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Spin correlation functions for ferromagnetic plane rotors are shown to decay exponentially or faster with

distance at sufficiently high temperatures. Knowing what such temperatures are provides an upper bound on
the critical temperature which is in very good agreement with series calculations for three spatial dimensions.

For two spatial dimensions, an upper bound on the Kosterlitz-Thouless transition temperature is found which
exceeds their estimate by 20%.

In this paper it will be shown that the spin-spin
correlation function for classical ferromagnetic
planar rotors with nearest-neighbor interactions
will be bounded from above by a function which
decays exponentially with distance at sufficiently
high temperatures. At such "sufficiently high"
temperatures there is no long-ranged symmetry-
breaking order (by virtue of the Griffith's' inequal-
ity} and the magnetic susceptibility (the spatial
average of the spin-spin correlation function) is
finite. The inequality thus provides an upper bound
on the critical temperature. For three-dimension-
al cubic lattices this upper bound turns out to be
in good (6%) agreement with high-temperature
series calculations. In the limit of infinite spatial
dimensionality, when coupled with the Frohlich,
Simon, and Spencer' lower bound, it proves that
the d- ~ critical temperature is given by mean-
field theory. For two spatial dimensions, the
upper bound found here exceeds by 20% the tem-
perature below which Kosterlitz and Thouless'
estimate (by nonrigorous but strong arguments}
that the magnetic susceptibility will be divergent. '
This is close enough to lend credence to their
hypothesis.

Let us consider a lattice with ferromagnetic
nearest-neighbor interactions between planar

rotors. The Hamiltonian may be written as

H =-J cos(8 —8 },

where 8-, denotes the angle of the spin at a site r
in the lattice, and 0 the angle at a nearest

I'+ a
neighbor of site r. The number of vectors a is
half the number of nearest neighbors to a given
site. In general the vectors a are to be chosen so
that each pair of nearest neighbors appears once
and only once in (1). For d-dimensional hypercu-
bic lattices a would denote the d basis vectors.

We will be interested in Zl(n»R, ;.. . ; nz, Rz) de-
fined by

g( le R)'e 2) 2p. . . e n(e Ri)
2 1f

d8& "i" '"exp i g 8 n, . (2)
0 i KJK(

Correlations of spins are given by appropriate Z(
divided by Z0, the partition function. Thus the two-
spin correlation function is

(So ~ S)(}=R, [Z2(1, 0; -1,R)jZoj,
Let us exploit the periodicity of the interaction

by writing

1& (. . . )= Uf Xe, PI ~ e p e eee(e, ,;-e, ~2;;) exp ige-ei+a r r, a R& g ~

r, a

The m, -, are integers ranging from -L to +L for
some integer L. Ultimately the I -~ limit will be
taken. This limit will be taken before letting the
number of sites in the lattice pass to infinity. Such
an ordering of limits is perfectly reasonable —in
real systems the number of sites, while enormous,
is still finite. Making use of the Poisson sum

formula

L

f (~) = dxf(x)
-L~fN~L -L Dog gg co

for integer l, gives (ignoring multiplicative
constants)
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in the L -~ limit. In (6} 6„s is the usual Kronec-
ker symbol

0, AwB

1, A=8

and I~(x) is the modified Bessel function.

I, im
L

( 7/0 T}0o6(2 ff )( } & 2 ff l )('av

)sfJ J " 1
2kT ~)o 2kT j!(l +j}!

Note that, from the power series ('I) 1,(J/kT) is
positive for positive J (ferromagnetic interac-
tions). In addition, using the power series and the
modified Bessel equation, one obtains

Ig„(x)Ii-,(x) —Ii(x}Ig(x)

dIs+, dI
x I) Ig, —,I)+I), dx

)
dIi(y)»l(Y)Il, l(y}

d

hence, for any integer l,

or

1,(x) I!i!„(x)
10(x) I!,! (x}

Iig!(J/kT) I[&!+z(J/kT)
Io(J/k T) Io(J/k T) (8}

where it is useful to define

Mr 1,(J/kT)/I, (J/—k—T) .
The physical motivation underlying the reformu-

lation of Eq. (6) is a generalization of the picture
developed by Kosterlitz and Thouless' to describe
the transition from low to high temperatures in two
dimensions. The planar model, (1}, in any dimen-
sion is characterized by the discreteness of the
circulation of spin vortices. At high temperatures
the graininess of circulation should not be of any
long-ranged importance. Thus differences intro-
duced by replacing the sum, in Eq. (4), over dis-
crete m-, ,- with the corresponding integral over
continuous g, , should not be important in the high-
temperature limit. The l -, ; measure deviations
from the T-~ limit due to "quantized" circulation.
(The dissipation of flow in a Bose fluid above its A

point is a useful analogy to bear in mind. ) Mathe-

Fz( )

UU( Q 1, (J/kTltl
)

(6)

matically, of course, Eq. (6) may be obtained by
Fourier transforming exp(J cos8/kT).

All combinations of (l-, ;j which satisfy the con-
straints in (6) may be generated by the following
graphical method. The partition function Z, will
be considered first. In this case, one acceptable
combination of l -, ; is simply that in which all
l-, ;=0. Let us suppose that l, -, for some r„a,
is now increased by unity. This will be denoted by
an arrow running from the site ro to ro+ao. Simi-
larly, if l-, ; is decreased by unity, an arrow
running between r, and r, +a, in the opposite direc-
tion is drawn. If l„, is to be increased by more
than unity from its "vacuum" value of zero then
multiple arrows are drawn. The restriction

l -- —l - - - = ~+n &- - for all rra r-a, a ~ j l', R&I
a

means that, when computing the partition function
(I =0), the total number of arrows leaving a site
is equal to the total number entering it. All per-
missible configurations of l-, -, are therefore gen-
erated by considering all possible closed loops on
a lattice in which steps are between nearest neigh-
bors. By the number of "steps" in a loop we will
refer to the total number of arrows running (in
either direction} between nearest neighbors. Per-
missible configurations include loops in which
some nearest-neighbor bonds might be traversed
several times, loops which might intersect them-
selves and configurations in which there are sev-
eral disconnected loops. In order to avoid over-
counting, those loops in which "backtracking"
occurs (that is, in which bonds with multiple
arrows of opposite sign occur) must be discounted.
Thus the loop in Fig. (la) is discounted because it
provides the same configuration of l„, as that in
Fig. (lb). Note that discarding "backtracking"
means that each allowed step can only increase the
magnitude of an l„~. Formally we write the parti-
tion function as

(lo)

LI i)

(b)
FIG. l. (a) A loop with "backtracking. " This loop is

not counted because it prescribes the same configuration
of l„,~ as the loop in (b). (b) A contribution to the parti-
tion function.
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restriction on Pz permits writing the summand in

(12) as a product, C(Z)C(Pz). By definition

O

Rl

R2
R4

(13)

with the only nonzero E;-, being those specified by
the path P. Thus, for the configuration shown in

Flg. 3

I,(//IT)
)
'

(1,(//). 'T)

)C p)= I (J/kT) lo(J/kT)

FIG. 2. A contribution to the four-point correlation
function Z4.

where Z denotes an allowed configuration of loops,
N is the number of bonds in the lattice, and

with the l„, appropriate to the given loop config-
uration, Z. Note that, by ('t), C is positive for
ferromagnetic (J& 0) interactions.

The considerations of the above paragraph are
modified when we wish to deal with spin-spin cor-
relation functions and therefore with the Z~ for
I & 0. ln this case, by (6), there must be a net
outflow of n& arrows from a site 8&. An example
of a permissible contribution to Z~(1, R,; 1, R, ; -1,
R„' -1,R,) is shown in Fig. 2. Specializing to
Z, (1,R» -1,R, ) we write

(12)

where Z denotes any loop configuration used in the
partition function and P denotes a path beginning
at R„ending at R„and composed of steps between
nearest neighbors. To avoid overcounting, p~ can
not intersect any loop in a given configuration Z,
of loops. Also to avoid overcounting, pz, like the
loops, must be free of backtracking. The first

~S
/ R

2

and

C(~),( / )

Io(j/kT)

The restriction that no backtracking occur (no
bonds have multiple arrows which do not all point
in the same direction) means that each time a
given bond is traversed in a given path from R, to
R, the magnitude of the appropriate 1;-, is in-
creased by unity.

Note that any nonbacktracking path, p, may be
reexpressed as an appropriate self-avoiding path
with superimposed loops. We may choose the self-
avoiding path to be such that the superimposed
loops do not decrease the magnitude of an l spec-
ified by the self-avoiding path. By (8) it follows
that the factor, C(P) for the self-avoiding path with
superimposed loops is bounded from above by the
factor for the self-avoiding path alone: (Mr)"
(where n is the number of steps in the self-avoid-
ing path) multiplied by the C factors for the loops
which intersect it. Hence Z, is bounded from above
by

Z, (1, R„'-1,R,) ~Zog X((„a,(n)(Mr)", (14)
n

where Jta, a,(n) is the number of self avoiding walks
with n steps which begin at R, and end at R, . Note
that there are more loops and paths on the right
side of (14) than on the left. Since, for ferromag-
netic (J&0) interactions, all C are positive the in-
equality is not invalidated by overcounting. This
upper bound on Z is identical to Domb's "self-
avoiding-walk approximation. " The upper bound
on the critical temperature which is implied by
(14) is analogous to a bound obtained, using self-
avoiding walks, by Fisher and Sykes~o for the Ising
model.

R

FIG. 3. A contribution to the two-point correlation
function Z 2.

X;,;,(n) ~ u"

where p =4.68 for simple cubic three-dimensional
lattices and 2.64 for square two-dimensional lat-
tices. More careful approximations to g are dis-
cussed in Domb'; they do not lead to an improved
bound on the critical temperature and will not be
considered here. Applying (14) to (3) we obtain,
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for large R;

(s-„s-...-, & = (16)
ng R) ~n~~

where n, (R) is the minimum number of steps possi-
ble for a path composed of nearest-neighbor steps
which begins at R, and ends at R, = R, + R. For
large R,

n, (R) - IRI

and, if

Kosterlitz and Thouless we will consider, not the
usual rotor model, (1), but the periodic Gaussian
model:

e "~ r= Py ~ exp (8- - —6-+2vm--)-H kT -J 2
r+a r, a

r, a m~~

(20)

Villain' has shown that this model is equivalent to
Kosterlitz and Thouless' spin waves plus vortices
approximation to the XY model. For the periodic
Gaussian model (18) rema, ins valid with

pM~=1, (16) -k g/4 4 (21)
then the spin-spin correlation function has an ex-
ponential upper bound:

(s . s } exp&IR I »(uiifr))
R j. R&+R

kT, - J(d--,') (19)

(19), when coupled with the lower bound of
Frohlich, Simon, and Spencer' proves that the
critical temperature for the d-~ ferromagnetic
planar rotor is given by mean-field theory.

In three dimensions, (18) may be evaluated nu-
merically to give, for cubic lattices, an upper
bound of 76% of the mean-field critical tempera-
ture. This exceeds the critical temperature pre-
dicted by series expansions' by 6%. (18) gives a
nonzero upper bound on T, for two spatial dimen-
sions. This should not be surprising. Although
symmetry-breaking order is prohibited for the
d =2, XY model at nonzero temperature' there is
reason to believe that the magnetic susceptibility
(the spatial average of (So ~ Ss}) is infinite below a
nonzero T, (18) provides a. n upper bound on that
temperature. In order to compare this upper
bound with the estimated critical temperature of

One may similarly show that all multiple-spin cor-
relations will fall off exponentially or faster with
distance so long as (17) is satisfied. By virtue of
the Griffith's inequality

(s-, , s-, ,} (s-, ,}~ (s;,),
there can be no symmetry-breaking long-ranged
order so long as (17) is satisfied. Therefore the
critical temperature T, must be such that

,uM~ ~ l. (18)

From the power series (7) and the definition (9) of
M~

~r- J/2kT

Further, for d, -dimensional hypercubic lattices

p &2d —1.
Thus

For a square lattice in two dimensions, p. =2.64
and

kT, =- 4 J ln(2. 64) (22)

which exceeds the Kosterlitz-Thouless estimate
kT, =—vJ by 20%.

Note that, for the periodic Gaussian model we
use, in place of I, (J/kT)/l, (J/kT):

l-, =- P I-„+ja„a, (23)

The maximum value of j is such that r+ max(j)a,
lies on the edge of the lattice. By definition

r, a2 r+a& r (24)

When we are computing the partition function, the
constraint (6)

Lr. a Lr+a, a=0 for all r
a

implies that

and the graphs in (10) and (12) generate a high-
temperature series in powers of e ' . For the
equivalent model developed by Chui and Weeks' to
describe the roughening transition at interfaces,
this expansion is a low-temperature expansion.
The temperature and coupling constant in the
Chui-Weeks model (denoted by T, and J„, respec-
tively) are related to the corresponding quantities
for the periodic Gaussian model by

kT/4 J= J,/kT„.

Finally it should be noted that, for d = 2, the
spin-waves-plus-vortices model of Kosterlitz and
Thouless may be recovered —exactly for the perio-
dic Gaussian model (21) (as Villain has shown) and
in the low-temperature limit for the usual model
(1). The procedure for square lattices is as fol-
lows. Denote the two a vectors by a, and a, . De-
fine integers L-, by
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(25)
& cl

Replacing l; -, with t; and then performing the
transformation (5) gives, for the planar model (1):

2m'J ~ e'q '

tzT - Q'(q) '
q

where the q lie inside the Brillouin zone and

(27)

.=rr J
Ig

r~a& r

2' f'X r'rx-
I +82 I /AT

m

=g P exp —g zzz-m- v(R —R') Il+O(T)j,
m R, R'

I'

(26)

where the m; are integers and v(r) is logarithmic
at large r

Q '(q) =- 4 —2 cos(q a,) —2 c os(q ~ a,} . (28)

(26) is the lattice analog of the model for vortex-
vortex interactions studied by Kosterlitz and
Thouless. To any finite order in a low-temperature
expansion, the corrections to (26) will not intro-
duce any long-ranged terms other than O(T) frac-
tional corrections to those already present in (26).
No long-ranged (zzz)', etc. , terms are introduced.
The model studied by Kosterlitz and Thouless thus
appears to be an appropriate one at low tempera-
ture.
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