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bands and phonons in Nb, Mo, and their alloys*
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Calculations are presented by Xi(Q) and X2(Q, cu) for Nb, Mo, and alloys in the rigid-band

model. The matrix elements are set to 1. The results for Nb agree with a previous calculation by

Cooke, Davis, and Mostoller. An empirical linear relation is found between Xi(Q) and

dX2(Q, O) jdco. This relation leads to a simple formula relating the superconducting coupling con-

stant (A) to the phonon frequencies. However, we are unable to evaluate the terms in this formu-

la with sufficient accuracy to calculate A. .

I. INTRODUCTION

It is not yet clear whether the present microscopic
formulation of lattice dynamics' is simple or accurate
enough to allow realistic calculations for d-band metals
with phonon anomalies such as niobium. Empirical-

ly,
"the anomalies are correlated with high supercon-

ducting transition temperatures T, This leads one to
believe that the mechanism for phonon anomalies
may also be a mechanism for high T,. 's. A stronger
formulation is that soft phonons cause the high T,

The denial of this statement is also sometimes made. '
We avoid this "chicken-egg" controversy by using the
weaker formulation of the soft-phonon —high-T, . con-
nection.

The formula for the phonon self-energy H (which is

also the electronic contribution to the dynamical ma-

trix) can be written'

I

II(Q, (u) = —2Q
' " ' " M-„„-„-„„

knn' k +Qrr' kn
——~ ——A(o —i 5

o)g) = Og+200Hi(Q, a)Q), (3)

Qlg'rg = II gII2(Q, Qlg), (4)

where fk„ is the Fermi occupation factor for an elec-
tron of wave vector and band index (kn) and energy

e-„„. The effective matrix element M is defined by

~M„k „=—(k'n'(5V /gr)kn) (kn )5 V"/gr(kn'), (2)

where 5 V'/Br is the change in the bare electron-ion
potential per unit displacement of a single atom, and
5 V"/gr is the same except corrected for the screening,
exchange, and correlation effects felt by a conduction
electron. The self-energy is related to the phonon fre-
quency coo and width y0 by

where 0 is shorthand for wave number and branch in-

dex (Qv). Here and below the subscript I (2) denotes
the real (imaginary) part and the matrix nature of H

has been disregarded for simplicity. The frequency
spectrum 00 is that which would result if the elec-
trons did not respond to ion displacements.

It was pointed out by one of us that a simple linear
relation exists between the width y~ or H. and the
coupling constant A. for superconductivity. Unfor-
tunately, yo is not directly measureable with present
technology except in certain especially favorable
cases. ' Two previous papers (denoted I and II) have
attempted to establish an approximate linear relation
between Hi (and thus cu') and H2 (and thus A.). A

difficulty immediately occurs, namely, H2 is deter-
mined by electronic states only very near the Fermi
level, whereas Hi contains virtual transitions to states
both near and far from the Fermi level. The high-

energy transitions must be subtracted out if a useful
linear relation is to be obtained. Determining the
manner and extent to which this can be carried out in

high-temperature superconductors is the purpose of
this series of papers. In I, a model for the subtraction
was proposed (with little microscopic justification)
which leads to a formula relating the difference
AA. —= A. &

—P ~ between two similar superconductors,
denoted 3 and B, to the differences in their observed
phonon spectra. Evaluation of the expression derived
in I for transition metals indicated the correct trends
but since little was known concerning the validity of
the assumptions for these metals, the agreement was
viewed as tentative. In II it was shown that a similar
model (with more microscopic justification) worked
well for lead alloys. In this paper detailed microscopic
calculations are presented which indicate that a model
similar to that used in I is justified in the bcc
transition-metal alloy system Nbi, Mo,

We are unable to evaluate H properly from Eq. (1)
because the matrix element M is formidably difficult
to evaluate. We calculate instead a function X(Qco)
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—2
equal to H if the matrix elements M are set equal to

(——,)I,1

~~kn ~k+Q. n'
X(Q, ~) =— —

AQUA
—I 5/nn' ]t +Q.n' kn

(5)

II. CALCULATIONS OF X

A recent calculation of xt(Q, O) for Nb by Cooke,
Davis, and Mostoller' (CDM) shows very little corre-
lation with co~ and thus demonstrates that M is not a
smooth function of Q. In Sec. II we report calcula-
tions of X](Q, 0) and X2(Q, cu) for both Nb and Mo as
well as some intermediate cases (rigid-band alloys)
which confirm the CDM results and which also exhibit
previously unreported regularities that we believe will

persist in a more realistic theory. These regularities
support and illuminate the conjectures of Papers I and
II.
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The calculation of X from Eq. (5) is time and space
consuming even on large modern computers. We
have chosen a Slater-Koster parametrization scheme
(described elsewhere" ) in order to generate accurate
eigenvalues ~&„rapidly. A 31-parameter model using
nine bands (s, p, and d) gives an excellent fit (7-
mRy-rms deviation for the lowest six bands in the
zone) to the augemented-plane-wave (APW) calcula-
tions for Mattheiss" for Nb and Petroff and
Viswanathan" for Mo. A calculation of X2(0, eo) using
these fitted bands has been reported" and gives an ex-
cellent qualitative description of the measured optical
properties of Nb and Mo. A rigid-band model based
on the Nb bands agrees with the Mo bands to about
3%. In this paper we use a rigid-band model for both
elements and their alloys. The use of the rigid-band
model for the alloys is supported by specific-heat
data, " and has been justified by recent theoretical cal-
culations' using the coherent-potential approximation,
but is only partially supported by optical measure-
ments. '

Our calculations of Xt(Q, O) for Q along the [100]
direction are shown in Fig. 1. This calculation and
others described below are the result" "of
Gilat —Raubenheimer-like integrations over the Bril-
louin zone. There is good agreement with a very
similar but independent calculation for Nb by CDM, '

especially after introducing a small constant shift of
8.0 units which presumably compensates for a small
difference in the maximum energy used in calculating
X[. We agree with the conclusion of CDM that little
correspondence can be seen between the structure of
X~(Q) and the measured features in co&& for Nb. For
Mo, the strongest feature in at&& in the [100] direction
is a very sharp Kohn anomaly near the zone boun-
dary; a similar feature occurs in W and Cr and is be-
lieved to be the source of the incommensurate antifer-
romagnetism of Cr. Our calculation of X] for Mo

Ql'Qze

FIG. 1. X&(Q, O) as a function of Q in the [100j direction

out to the zone boundary IQzaI =2~/a. The closed and opet
circles are the present calculation for Nb and Mo, respective-
ly, with a small constant (8.0) added to bring agreement with

the work of Cooke et al. (Ref. 10) shown as crosses for Nb.
The added constant presumably comes from a higher energy
cutoff used in the calculation of X in Ref. 10.

lo(E, E') —=Q 5(e„„—E) 5(at. ~-o. „—E')
knn'

(6)

The imaginary part X2(Q, ~) at low frequencies is re-
lated to IQ evaluated at the Fermi energy eF,

X2(Q, (u) = l-(KI-, 6I ) = I-.1 d
Q ' Q'

co=0

shows a sharp increase of about 5% just at the location
of the Kohn anomaly. We have verified" that this in-
crease arises from transitions near the Fermi level and
is sensitive to small changes in Fermi energy, as ex-
pected for a Kohn anomaly. CDM have found for Nb
that including matrix elements of exp(iQ r) in the cal-
culation of X[ does not remove the discrepancies with
~02 of niobium. The matrix element M which should
be included is much more complicated than exp(iQ r),
so the lack of improvement is not too surprising.

Although the correspondence between the real
quantities cu0 and X~ is disappointing, it is possible
that a better correspondence occurs between the ima-
ginary parts otoy& and xz{Q, o&0) = &uo(dldot) Xz(Q, O).
The behavior of yo has not been directly measured,
but we expect some correspondence between the Q
dependence of y0 and of co~). To test this, we have
calculated a function
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constructed as follows. The electronic density of
states of Nb and Mo shows five overlapping peaks (at
roughly 0.5, 0.6, 0.7, 0.9, and 1.0 Ry using the zero of
Ref. 12). These peaks contain roughly one electron
per spin, atom each. This is most easily seen by mak-

ing a band-by-band decomposition of X(e), as in Ref.
». The average peak width is z 0. 1 Ry. The contribu-
tion to x, (Q, O) from higher ~ transitions contains en-

ergy denominators ~
~ +g ~

k
which do not vary much

I

with Q since the energies are localized in the peaks i

and j. Only when peaks i and j begin to overlap (and
especially if they are the same ) does the Q depen-
dence have a relatively large importance. Thus most
of the Q dependence should come from small o transi-
tions, within say a half-width (&0.05 Ry) of a peak. As
was noted'-~ to be the case for optical (Q=0) transi-

tions, the structure in x, (Q, o ) is dominated by transi-

tions with both initial and final states near a van Hove
singularity in, 'V(e). This can account for the effects of
intraband () = j) transitions peaking at the somewhat
lower value of ~ =0.022 Ry.

O. I 0.2 09 0.4 0.5
ao (Ry)

FIG. 5. Imaginary part (I/vr)X2(Q, 0)) of the single-spin

susceptibility plotted vs the energy 0)(t=1) for four values of
the wave vector Q in the [100] direction, for Nb (solid lines)

and Mo (broken lines ). Note that all curves are linear for

co~0.025 Ry and that the curves for Nb and Mo are identical

for 0) & 0.25Ry.

Kronig relation we find exactly the result (8) for Xi,
with the constant 7 given by

r

, 72(o))
o& QJ

(9)

Our calculated values of X2(Q, cu) are shown in Fig. 5
for four different values of Q. In Nh it is particularly
evident that ~ —0.02 —0.03 Ry does roughly divide a
low-frequency linear regime with large variation with

Q from a complicated large cu regime with smaller
variation as a function of 0. In Mo there is less evi-
dence for such a model, and also weaker evidence for
the accuracy of Eq. (8). It is noteworthy that above
cu —0.25 Ry, X2 for Nb and Mo are almost undistin-
guishable. The energy 0.25 Ry corresponds to twice
the difference in Fermi energy 2he)-. Over the range
0 ( cv ( b, ~)-, Nb has a larger X2 because of the larger
density of states near ~):. However, for( 0) ( 2heir-, Mo has a large X2, partly because the
states near e~.-' become accessible.

Qualitative reasons for the Q independence of x2 at
large ~ and the value 0.022 Ry for the cutoff can be

III. INSIGHTS TOWARD A MORE COMPLETE
THEORY

The calculations of Sec. II establish an empirical re-
lation (8} obeyed by the susceptibility x; we can ex-
pect that a similar relation will hold for the true self-
energy H, namely,

I1) (Q. 0) = IT~ (Q) + II] (Q). (10)

Here II, arises from transitions —~ho of the Fermi
level and II, represents the contributions from higher
energy. Unlike Eq. (8) for x, where x was indepen-
dent of Q, in Eq. (10) we have no arguments to justify
neglecting the Q dependence of II, . The previous ar-
guments tell us that there is a cutoff energy ho such
that for ~ & ~, the Q dependence of II& comes only
from matrix elements, and is independent of the
specific shape of the electron dispersion. Since H2 is
linear for small o, it follows from the Kramers-Kronig
relation that, for Q not too small,

Hi (Q) = —(2/7r) (co/00) yo,

where yo/0& is the slope of —H2(Q, ~) at ~=0. The
fact that ~ is independent of Q is an empirical obser-
vation which must in fact break down if Q is very
small. The maximum intraband energy goes to zero
as (Q~ v, as ~Q( goes to zero; this defines a )Ql cut off
Q =~/v, below which ~ must become linear in Q. For
Nb we estimate" v&

——0.62&&10 crn/sec, which gives
Q =0.7&10 cm ' (using cu =0.022Ry). This corresponds
to 4% of 2m/a, or only a part in 10 of the Brillouin-
zone volume.

Combining Eqs. (10) and (11) gives a result identi-
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00 Ct)0 = (4QJ/7T) +0. (12)

cal to the model of Paper I except that we fix 0 by ac-
tual calculations of x rather than by guessing. Using
also Eqs. (3) and (4) gives a desired linear relation-
ships between the phonon softening and the phonon
width

volume dependence to be similar. Thus the quantity
02 entering the semiempirical relation (15) will

Qv

depend on the Gruneisen exponent y in accordance
with y '. The measured value' y= —1.57 for the
Nb-Mo system leads to a difference in reference spec-
tra of

The softening is relative to the reference spectrum 00
given by

( yMo/ yNb) —2&~0 6 (16)

Q 0
——60 + 26@Il ) (0). (13)

The exact relation between the electron-phonon cou-
pling constant A. and yo is

2 g ~ov

~w(.,)
Qp qv

(14)

where v runs over the three phonon branches. Insert-
ing (12) into (14) we obtain a formula for x,

D-
X = [2fcuW(ar)] ' $ ' —I (15)

The error from taking c independent of Q for small Q
is negligible in this formula.

Equation (15) establishes a semiempirical expres-
sion for a. All quantities in (14) are accessible to ex-
periment except o (which is fixed at 0.022 Ry by our
calculation) and the reference spectrum ()& .
Rigorously ()Q is the phonon spectrum that would

result if virtual transitions with energy denominators
less than h~ were omitted from (1). Unfortunately

is nearly as difficult to calculate as is the experi-
mental spectrum ~Q, and further progress depends on
a su%ciently accurate guess of the reference spectrum.
In Paper I it was posited that, inasmuch as any extra
ionic charge in the bare spectrum 0&, in Eq. (13) will

give a balancing contribution to the renormalization A,
the reference spectrum k)&, can be taken as constant
within a given system. We modify this position only
by noting that any volume change in the system must
be carefully taken into account. The importance of
the volume correction warrants a short digression.

The reference spectrum (13) is determined by the
bare spectrum 6&, and the self-energy II. The bare
spectrum is largely dependent on the ionic plasma fre-
quency, whose square depends inversely on the
volume y. The self-energy depends on the volume
both through a (bandwidth) ' factor arising from the
energy denominator and, in a more obscure but no
less important way, through the potential gradient
entering the electron-phonon matrix element. As the
reference spectrum will not differ greatly from the ob-
served frequencies ~Q, it is reasonable to expect its

and it becomes apparent how crucial the volume
correction will be in evaluating the expression (15).

Our experience has been that with presently avail-
able information, 0&, —

~&, is too uncertain to make
(15) a useful relation. Sufficient uncertainty occurs in

both f'lg) and o&, that the resulting values of a from
Eq. (8) have only semiqualitative significance. The
phonon spectra along symmetry directions have been
measured for Nb, ,Mo„. (x = 0.0, 0.15, 0.35, 0.41,
0.56, 0.75, 0.91, 1.0) by Powell, Martel, and Woods. '

We have found that the inevitable extrapolations off
symmetry directions give the Brillouin-zone averages
appearing in (15) a surprisingly large dependence on
the model used in representing the spectra. Neither
have we succeeded in constructing a reference spec-
trum which is believable to the necessary accuracy,
although certain clues are available from the alloy
data. In the Nb, MO~ „. system the average of
(0-,/~ —1), equal to —, h&uN (~F) X —= A, reaches a

minimum near x —0.6, where A =0.01. Thus for this
alloy the reference spectrum is virtually identical to
the experimental spectrum which is smooth and typi-
cal of a bcc simple metal. ' The simplest approach is
to assume that this shape for the reference spectrum
will persist through the alloy system. However, this
ansatz, together with a volume-dependent magnitude,
does not appear to give an accurate enough reference
spectrum to be of use in (15).

Our conclusions are as follows: (i) we find an em-
pirical linear relation between x, and dx, /d~ which
strongly suggests that a linear relation exists between
y0 and co~, (ii) a model similar to those of Papers I

and II appears justified for Nb and Mo, but the result-
ing formula is too sensitive to small variations in the
various unknowns.

Although the conclusions are pessimistic about
prospects for simplifying the theory of a, they contain
implicitly some optimistic assumptions about simplify-
ing the theory of phonon dispersion. We confirm the
conclusion of CDM' about the lack of correspon-
dence between x, and ~&, . However, our work sug-
gests that if the matrix element Q&, were properly in-
cluded, a strong correspondence should appear
between HL(Q) and ~&, . In other words, the
anomalous structure seen in the phonon dispersion of
these materials should be closely related to the part of
H, (Q, O) which arises from transitions within
~to —0.022 Ry of ~,-. This supports the finding of
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Gupta and Freeman" for NbC and TaC that x(q} has
structure which correlates with ~g coming from intra-
band transitions, while the much larger values coming
from interband transitions are slowly varying with Q.

It remains mysterious why the neglect of matrix ele-
ments should destroy the correspondence between ~~&,

and x in Nb but not in NbC.
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