo I

mit in which only the elements C, , C are nonzero,
all the layer magnetizations within a plateau are
identical.

Renormalization transformations which include
only the short-range interactions between small
clusters of block spins have been remarkably suc-
cessful in calculations of bulk critical properties. '
This suggests that short-range interactions would
turn out to be the dominant interactions in an ex-
act calculation of the fixed point associated with a
bulk transition. An important question is whether
approximations based on small clusters can also
be used to calculate magnetization profiles and
other spatially inhomogeneous quantities realisti-
cally or whether such quantities will always bear
an unphysical imprint of the small cluster.

A plausible ansatz for the magnetization profile
just below the bulk transition temperature has the
form

m, = t~ J(i/$),

J (x) —constant, x» 1,

~(x) -x"i '"" x «1
7

(17a)

(17b)

(17c)

The limiting forms insure the crossover from sur-

FIG. 6. Magnetization profiles for enhanced and weak-
ened surface couplings calculated with the cluster approx-
imation and weight functions MR, Ml, and M2. The
magnetizations of the first 50 layers and the asymptotic
bulk value are shown. K b denotes the bulk critical
coupling.

- Ic(r ) A(K&)+C(K& Q + K
B(K~) + C(K~)Q'+A(K~)Q

(18b)

Equation (18b) determines f as a function of Kb.
For a nonlinear weight function, ' the function
$(K~) obta. ined by solving Eq. (18b) and the trans-
formation law Eq. (7c) for Kb will not be consistent
with (18a) in general. For a linear weight function
tion" ' Eq. (18a) is satisfied automatically. How-
ever, it still is not true that a physically reasonable
exponential profile is consistent with arbitrary
functions A, 8, C of Kb, for example, that $ be
zero at K, = 0 or K, = ~ and that $ diverge as the
critical value of K, is approached restrict the Kb

dependence of A, J3, C. An additional problem with
linear transformations is that a variable param-
eter in the transformation""' "must be adjusted
differently at the critical fixed point and at the fer-
romagnetic fixed point. No single choice of the pa-
rameter is consistent with both a nonzero value of
d —2+q and a nonzero magnetization. The discus-
sion of Eq. (18a) and (18b} ca.n be generalized to
larger clusters and to exponential functions modu-
lated by a power law with similar conclusions about
the difficulty of describing the magnetization pro-
file correctly with a finite-cluster RG transforma-
tion.

To gain further insight into the problem of cal-
culating the magnetization profile with an approxi-
mate renormalization transformation, we have
found it useful to consider a one-dimensional Ising
chain with a single magnetic field applied to spin
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TABLE IV. Critical coupling and relevant eigenvalues for d=2. MR, M1, and M2 denote

the weight function of the surface cell.

Fixed-point 0
KC

Cluster, MR

(0.569, 0.569, 0.569)

0.569

0.891

1.71

0.641

Cluster, M1=M2

(0.408, 0.465, 0.569)

0.569

0.891

1.71

0.609

Exact value

0.441

1.875

0.500 ~

Reference 29.

1 at the end of the chain. The exact profile, which
is exponential, is given by m,. = (tanhhy)(tanhK)
This result can readily be reproduced with an exact
decimation transformation, "'"which, as is mell
known, introduces no new couplings in addition to
the nearest neighbor coupling. The associated ma-
trix T„.has a simple structure with no more than
three nonzero elements per row. With the majori-
ty-rule weight function and two site spins per cell,
neither the cumulant nor the cluster expansion"'
of Niemeijer and van Leeuwen are exact in any fi-
nite order in one dimension. Both generate inter-
actions of increasing complexity between the cells
in higher orders. The magnetization profiles gen-
erated for the chain using Eq. (15) and the first-or-
der cumulant transformation show a plateau struc-
ture with a decay which is much slower than ex-
ponential. In the limit of small K, m, is exact to
first order in K, since the first-order cumulant
expansion is exact in this order. However, for i
arbitrarily large one finds contributions to m,. of
prder K'. Tp obtain the exact result m,.-K' ' as
i increases, the cumulant expansion must be car-
ried out to increasingly high orders. The lowest-
order Niemeijer-van Leeuwen cumulant expan-
sion and presumably the cluster expansion as mell
would appear to be a rather poor starting point for
calculating a real. istic magnetization profile. We
note that second- and third-order calculations of
bulk prpperties ' reveal at best a slpw cpnver-
gence of the cumulant expansion.

B. d=2

In the two-dimensional semi-infinite Ising model
with a free surface no surface transitions take

place at finite temperatures, since such a transi-
tion mould be essentially one dimensional. Our RG
calculations are consistent with this exact result
whereas mean-field theory is not. The only transi-
tion the system exhibits is the ordinary transition,
for which the exact" result y„= ~ is known. In

1
Table IV the results of the cluster calculation with
weight function M1 = M2 (the two weight functions
are identical for a square cell of four site spins)
are compared with the majority-rule results of Ref.
2. For weight function M1=M2 there is a slight
improvement in the value of y„, which, however,ajy
should not be regarded as very significant in view
of the sizeable deviations of y„and the bulk criti-"c
cal quantities from their exact values.

Note added in Proof. In important recent work
A. J. Bray and M. A. Moore [Phys. Rev. Lett. 38,
1046 (1977); University of Manchester preprint
to be published) have calculated the surface crit-
ical exponents to first order in a=4- d and have
proposed scaling relations relating most of the
surface critical exponents to bulk exponents. For
comparison with our calculated values in Table III
we include some of their results here: For the
ordinary transition y„= -', (d- y', ') = 0.72+ 0.02.
For the surface-bulk transition y~~= y', ' —1
= 0.56 + 0.04, y~P= 2 —3 e+ 0(e') = 1.667.
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