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Attenuation and dispersion of first sound near the superfluid transition of pressurized He
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(Received 25 April 1977)

The attenuation a, the velocity u, and the dispersion D = u(co) —u(0) of first sound have been measured

in pressurized liquid 'He (P = 0.06, 5.01, 9.21, 15.24, 20.38, 25.46, 29.33 bar) near the superfluid

transition. The frequency range was 4.6 kHz & ao/2m & 1.0 MHz, the temperature range was 1

pX &
~
T —T), I

& 3 mK. From the measured velocities we calculate the thermodynamic velocity u(0), as
well as (a S/8 P)& and (a V/a P)„.The attenuation and the dispersion at constant T, —T are only weakly

pressure dependent. They are interpreted as arising from a relaxation process occurring only below T„, and a
fluctuation process occurring on both sides of the X transition; both contributions have about equal strength.
The strength A„of the relaxation process and the amplitude 7 0 of the relaxation time r' = v''ot " are
independent of pressure to within 10%%uo, (t = IT —T„~/T)„). The latter result seems to be inconsistent
with the pressure independence of the correlation-length amplitude $0 = 1.0+ 0.05 A (which was
confirmed in this work), and the known pressure dependence of the amplitude u, o of second-sound velocity, if
the relation r' = ('/u, is correct. For T & T&, where only critical fluctuations contribute, our absorption
and dispersion data for all eo and P can be scaled with functions of co7 for 10' & co7 & 10 '. This scaling
analysis shows that the time v characterizing the critical order-parameter fluctuations at T & T), has the
same temperature and pressure dependence as the relaxation time 7' at T & T~; these two times differ at
most by a constant multiplicative factor. Below T)„ the data are represented by the sum of the contribution
represented by the scaling function plus the contribution from order-parameter relaxation. The weak pressure
dependence of a and D, and the pressure independence of A„, ( 0, ~ 0, and 70 contrasts with the strong
concentration dependence of these quantities in 'He-'He mixtures. The scaling functions determined from our
data are identical in form to those determined earlier from the mixture data. The frequency dependences of
the attenuation and of the dispersion for co~ & 1 scale as n ~ co'+ and D ~ co', respectively, with

y =- 0.15 + 0.03.

I. INTRODUCTION

The dynamics of the superfluid phase transition
of liquid helium can be studied by investigating the
velocity & and attenuation n of first sound. Pre-
cise measurements of the dispersion u(&u) —u(0)
and of the attenuation n(a) allow the determination
of the time scale characterizing this phase transi-
tion. Such measurements have been performed for
"He, ' ' and for 'He-'He mixtures under saturated
vapor pressure. ' "' The results of these experi-
ments verified severa. l theoretical predictions
for the superfluid transition. In this paper we re-
port on a systematic study of the velocity, disper-
sion and attenuation of low-frequency first sound
in pressurized liquid 'He along the ~ line. The
special interest in studying critical phenomena as
a function of 'He concentration X, or pressure P
results from the fact that these are "invert" vari-
ables for the superfluid transition. Therefore,
according to the universality concept, they should
leave critical exponents and amplitude ratios un-
changed. "" Furthermore„ the pressure and tern-
perature dependence of the second-sound velocity
u„" of the superfluid density pJp, "of the healing
length (&,"of the specific heat C~,

"and of the
thermal-expansion coefficient" P~ have all been

carefully studied in 'He near Tq(P). This enables
us to perform a thorough analysis of our data and
to calculate thermodynamic parameters from
them.

The paper is organized in several sections
paralleling the paper of Buchal and Pobell (BP)
which contains a more thorough presentation of
experimental details. ' Section II gives a summary
of theoretical predictions. In Sec. III we describe
the apparatus, the pressure regulating system,
and the experimental procedure. In Sec. IV we
present the data of the sound velocity, dispersion,
and attenuation. We calculate the thermodynamic
velocity of sound u(0), (SS/SP)q, and (SV/SP)q for
various P. Section V contains the discussion and
interpretation of the dispersion D and attenuation
a. A summary and conclusions are given in Sec.
VI. In the appendix we discuss the influence of
confluent singular terms in the used equations.

II. THEORY

The theory of sound propagation near T& has been
presented in detail by a number of authors.
A summary of the relevant physical considerations
is given in BP.' Here we present only those equa-
tions which are important for the following analysis.
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a„=(nu/u'}Qr'/(1+ajr~),

Ds = n use r"/(1 + uP r~) .

The relaxation time

should be given by

(2)

(Sa)

(sb)

($' is the correlation length; u is the velocity of
second sound). 'o ~ With the proportionality t'
fx: p, ',""~' we have a critical exponent of 0.675
for" ~' $'. The critical exponent of u2 has been deter-
mined as 0.387, ' so we find x'= 1.062. A different ex-
ponent x' is discussed in the Appendix. The relation
for nu =u(~}—u(0} has been derived in Refs. 11

A. Thermodynamic velocity of sound

For ~ = 0 and in the limit T- Tq the relation

u*(0) = aC~ ' + b t + c

becomes exact. Here u*(0) is the thermodynamic
velocity, the asterisk denotes a zero-height
sample, a, b, c, are constants with a
= (u~~'T q/2 V z)(BS/B P}q, and t =

( T - Tz ] /T ~. Be-
cause of the sharp peak in the specific heat C~,

u*(0) has a sharp minimum at Tq which becomes
more pronounced at higher pressures. Equation
(1) has been found to describe the values for u*(0}
at saturated vapor pressure (SVP) very well. '6'6

B. Dispersion and attenuation of sound

At finite frequencies the velocity becomes fre-
quency dependent, and a pronounced increase in

the sound attenuation occurs near T ~. Paralleling
the discussion of sound at SVP, "we discuss
our attenuation and dispersion data in terms of two

processes, order-parameter relaxation and order-
parameter fluctuations. Doing so, we use primed
parameters at T & T~, unprimed parameters are
used at T & T~, if they pertain to both phases, or
in obvious cases. We will only discuss the contri-
butions associated with the superfluid transition,
neglecting the "background" attenuation and dis-
persion, which change insignificantly with temper-
ature in the investigated t range.

l. Order-parameter relaxation

Landau and Khalatnikov have shown that the
superfluid density p, , when disturbed from equili-
brium by a pressure wave, requires a relaxation
time 7' to adjust to the changing pressure in the
sound wave. ' " The relaxation occurs only below

Tq where the time average of the order parameter
is nonzero. If a single relaxation time x is in-
volved, the resulting attenuation n„and dispersion
D„are given by

and 12. Hohenberg's result is

u'pks T p B(pgp) T BS

4p(3 g 8T (4)

The temperature dependence of hu is then given

by

6u =A~C~'t"

where v' is the critical exponent of the correlation
length, and A„ is a constant. ' Using a scaling
law, "and recent data for the specific heat expon-
ent a',"we have Sv'- 2 =-a' =0.026. Furthermore
we use

u'pthTg' BS

4m) BI' (6)

2. Order-parameter fluctuations

There is a coupling of the sound wave to critical
fluctuations of the order parameter. This occurs
on both sides of Tq, is nonsingular at Tq, and has
been discussed for the superfluid transition in sev-
eral theoretical papers, "'"""without giving a
result to which our data could be compared in de-
tail. The recent first principle calculations on the
dynamics of the superfluid transition"'" do not
treat sound propagation. The sound absorption a~
due to fluctuations above and below Tq is expected
to be about equal for the same values of t, and to
be of about the same strength as the relaxation
contribution. " This has been confirmed experi-
mentally in Ref. 6. According to universality, '
the ratio az/ar should be pressure independent,
and a„and n~ should have the same t dependence.
The scaling prediction of Kawasaki for this pro-
cess, "as discussed by BP,' may be written for
the attenuation as

ar = Bzt'&uF((ur) = Czu'"~'f (ur), (g)

where s is a small positive number, and &~ and &&

are constants only depending on pressure. Here
is the time characterizing the critical or-

der parameter dynamics. Dynamic scaling pre-
dicts that ~ diverges the same way above and below
Tq, "'" "and the ratio of its amplitudes above and
below Tq should be pressure independent. '6 " 7 is
not a Priori identical to the relaxation time v'.

where f is the critical exponent of ps& 0 6'75.""
For the specific heat we use

C&=(A'/a' )t (1+D't')+B',

with universal exponents a' = -0.026 and z' = 0.5."
For the pressure-dependent coefficients A', D', and
&' we use values reported in Refs. 24 and 25. For
an analysis of our data with equations using con-
fluent singular next-order terms in t see the Ap-
pendix.
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The exponent 1+s/x is only slightly greater than
1. Kroll has recently performed a calculation of
the critical attenuation above T~ using mode-mode
coupling and renormalization group theory. " But
he does not state an analytic form for the scaling
function f(mr) T.hus we will only compare our
data to numerical results by Kroll. The validity
of Eq. (8) is restricted to the range where the
sound wavelength is much greater than the range
of correlations of critical fluctuations (&7«u/u, ).
This condition is always fulfilled for our measure-
ments.
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3. Hydrodynamic regime

In the hydrodynamic regime (~v.«1) the attenua-
tion and dispersion vary as

@ex-(d2 and Dcx-~~.

Ill. EXPERIMENTAL

A. Cryogenics and resonators

A schematic diagram of the cryogenic apparatus
is shown in Fig. 1. A detailed description has been
given in BP except for the pressure regulating
system (see below). Our sample chamber contains
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FIG. 1. Cryogenic part of the experimental apparatus.

Equations (2) and (8) have to merge into this form
for &7-& 1. In the regime av &0.1 our data lose
accuracy, because a and D become rather small.
In addition, the hydrodynamic losses are only very
weakly temperature dependent in our temperature
range and become part of a constant background
which has to be subtracted from the measured at-
tenuation. Consequently, the hydrodynamic be-
havior was not investigated in detail in this work,
but our data, are consistent with Eq. (9) for ~r
6 0.1.

FIG. 2. Temperature difference T; —Tz~ as a function
of sound frequency for the indicated pressures. Here
T; is the temperature at which the velocity of sound has
its inflection point {see Figs. 3 and 4); T„ is the tem-
perature at which the X transition reaches the top of our
0.5-cm high sample. 7he value T; —Tz~ is set equal to
zero at cu/2~ 0. The data at SVP are from Ref. 6.

two sound resonators. Hence, we can take data
simultaneously under identical conditions at two
different frequencies. In both resonators sound
was excited and detected by condenser transducers
whose active elements were mylar foils. ' '''
Principal advantages of the system are its low
height (0.5 cm}, thus limiting the influence of gra-
vity, "and the use of a torus resonator as an
acoustic thermometer, i.e., as a ~-point detector
(see below and Fig. 2).'"' The cylinder resona-
tor has a fundamental plane wave harmonic of 21
kHz at SVP, and 35 kHz at P =29 bar. It was used
for frequencies up to 1 MHz.

The sample thermometer was a commercial ger-
manium resistor, "calibrated against the 1958 'He
vapor pressure scale, and measured in a standard
ac-bridge arrangement. ""Only 1 nW of heat was
dissipated in the thermometer resulting in negligi-
ble self-heating. Temperature changes of 0.5 pK
could be resolved, and the temperature of the cop-
per chamber was regulated to within this limit.
From the behavior of the sound velocity we deter-
mined T~."'' The combination of the pressure
dependence (&T/&P)q of the superfluid transition,
and the finite height A of the sample, across which
there exists a gravitational pressure gradient, in-
duces a A temperature Tq at the top of the sample
which is higher by pgh(&T/SP)q than the transition
temperature T~ at the bottom of the sample. " This
leads to the inflection point of u(0} at T ~.'""
With increasing frequency this inflection point
occurs at slightly lower temperatures T»,

' as shown
in Fig. 2; for &u/2ws 10kHz, IT; —T~I is less than
our resolution of 0.5 pK. During each run we used
the inflection point of the second harmonic of the
torus resonator, with frequency e/2n' =fr„ to deter-
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mine T~, and we refer all of our temperatures to this
value. We have 4.6 &f~ & 7.4 kHz at 0.06 ~ P
~ 29.33 bar. We believe our determination of T —T &

isaccuratetobetterthan1 pK. Thus, Tqisamea-
sured quantity, and not a free parameter in the
data analysis.

The electronic setup and the detailed perform-
ance of the sound detection system have been de-
scribed in BP.' The rapid phase change of the
pickup signal near a resonance was used to track
that resonance as the temperature and hence the
resonant frequency drifted. The stability of the
feedback system allowed velocity changes of hu/u
~ 10 to be measured. However, the repeatability
of individual frequency measurements was limited
by the quality Q = ruo/n. ~( 3dB-) of the resonances.
We estimate our stability and reproducibility of
ro, to about 0.02 A~. The tracking ability of the
system is also limited by this factor. A represen-
tative error then for Q=1000 is d u=0. 5 cm/sec
or nu/u=20 ppm.

B. Pressure regulation and procedure

The operation of a strain gauge-hot volume pres-
sure regulating system has been thoroughly dis-
cussed by Ihas and Pobell, "and by Mueller, Ah-
lers, and Pobell. " Briefly, the strain gauge,
thermally attached to the sample chamber, senses
pressure deviations which are detected as an error
signal in a capacitance bridge circuit. The error
signal is amplified, integrated, and fed back into
a heater on the hot volume, forcing liquid into or
out of the sample chamber. This maintains the
pressure constant. The hot volume can be oper-
ated in the range 2.5-10 K without affecting the
stability of the system (Zd'/P~ 10 '). An addition-
al thermal link of about 100 pW/K between the
sample chamber and the 'He pot was installed to
balance the heat flow along the helium-filled capil-
lary between hot volume and sample.

The strain gauge was calibrated against a pre-
viously calibrated Heise bourdon-tube pressure
gauge over the range 5 &P &25 bar. The capaci-
tance C of the strain gauge is well represented by
1/C =A, +A, P+A, P'. We measured a capacitance
of 38 pF at 1 bar and of 130 pF at 29 bar. For each
pressure the sample chamber was filled through
the fill capillary to the approximate pressure, then
the cold valve was closed, and the capillary above
the valve was evacuated. After that, the pressure
was adjusted by varying the temperature of the hot
volume. After all data were taken, the strain
gauge was again calibrated in the ranges of +0.5
bar around the used pressures, confirming the
stability of the capacitive manometer. Data were
taken at constant pressure, either with the temper-

ature also held constant to within 0.5 pK, or dur-
ing drifts of about 2 pK/min. While the tempera-
ture drifted, the resonant frequencies of both re-
sonators, one sound amplitude, and the tempera-
ture were recorded on a four-pen recorder. Si-
multaneously, one resonant frequency, its ampli-
tude, and the temperature were recorded automat-
ically and stored on magnetic tape. When the tem-
perature was held constant, the frequencies at the
-3-dB points of the particular resonance were also
measured. These data give the Q value and the
total absorption, via Q = ~,/n~(-3dB), and a,„,t
= uo/2Qu. Far away from Tq, our resonators had

Q values of 130-3000, depending on resonator and
frequency, decreasing to 100-500 near Tq. Com-
paring the Q values with the amplitudes U of the
resonances, we found that near Tq, Q is propor-
tional to U. We then used this relation for calcu-
lating a,„p, in the region where the temperature
drifted, and the amplitude was recorded continu-
ously to obtain continuous curves for the absorp-
tion coefficient. From the measured attenuation

pt we subtracted a constant effective background
attenuation n~ measured far away from T& in order
to obtain the attenuation e = e,„„,—a& associated
with the ~ transition. In this constant background
e~ the wall losses as well as the very weakly tem-
perature-dependent part of the hydrodynamic at-
tenuation are included. The ratio a~/a, „pt was
less than 0.1 at 1 MHz and became as high as 0.8
for the low-frequency resonances in the torus. The
electrical crosstalk was normally less than 1% of
the pickup signal.

We measured the frequency and amplitude of the
sound velocity versus temperature at &o/2w= f»,
100, 200, 600 and 1000 kHz at the various pres-
sures. " For each run involving one of the four
high frequencies, the velocity of the low-frequency
torus resonance at f» was also recorded, provid-
ing an accurate ~ temperature, independent of the
germanium resistor.

IV. EXPERIMENTAL RESULTS (REF. 34) AND ANALYSIS

OF THERMODYNAMIC VELOCITY

A. Influence of gravity

The ~ transition is pressure sensitive with a
slope (ST/SP}q& 0. For a sample of finite height
the gravity-induced pressure gradient leads to a
lower Tq at the bottom than at the top of the cell."
The absolute value of the slope (ST/SP)z of the 1.
line increases with pressure. " For a 0.5-cm high
sample the spread in transition temperature
ranges from 0.6 pK at saturated vapor pressure
to 1.6 pK at P=29 bar. Further, as the pressure
is increased, and particularly at T& Tq, the tem-
perature dependence of the sound velocity in-
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creases. In the most severe case (P=29 bar), the
sound velocity varies by 0.5 cm/sec over the

height of the resonator even at T —T~= 100 pK.
For this case only, some low-frequency measure-
ments are slightly influenced by gravity even for
T- T&&100 p.K.

150—

100—

50-

I I I I I I I

i

I I I I

5.01 bar

B. Sound velocity and related thermodynamic parameters

Our measurements of resonant frequencies of
the helium-filled cavities are more precise than

the determination of the cavity length, including a
necessary correction for the moving transducer
foils at the ends. To convert frequency to sound

velocity we therefore normalized the data at P
=0.06 bar for &u/2v=4. 6 kHz to the value u(0)
=21808 cm/sec at T- T~ =-40 pK. This value ex-
trapolates to u(0) =21800 cm/sec at SVP and T —T~
=-40 pK, in agreement with BP. At this temper-
ature and pressure, dispersion and gravity effects
are negligible, and the velocity is only mildly tem-
perature dependent (0.2 cm/sec pK). From our
normalization value we obtain u'*(0) =21'l51 cm/sec
at P=0.06 bar, where u~~(0) is the value of the
thermodynamic velocity in a zero-height sample
at T'. Interpolating to SVP we find u'*(0) =21'l43
cm/sec, a slightly higher value than found by pre-
vious authors. ""This difference is the result
of the different C~ functions used in the analysis
(see below). ' " In each run the second harmonic
of the torus resonator with frequency f» was re-
corded. The frequency of a resonance in the cy-
linder resonator was normalized to the low-fre-
quency data at a temperature far enough below Tz

such that no dispersion effects were present.
Hence all of our velocity data are normalized to
u(0) =21800 cm/sec at SVP and T —T'„=-40 pK.
Examples of the sound velocity are shown in Fig.
3 for three frequencies at each of three different
pressures. The velocity scales are referenced to
u~~(0) (see Table 1).

The values of the velocity of sound determined
from the low-frequency torus resonances were
fit to Eq. (1) over the temperature range ~Tz,

IT —T~l-1 mKfor 20&'TED&100 pK. The
limiting temperature difference GATI. at which our
data became sensitive to the effect of gravity was
determined from the difference T~ —T~
= pgh(sT/sP)~, (I'=0.5 cm), the slope of the veloc-
ity data (du/dT), and an assumed resolution of 0.15
cm/sec. For these temperatures and low frequen-
cies f» there is no dispersion of sound. The fits
were performed independently for T & T~ and
T& T'. For the specific heat we used Eq. (7}with
parameters determined from the thermal expan-
sion coefficient results of Mueller, Ahlers, and
Pobell, "and, at SVP, those of Van Degrift, ' along

0

150E
O

—100
~ rC

50
3

0

20.38 bar

I I

I
1 I

250

200

150

100

50—

I I I I I I I I I I I I

-3 -2 -1 0 1 2
10~ ( 7- T~s) I Ts~

FIG. 3. Measured first sound velocity u(cu)-uz(0) as a
function of (T —Tz)/T~z for the three indicated pressures.
The data are for &/2~=1005, 206, and 5.5 kHz for P
=5.01 bar; for ~/2~=1018, 196, and 7.0 kHz for P
= 20.38 bar; for ~/27r =1020, 211, and 7.4 kHz for P
=29.33 bar. uz (0) is the thermodynamic velocity at T)t
in a sample of zero height, as given in Table I.

with the relation C~ =VT p~+ TsS/'T At all pre. s-
sures the differences u~„««d- u&;& were generally
less than 0.1 cm/sec over the fitted range of tem-
perature. The mean values u~~(0) calculated from
the fits at T& Tq and at T& T~ are given in Table
I. They are consistently higher than the values
calculated from thermodynamic parameters by
Ahlers, '4with a difference increasing with pressure
fromabout 0.4m/sec at SVP toabout~ m/sec at 25
bar. " Our values forum(0) depend onthe equation
used for the t dependence of C~. But even assuming
a logarithmic t dependence with the coeff icients given
inRef. 24, our values for u'(0} decreaseby only 20-
40cm/sec. Therefore, wefindgoodagreementwith
thevaluesforu*„(0) atSVPaspublishedbyRefs. 1, 3,
6 and 26, but we have no explanation for the discrepan-
cies increasing with pressure between our values
and those given in Refs. 24 and 37. Table I also
contains values for the difference between the min-
imum thermodynamic velocity in a sample of
0.5-cm height and the minimum thermodynamic
velocity in a sample of zero height at T~, umlft(0)
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TABLE I. Thermodynamic velocity, related parameters, and dispersion.

P (bar) 0.06 5.01 9.21 15.24 20.38 25.46 29.33

T„(K)

f&2 (kHz)'

u~), (0) (cm/sec) ~'

u~g~(0) —u), (0) (cm/sec) '

u~ (f~~) —u), (0) (cm/sec)

u(1.0 MHz, T),) —u~), (0) (cm/sec)

2.171 2.122 2.073 1.995 1.922 1.842 1.775

4.6 6.0 6.6 7.0 7.2

38 42

53

82

42

89

44

92 88

52

62

117

79

117

21 751 25 583 27 987 30 735 32 579 34 029 34 871

BP „mole K

BP & mole dyne

-0.95 -0.71 -0.59 -0.51 -0.47 -0.46 -0.48

—388 —247 -191 -144 -1 20 -1 03 -093

fz& is the frequency of the second harmonic in the torus resonator.
Thermodynamic velocity in a zero-height sample normalized at u*(0) =21800.0 cm/sec for

SVP at T —T~z ——-40 pK.
'Using Eq. (7) for C&.

du~~(0) is the minimum thermodynamic velocity for a 0.5-cm-high sample.
u~~(F2) is the minimum velocity measured at f~ in our 0.5-cm-high sample.
u(1.0 MHz, T),) is the sound velocity measured at 1.0 MHz, which is not noticeably

influenced by gravity.

u„*(0) =391.1 —173.3 e '"~ (m/sec), (10)

with P in bar, fits our measured values to within
Au/u 6 0.5%. From the values for the coefficient
a of Eq. (1}, which is related to thermodynamic
quantities, we calculate (SS/SP)q. , using published
data for V~,

24 and our data for T~ and uz(0), (see
Table I). The values obtained from data at T & T~
and at T & T~ are shown as a function of P in Fig.

—u~(0). The quantity u;,(0) is obtained from the
mentioned fits to Eq. (1}and by using pg&(S'USP)q
=0.60, 0.86, 0.98, 1.15, 1.29, 1.45, and 1.60 pK
for P= 0.06, 5.01, 9.21, 15.24, 20.38, 25.46, and
29.33 bar, respectively, for the calculation of the
influence of gravity on u*(0} close to Tq 'We at-.
tribute the difference for the value u~I, (0) —u~I'(0)

obtained here at P = 0.06 bar and the values ob-
tained in earlier work at SVP' to the different
equations used for C~. In addition, Table I contains
uI„. (f») —u~(0), whereum, ~, (f») isthe minimumve-
locity measured at the second harmonic of the torus
resonator. This difference increases by about 70$
with increasing pressure, whereas it decreased
by two orders of magnitude in 'He-'He mixtures. '
To compare the zero-height thermodynamic velo-
city u*(0), the thermodynamic velocity u(0) in our
0.5-cm-high sample, and the velocity u( f») mea-
sured at our lowest frequency we show in Fig. 4
these three velocities very near Tq at P =15.21
bar. For the thermodynamic velocity at T& we
find that the empirical relation

30B30

30810

E- 30790

n~ 30770-
IJ
n
ILI

15.24, bar

30750-

30730
-20 -15 -10

I I

-5 0
T-T)s (pK)

FIG. 4. Velocity of sound very near T7s. The velocity
u(6.6 kHz) is the sound velocity at co/27t= 6.6 kHz mea-
sured in our 0.5-cm-high sample; u*(0) is the thermo-
dynamic sound velocity in a zero-height sample com-
puted with Eq. (1) from a fit to our data for u(6. 6 kHz)
at

~
T-T&~ &20 pK; u(G) is the thermodynamic sound ve-

locity in our 0.5-cm-high sample computed with the re-
lation T„—T„=pgh(BT/BP)„and u*(0). All velocities
are normalized to u(0) =21800 cm/sec at SVP and T —T~~
=-40 pK.

5. The two values at each P agree within their
errors, and they agree well with earlier published
values at SVP. " The difference (&S/& P)~
—(&S/SP) q is not as large as observed in the mix-
tures by BP, an improvement attributable to the
improved specific-heat function used in this analy-
sis. The values for )(&S/SP)~) decrease with pres-
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FIG. 5. (88/BP)„vs pressure. The values shown are
calculated from the parameter a of Eq. (1) which has
been obtained from fits of Eq. (1) to the low-frequency
sound data measured at T&T7, (o), and at T &T},(0). The
squares and the triangle at SVP are from Refs. 6 and
26, respectively. The error bars shown are typical
and correspond to the deviation of the fitted parameter
a of Eq. (1) resulting from an error of 0.3 cm/sec in
the sound velocity. The solid line is a guide for the eye
only.

10 30 50 100-100 -50 -30 -1Q -5 0 5
T-T} (}1K)

FIG. 6. Measured velocity difference u (&u/271) —u (6
kHz) for P=9.21 bar and the frequencies shown, as a
function of T —T~~. The dispersion u(6 kHz) —u(0) which
must be added to each of the shown curves to obtain the
dispersion u (co/27(.) —u (0) is the dashed peak on top of
the highest-frequency curve. Note the changes in tem-
perature scale at

~
T —T&~=10 uK.

sure by about a factor of 2 from P =0 to 18 bar and
then are almost constant from P =18 to 29 bar.

With the relation"'

~P t, u)*, 8P g BP ), Cp 8P

where all quantities are per unit mass, we calcu-
late (SV/SP) z. As shown in Table 1, the values for
( (SV/SP} J decrease by a factor of 4 when the pres-
sure is increased to 29 bar. We used ~q given by
Ahlers, " C~ from the P~ data of Mueller, Ahlers,
and Pobeli, "(ST/SP) q from Kierstead, '4 and our
data for u.~ and (SS/SP) z.

C. Dispersion

At finite (d the dip in u near Tq becomes less dis-
tinct due dispersion of sound. "' Figure 3 already
demonstrates that this dispersion does not depend
much upon pressure, in contrast to the strong con-
centration dependence observed in mixtures. ' One
may also see that the minimum in u, which for
~ =0 occurs at Tq,

"moves away from Tq with in-
creasing 40."

From the velocity data we determined u(&u/2s)
-u( fr, ) and the sound dispersion D =u(&u) —u(0).
The frequency dependence of these two quantities
at all pressures is very similar to that at SVP'
and to that in the mixtures (see Fig. 6). In Fig.
'7 we show the dispersion D at u/2s = 1.0 MHz for
three pressures. There is a trend toward higher
dispersion at higher pressures. But whereas the
dispersion decreased by about a factor of 20 in
the mixtures between X, = 0 and X, = 0.52 near Tq,
it increases by less than a factor of 2 with increas-

100

80-
V
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E-60-V
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I

3
&40-

20—

0
-100 -50 -10 0 5

10 (T-T) ) I T
10 50 100

FIG. 7. Dispersion u (1 MHz) —u (0) at three pressures
as a function of t = (T —T'„)/Tz~. Note the changes in
scale at )t)=10 5.

ing pressure. The measured dispersion is asym-
metric around T q with a peak on the low-tempera-
ture side. The maximum of the dispersion occurs
slightly below Tq because we used a sample of
finite height, and refer all temperatures to the
temperature T q for which the transition occurs at
the top of the sample. Even at u/2s =fr, there is
measurable dispersion at ~Tz- T(& 5 pK (see
Figs. 4 and 6). For the evaluation of the disper-
sion D = u( f») —u(0) a precise determination of
u(0}, and therefore C~ is necessary. As there are
no sufficiently precise experimental C~ data at
(T z —T ( & 5 pK available, we pr efer to analyze the
dispersion in the region where u( fr, ) —u(0) =0,
i.e., for )T —Tq)& 5 pK. The frequency f» is so
low, and the height of our sample is so small that
u(u/2v) —u( fr, ) represent the dispersion D with
sufficient accuracy for )T —Tq~ & 5 pK.
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In Fig. 8 we show as an example the frequency
dependence of the attentuation at P =25.46 bar.
The attenuation at &o/2v = 1.0 MHz at various pres-
sures is shown in Fig. 9. The attenuation a, too,
is asymmetric about T & with a peak in the super-
fluid phase. It is a, smooth nonsingular function of
t. The position of the maximum in o. moves away
from Tq with increasing e, but appears at the
same f =(T —T q)/T'& for a constant ~ and all pres-
sures. This latter behavior again is strikingly
different from that in the mixtures where the maxi-
mum moves away from Tq with increasing X,.'
The pressure dependence of the strength of the at-
tenuation maximum and of the attenuation near T&

are shown in Fig. 10. They both decrease slightly
from P = 0 to 10 bar and are nearly constant from
P=10 to 25 bar. A common feature of attenuation
and dispersion is their weak pressure dependence
compared to the strong concentration dependence
observed in the mixtures. ' But we observe in

0
0

I I

15 20
Pressure (bar)

25 30

FIG. 10. values of the indicated attenuations at cu/21).

=1.0 MHz as a function of pressure

Figs. 7 and 9 that n(P) and D(P) are changing in

opposite senses as the pressure is increased.
This results from the factor u ' in Eq. (2) for the
damping which decreases strongly with increasing
pressure. The temperature dependence of the at-
tenuation near Tz is very weak (see Figs. 8 and 9).
Hence for the analysis of the attenuation we can
use data in the range IT —T'zI & 1 pK.

V. ANALYSIS AND INTERPRETATION OF THE DATA FOR

DISPERSION AND ATTENUATION OF SOUND

A. Attenuation and dispersion due to relaxation

In our temperature and frequency range the at-
tenuation and dispersion of sound near T~ are aris-
ing from order-parameter relaxation below Tq and
order-parameter fluctuations on both sides of T~.
The processes are assumed to be additive. ' ' Ac-
cording to scaling, "the fluctuation contribution
should have the same t dependence on both sides
of Tq. Also, according to the universality concept,
the ratio of the fluctuation contributions above and
below Tq on an appropriate temperature scale is
expected to be independent of the inert variable
"pressure. " " These predictions are inherent
in the scaling form, Eq. (8). Buchal and Pobell
have discussed in detail the data for the attenuation
and dispersion at SVP and in mixtures of 'He-'He.
They found that those data are well described, as-
suming that the absolute value of the fluctuation
contribution to n and D above and below Tq at the
same t are about equal; no improvement in the fits
of the data was obtained by avoiding this assump-
tion. ' This assumption was first applied by Wil-
liams and Rudnick. ' Assuming this equality again,
we have,

tiT5 10-6

I'-'5")
10 10

FIG. 9. Attenuation at (d/2m =1.0 MHz for the indicated
pressures as a function of

~
T —T~q ~/Tf. A temperature-

independent background has been subtracted. Therefore,

(12)
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FIG. 11. Relaxation part DR of the dispersion as a
function of T~z —T for P=25.46 bar and (d/27r=996 kHz.
The data points were determined from continuous mea-
surements and are the difference between the dispersion
measured below and above T~. The full line is a fit of
Eq. {2) with Eqs. (3a) and (5) to the data shown at T~z

—T~ 5 p, K with x'=1.062, andAR and 70 as free param-
eters.

and, correspondingly, (13}

Ds=D(T& Tx) —D(» Tx)

The experimental results for aR a,nd &R, as ob-
tained by the above equations were fit to the equa. -
tions given in Sec. IIB for the attenuation and dis-
persion due to relaxation only. Attenuation data
for ~T - T q ~

& 1 pK and dispersion data for ~T —T q]
& 5 pK were fit independently for each frequency
and pressure. The fits were performed with Eqs.
(2), (3a), and (6) using r' = 1.062, and As and r,' a,s
fit parameters. Examples of the fits of DR and aR
are shown in Figs. 11 and 12. The attenuation aR
is a nearly symmetric function of log, ot, as ex-

pected from Eq. (2). The agreement between the
fitted curves and the data for nR and for D„ is
reasonably good. As can be seen in Fig. 12,
the curves fitted to aR show a slightly smaller
half width and are shifted with respect to the ex-
perimental data. It is not possible to overcome
these problems with differently chosen parameters
or by fitting the data only for

~
T —

T j & 10 ' K.
This same systematic deviation has been observed
at SVP and in the mixtures. '' Possibly the divi-
sion into two additive component" according to
Eqs. (12) and (13) does not exactly describe the at-
tenuation and dispersion of sound in our tempera-
ture and frequency range, or the equations given
in Sec. II B do not completely describe the relaxa-
tion part of a and D.

In Fig. 10 we also show the maximum relaxation
attenuation nR „as a function of pressure. These
results demonstrate the similar behavior of the
strengths of the relaxation and fluctuation attenua-
tion which are of similar magnitude over the entire
pressure range, the relaxation attenuation being
consistently lower. According to Ref. 21, the
ratio o.'z/ns ksTq/F, :,„,, g'. Here Fsin, is the sin-
gular part of the free energy which is proportional

I

to t'C~„„„x-t', where n' is the critical exponent
of the specific heat. Kith the scaling law 2 —a'
= 3 v' we have F„,„('= constant, and the ratio
or/as should be universal. This prediction is ful-
filled by our data (see Fig. 10).

The consistency between our dispersion and at-
tenuation data is confirmed by the agreement of
the parameters As (to within about 10/o} and T„' (to
within about 40~/p) obta. ined from independent fits
of aR and D„. The mean values for AR and 7,' as a
function of pressure are shown in Figs. 13 and 14.
They are both independent of pressure within our
accuracy, with mean values

0.08—

0.06

a. 0.04
Ql
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ar, 996k Hz

N ~ —,
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T)-T(K)

i
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FIG. 12. Relaxation part eR of the attenuation as a
function of T~z —T for P = 25.46 bar and co/2m'= 996 kHz.
The data points were determined from continuous mea-
surements and are the difference n —z' of the attenua-
tion measured below and above T~~. The full line is a fit
of Eq. (2) with Eqs. (3a) and (5) to the data shown with
x' = 1.062, and A R and v o as free parameters.

0
0 10 15 20

Pressure (bar j
25 30

FIG. 13. Amplitude AR of hu =u {~)—u (0) [see Eq. {5))
as a function of pressure. The points are the mean
values determined from fits of Eq. (2) with Eqs. (3a) and
(5) to the relaxation parts of the attenuation and disper-
sion at various frequencies. The error bars represent
the scatter in the values obtained from the individual
fits. The full line is calculated from Eq. {6) assuming
apressure-independent value (o 1.0 A. .
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FIG. 14. Amplitude v.
&

of the relaxation time v'=v&t "
at T( Tz, and amplitude v.

o of the fluctuation time 7
=7'Ot "at T &T„as a function of pressure. The full points
are the mean values from fits of Eq. (2) with Eqs. (3a)
and (5) with x'=1.062 to the relaxation part of the attenu-
ation and dispersion at various frequencies. The error
bars represent the scatter in the individual fits. The
solid line is the computed 70 using our determination of
$0=1.0 A independent of pressure, and the pressure-
dependent second sound amplitude u2 p (see Table II).
The open circles are the values of vo obtained from the
scaling analysis of e and D at T & T), described in Sec.
VC; they are normalized to F0=1.82x10 ' sec at P=O.

Az = (0.82 s 0.08) x 10"(cm'/sec' K'),

r,'=(I.'I +0 2) x 10 "(sec). (14)

TABLE II. Parameters for ur =u2, 0t (1+u2, 1

calculated from the data of Ref. 22.

P (bar) 0.05 7.27 12.13 18.06 24.10 29.09

0(cm/sec) 4647 4110 3806 3493 3135 2832
up g 0.004 0.248 0.375 0.525 0.780 1 ~ 075

This behavior contrasts strongly with their con-
centration dependence in the mixtures, where A„
changes by more than two orders of magnitude,
and Tp changes by more than one order of magni-
tude for 0 (X, &0.52. Using for the parameters
of C~ in Eq. (5) the values given in Ref. 24 instead
of the parameters of Ref. 25 changes Tp by less
than 1%, and A„by about 3%. Also shown in Fig.
13 are the values calculated for Az with Eq. (8)

O

using (p'=1.0 A at all pressures. The agreement
with our data is excellent, supporting our analysis
as well as the pressure independence of A„and (p.
The data determine (p' to within 0.05 A. This value
for gp' is in agreement with the amplitude found for
the superfluid healing length, 1.2 +0.1 A." But
both these values disagree by about a factor of
three with the amplitude g&p of the transverse cor-

relation length, calculated from p, with g
=no'ksT/6'p, ."'""In Fig. 14 we show T,'=t'0/
u, ,(P) with jo =1.0 A and u, ,(P) from Table II. The
observed pressure independence of $p and Tp is in-
consistent with the pressure dependence of u, p if
the relaxation time is given by r' = ('/u, . At the
highest pressures, our rp has to be a factor of 2

bigger to remove this descrepancy. We feel that
a factor of 2 is outside of our errors. A result
T' & t'/u, has also been obtained in Ref. 38 from
hypersonic sound attenuation by Brillouin scatter-
ing near Tq. Also shown in Fig. 14 are values Tp

obtained from a scaling analysis of the data at
T& Tq to be discussed below. These values, too,
are independent of pressure to within the errors.
For a discussion of the results using equations
which include confluent singular terms in t, see
the Appendix. These results are identical to the
above ones to within the stated uncertainties.
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FIG. 15. Exponents y of the frequency dependence of
n ocr'~~ for the three attenuation values, and of the fre-
quency dependence of the dispersion u (cu) —u&4'(0) ~ e~.
The investigated frequency range is 4.6 kHz ~~/27r (1.0
MHz. The error bars shown are representative of the
uncertainties in all the data. The line at y =0.15 is a
guide for the eye only.

B. Frequency dependence of n and D

If we write for the maximum total attenuation,
the maximum of its relaxation part, or the attenua-
tion near Tq (maximum fluctuation part),

(15)

we find the exponents y given in Fig. 15." For
each of these attenuation values the exponent y is
the same (within our errors), and y is independent
of pressure, with a value y =0.15+0.03, except
possibly at SVP where our data indicate y =0.10.
An exponent y slightly larger than zero is in agree-
ment with the result y =0.15 of Ref. 2 and y =0.10
for X, =0 in data of BP.' The exponent y increases
up to 0.3 at higher frequencies, '' "and up to 0.6
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in concentrated 'He-'He mixtures. "' With the
proportionality

u(&v) —u~ (0) ~ u' (16)

we find the frequency exponents y of the dispersion
near T&, which are also given in Fig. 15. The ob-
tained values are in very good agreement with the
corresponding values for the attenuation. But since
y is small, we cannot distinguish between Eq. (16)
and u(~) —uq(0) ~ log»(~), which is equally com-
patible with our data. The frequency dependence
of the attenuation and dispersion as shown in Fig.
15 is in agreement with y = o..'tt. /i" = 0.12 (here o. '

is an effective exponent of 0.08 for the specific
heat in our temperature range). "'" But it exceeds
the prediction y= 0.05 of Ref. 28. For ~~& 0.1,
where our data are less accur.".te, they allow the
expected hydrodynamic behavior n ~ (d' and D~ co'.

C. Scaling of dispersion and attenuation

Our attenuation and dispersion data at all ~ and
P behave similarly (see Figs. 6-9). Hence, one
mey expect that by using an appropriate scaling
variable the results for all ~ and P may collapse
onto a single curve which would determine the
form of the scaling function f of Eq. (8). There-
fore, a more general analysis of our data based on
scaling assumptions was performed by fitting them
to scaling equations like Eq. {8)with the variable
~7; where r would be a time characterizing the
fluctuation process. Recently, this approach has
been discussed in detail by BP for the case of
sound attenuation and dispersion in 'He and 'He-
'He mixtures, ' and has been applied by Golding"
to sound attenuation at the ferromagnetic transition
of MnP, as well as to sound attenuation in 'He and
'He-4He mixtures at higher frequencies than used
here in Refs. 4, 7, and 8. Here we proceed as
described in Ref. 6.

best matching of the data to one curve for each
pressure is obtained for x = 1.1 or x = x' = v'+m
=1.062, where v' and ~ are the critical exponents
of the correlation length and of the velocity of
second sound at T& Tq [see Eqs. (3a) and(3b)j. We
use x=1.062 in the following.

Now, ~p is treated as a free parameter. We plot
the data for all (d and all P versus (d7pt ' "with
values of 7, so that the data for all pressures, too,
collapse onto one curve. The result is shown in
Fig. 16. Within deviations of less than 10% the
data points for all a and P, for the investigated
ranges, collapse onto a single curve. The devia-
tion of the data points is random without correla-
tion to ~, +7, or P. The values of 7, for each
pressure, giving the best matching of the individ-
ual curves, measured at different w and P, are
shown in Fig. 14 (normalized to r,'(P=0.06) =1.82
~ 10 " sec which has been obtained from our anal-
ysis in Sec. V A). Within the errors, the ampli-
tude Tp of the order parameter fluctuation time
7' Tpt determined from this scaling analysis at
T & T& agrees with the relaxation time amplitude
vp' determined in Sec. VA from the fit of the re-
laxation part of the attenuation and dispersion at
T& Tq. The time v', too, has apressure-indepen-
dent amplitude, and r, /7O, of course, is universal.
We conclude that the critical attenuation a„of first
sound at T & T~ in pressurized 4He and for 65 kHz
& z/2v ~ 1 MHz can be scaled by Eq. (8) over at least
four decades in (dr. The attenuation normalized near
T~ (or at ar = 1) is a function of ar only, thus in-
cluding the dependence on t, (d, and P. The am-
plitude of the characteristic time 7 as well as its

) p ———~-s-~e I~%(lgy + C~ iI"&~=~~' ~ ~

r. .yp.8—

l. Attenuation at T) T&

The data above T& where only fluctuations contri-
bute mill be analyzed. The exponent and amplitude
of the characteristic time 7 = rpt ' are determined
independently. All data at T & Tq are normalized
to their values near Tq, which means at large ~r.
This normalization removes the frequency factora"' from a; a normalization at (de=1 gives the
same results. ' ~9 The data at all frequencies and at
one pressure were plotted as a function of (lpTpt

with Tp =2 x 10 "sec and for various x in the range
0.8 «+1.4. This was repeated for each pressure.
These plots show that the best agreement of the
data measured at various ~ is obtained for x =1.1
+ 0.1 for all investigated pressures. Within the
given resolution me cannot distinguish whether the
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FIG. 16. Scaling plot of the critical attenuation n at
T &T), normalized to ~(T„) for 65 kHz ~(d/2~ ~1.0 MHz,
and for all investigated pressures versus the scaling
variable (d7. 0 Eq. (8) holds, all points should lie on
the same curve. For the time v = 7 p t ~ we used x = 1.062
and Tp as given in Fig. 14. The full line is the function
fF = (~w) ~/[c+ (~7') ] with y =0.15 and c=0.52 dis-
cussed in the text. The dashed line is a theoretical cal-
culation by Kroll (Ref. 28) (see text).
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critical exponent which we find for the scaled crit-
icalattenuationat T& Tq agree to within the given

errors with the amplitude and the critical exponent

of the relaxation time &' at T& T)„possibly to
within a factor which is independent of t, ~, and P.
This unknown factor arises because the scaling
gives only relative values for vp. The same con-
clusions have been obtained by &P for the attenua-

tion of sound in 'He-'He mixtures. ' Thus, there
is a unique time scale throughout the critical re-
gion.

The scaling function f (~r} can be determined
from the data of Fig. 16. A function which fits the
data well and has the correct asymptotic limits is
shown in Fig. 16, and is given by

f(Ior) =((or)' ~/[c+((or}' ], (17)

2. Dispersion at T) T},

The dispersion as a function of ~r is plotted in
Fig. 17. We used Tp from the scaling analysis of
the attenuation. We have not normalized the data

with y =0.15. By fitting the attenuation to various
functions f(vr) with y varied, we find that the data
can be represented for 0& y& 0.3. A function like
ur/(c+ u'r') is excluded by the data. The function

given by Eq. (1'I) best fits the data with a constant
c=(0.52 +0.01)(r,/r, ')' ' The fa.ctor (r,/ro)' " is
necessary because the scaling procedure provides
only relative values of r, . BP found that Eq. (I'I)
represented their attenuation data for X, +0.2 with
c =(0.55+0.01)(r,/ro}' ', and y =0.10." It is clear
that one function is able to scale all the attenuation
data for T & Tq, 65 kHz & z/2v &1 MHz, for at
least X, ~0.2, and for all P along the &. lines. This
provides strong verification that pressure and con-
centration of 'He are inert variables for the super-
fluid transition, as predicted by universality. '

Recently, Kroll has calculated the critical sound
attenuation near T),.-'" Similarly to Kawasaki, "he
uses mode-mode coupling theory to calculate a„
due to fluctuations in terms of the order parameter
and entropy correlation functions. The correlation
functions are then calculated in the framework of
renormalization group theory. " The only correc-
tion terms explicitly included in the calculation
are those of the specific heat. " The results are
considered to be more trustworthy at small +v',
and there to be correct to within about 30% accord-
ing to Ref. 28. The obtained result is a~ &o"'f*
(ur) with y= 0.05. The resulting scaling function
has been calculated numerically, " and is plotted
in Fig. 16. It agrees with the experimental data
to within the mentioned accuracy but the calculated
dependence of n on &or for 0.1& ~v & 10 is too
strong compared to our data, and y is smaller
than our values, (see Fig. 15}.

30&

v20

O I

o 15
I

3
10-

Ql
100 0.01

FIG. 17. Scaling plot of the critical dispersion D at T
&T~ and for u/2r= 200 kHz and 1.0 MHz, for [ T„—T~
~5 p, K and all investigated pressures versus the scaling
variable cow. If Eq. (8) holds, all points should lie on
the same curve. The time v for each pressure was de-
termined from the scaling of the attenuation (Fig. 16).
No normalization for the frequencies is applied; data
for P=0.06, 5.01, 9.21, 15.24, 20.38, 25.46, and 29.33
bar were multiplied by Dp(P) —1 1 05 0 87 0 77 0 ~ 50,
and 0.67, respectively. The line is given by Eq. (18) with

y = 0.15.

near Tq but matched the data as best as is possible
with the factors D,(P) =1, 1.05, 0.8V, 0 VT, 0..50,
and 0.67 for P=0.06, 5.01, 9.21, 15.24, 20.38,
25.46, and 29.33 bar, respectively. The small
change of D, with P indicates the weak influence
of P on dispersion (and attenuation). Only data
near 200 kHz and 1 MHz and for ( T —T ~ (

& 5 pK
have been analyzed. The scaled dispersion does
not approach an asymptotic value in the investi-
gated cue range.

A scaling function that represents our data, and
gives the correct asymptotic behavior at large and
small ~v is

with

D = D (dzrz/(d + (dr)z (18)

VI. SUMMARY AND CONCLUSIONS

We have performed a systematic study of sound
propagation at frequencies v/2w & 1 MHz in pres-
surized 4He close to the A transition. By using a
sample chamber of 0.5-cm height only, gravity
effects were kept very small. The temperature
and pressure resolution and regulation were OT/T
~3 x 10 ' and d P/P= 10 ', respectively. From

D, = [16.'I/D, (P)](r,'/r, )' cm/sec,

d = 0.48(r,jr,'),
11,(P} as given above, and y =0.15. This is shown
as the solid line in Fig. 17, and agrees again with
the scaling function for D given by BP.'
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the data, taken at e/2m (7.4 kHz, we determined
the thermodynamic velocity of sound, as well as
the related parameters (SS/SP) q and (SV/&H q

along the ~ line.
The attenuation n and dispersion D are only

weakly pressure dependent. It is shown, that a
and D can be represented as arising from a relax-
ation process at T& Tq, and critical order para-
meter fluctuations on both sides of the transition.
The strength A~ of the relaxation process is inde-
pendent of pressure (to with 10). From A„we
calculate a pressure independent amplitude of the
correlation length (at T& Tq), $,'=1.0+0.05 A.

This result is in agreement with the pressure-in-
dependent amplitude of the healing length in He II,
(„'p=1.2+0.1 A reported in Ref. 23. The trans-
verse correlation length determined from p, with
the relation $r =nPksT//Pp„"'"" on the other
hand has an amplitude of (r, =(3.24 +0.08) A, again
independent of pressure within the given limits. "

p can al so be determined from the universal
quantity $& pA" ' =0.36,"where A.' is the amplitude
of the specific heat. This equation gives a value of
$&p =4 A. The values of A& calculated with (~p in-
stead of $p' differ by a factor of about 30 from our
measured A&. It therefore seems that the trans-
verse correlation length is neither equal to the
characteristic length determining the Landau-Kha-
latnikov relaxation nor to the healing length near a
boundary.

According to universality" the ratio of ampli-
tudes of all these lengths has to be pressure inde-
pendent, and all these lengths should have the
same critical exponent according to scaling. '
Both predictions are in agreement with experimen-
tal results.

Assuming a universal critical exponent x' for the
relaxation time T'= T,'t ", we found its amplitude
Tp to al so be pr es sure independent . These results
disagree with the pressure dependence of the am-
plitude of the velocity of second sound u, „ if the
relation r' = E'/u, is correct.

In the Appendix we show that our results are not
changed if confluent singular terms in t are in-
cluded in the used equations.

The data for T) Tzwhere only fluctuations con-
tribute are analyzed with scaling functions of &7.
We find that the critical attenuation, e.g. , can be
scaled by the function f =(mr)' '/[c+(&ur)' "] for
all investigated ~ and P, and for 10') xT) 10 '.
Our data and this scaling analysis allow 0 ~y (0.3.
The scaling function agrees with hydrodynamics at
&yr«1 for a~&u"'f. The resulting order para-
meter fluctuation time for T) Tq, T= 7'pt ", has the
same temperature and pressure dependence as the
relaxation time 7' at T& Tq. Hence these two
times differ by at most a constant multiplicative

factor, and there exists a unique time scale
throughout the critical region, as predicted by dy-
namic scaling. In a corresponding analysis it is
shown that the dispersion, too, can be scaled at
T+ T), for the investigated t, co, and P ranges.
The scaling functions determined from our data
are identical in form to those determined from the
'He-'He mixture data. ' For T& Tq, the data are
represented by the scaling function, determined
from the data for the fluctuation contribution at
T) T)„plus the contribution from order parameter
relaxation.

In the critical region for aT') 1, attenuation and
dispersionbehaveas n~ ~"'and D~ co', withy =0.15
+0.03 at all pressures, possibly except at SVP where
the data are better fit if y= 0.10.

With the data obtained here at ~/2w = 1 MHz for
pressurized 'He and obtained previously for 'He-
'He mixtures, ' as well as the data at higher fre-
quencies, ' ' ' '"we have detailed and systematic
information on sound propagation near the super-
fluid transition. First steps towards a microscop-
ic theory —to which we compared our results —have
been taken recently. " Still more effort on the
theoretical part seems to be necessary to arrive
at a comprehensive interpretation of the data on
both sides of the transition as well as for all in-
vestigated a, P, and X, ranges.

APPENDIX: INCLUSION OF CONFLUENT SINGULAR TERMS

Detailed measurements of the velocity of second
sound and of the superfluid density, "the specific
heat, "and the thermal expansion coefficient'" of
pressurized 'He near T& have demonstrated that
these and other properties cannot be represented
in the experimentally accessible temperature range
near Tq by pure power laws without conflict with
theoretical predictions of scaling and universality.
A confluent singularity in addition to the leading
singularity had to be included to render a consis-
tent interpretation of the data. Both parameters
of Eqs. (2), nu and r', can contain correction
terms. We have therefore analyzed our data with
equations including the next-order term in t to
check its influence on our results. For this pur-
pose we expressed (' in terms of p, by using the
theoretical prediction" ""

('cc Tp

This universal proportionality has been confirmed
experimentally by Ihas and Pobell for the super-
fluid healing length (&,"from which (' should only
differ by a constant multiplicative factor according
to scaling. " The equation for the superfluid den-
sity, as determined from second sound velocity, "
1s
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pgp = k(P) t t[1+a(P) t'j, (A2)

u, =u, (P)t [1+u, ,(P)t' j. (A4}

An exponent of u =0.387 has been shown to repre-
sent the data well at SVP where &2 y ls only 4
~ 10 '." This exponent agrees approximately with
u ~ p' 'C~' ' and w =f/2+0. 04, where an effective
exponent of 0.08 for C~ in the temperature range of
interest has been used. For the exponent of the
correction term we use z* =0.5. The two expon-
ents m and z~ probably have no theoretical signifi-
cance, and serve only to represent the data. We
obtained the amplitudes u, 0 and u, „as given in
Table II, by fitting the above equation to the data
of Ref. 22.

With Eqs. (3b), (Al), and (A4) we have

r'=Tot ™(1—at' —u, , t'*)

with universal exponents g =0.675 and z =0.5.""
With Eqs. (4}, (6), (Al), and (A2) we find

zu =AsC~(T) 't't '[1+(3+2'/r)at'j

=Asap(t) 't'"8(1+4.48at") . (A3)

To also determine v' with a confluent singularity,
we express the velocity of second sound near T& as

The analysis with the above equations was per-
formed in analogy to the analysis without confluent
singular terms as discussed in the text. The re-
sults show that T,

' is decreased by less than 1% and

A~ is decreased by at most 3% if the confluent
singular terms are included. These changes are
smaller than the scattering of the parameters from
runs performed at different & or obtained from e„
and D~, e.g. They are smaller than the stated un-
certainties.

ln addition, a third analysis has been performed,
avoiding Eq. (A4) for u„and expressing T' only in
terms of p, and C~,

r'=('/u, = T,*'C (t)' 't ' '(1 —,at' —;—ktt)

with

r*'=I'ks T't'/k 'pSk' '--
The values obtained for As agree to within 3 with
those from the other two analyses, and 7,*' again is
pressure independent to within about 5%, having a
mean value of 2.1& 10 " sec K' 2g ' ' cm '.
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