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New measurements are presented of the shear viscosity q and the positive-ion mobility p, near the melting
transition in liquid 'He. Interpreted in terms of the Stokes law for the drag on a sphere in a viscous medium,
it is found, contrary to expectation, that the effective radius of the ion remains constant or decreases slightly
as the melting transition is approached at constant temperature. Attempts to explain this observation have
not been successful. On the other hand, an older mystery concerning the effective radius of the ion is cleared
up: Ahlers and Gamota, comparing data for q and p, at the vapor pressure curve found that the effective
radius has a maximum 40 mK below the X transition (i.e., the lower triple point). We have observed a
similar maximum on the melting curve, 40 mK below the upper triple point. It is shown that these maxima
may be accounted for by an electrostrictively induced I, transition around the ion. In this interpretation, the
maximum along the melting curve serves as the first empirical evidence that the X line extends into the
region of supercooled liquid at pressures above the melting curve.

I. INTRODUCTION

The study of the mobility of ions has long been
an important and popular tool for understanding
the behavior of liquid helium. Over the years a
generally successful picture has emerged, both of
the structure of the ions themselves, and of the
processes that govern their mobilities, based on
experimental data which are most abundantly avail-
able at saturated vapor pressure. More recently,
in connection with studies of the X transition, sen-
sitive new techniques have been developed for
measuring changes in the mobility, and, in a re-
lated quantity, the shear viscosity. ' In this paper
we wish to report a series of experiments designed
to apply some of these developments in the vicinity
of the melting transition in liquid He. In particu-
lar we will report new measurements of both shear
viscosity and positive- ion mobilities in liquid he-
lium along and near the melting curve in the tem-
perature range approximately 1.7-1.95 K.

Neither the viscosity nor the mobil, ity has previ-
ously been explored in detail in this range of tem-
perature and pressure. ' Moreover, they have not
been measured in the same laboratory with com-
parable sensitivity at any temperature and pres-
sure. It is hoped that these new results may facil-
itate discussion of a number of questions of gener-
al interest, particularly relating to matters such
as the nucleation of solidification, the liquid- sol.id
surface tension, and perhaps the existence of a
microscopic solid.

In the range of temperatures and pressures we
have investigated, the behavior of an ion is gen-
erally expected to be hydrodynamic. That is to
say, the ion mobility p, and the shear viscosity g

may be combined to give an effective radius of the
ion, R,«, viathe Stokeslaw for the dragona sphere,

R„,=e/6nrlp.

As we shall see, the identification of R,«with the
real radius of the ion may be called into question,
but Eq. (l), first suggested by Ahlers and Gamota, '
can still be regarded as a useful definition.

The ion itself is thought to be a sphere of solid
helium formed by the effects of electrostriction. '
The radius of the sphere, as we shall see in more
detail in Sec. III, depends on the appli. ed pressure.
As the applied pressure approaches the melting
pressure, the radius becomes increasingly sensi-
tive to the liquid-solid surface tension 0. The ex-
periments reported in this paper were originally
motivated by the hope that the results would yield
a dependable value for o, a quantity which does
not seem to be measurable in any other way. In
particular, identifying R,«with the real radius of
the ion, v could be deduced from the rate at which
R,« increases as the melting pressure is ap-
proached from below.

Having measured R,«along four isotherms ap-
proaching the melting curve from below, we found
to our considerable surprise that R,«does not in-
crease at all, but rather remains constant or de-
creases in all cases. As discussed in Sec. IV, we
have not found a satisfactory explanation of this
observation.

In addition to the measurements along isotherms,
we have made measurements along the melting
curve. A particularly interesting result of these
data is that at about 0.040 K below the A. point (i.e. ,
the upper triple point), R„, undergoes a rather
sharp maximum. Ahlers and Gamota' have re-
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ported the same behavior for R,«along the vapor-
pressure curve. In this case, we are able to pro-
vide an explanation. The result is what we believe
to be the first empirical evidence that the A. line
extends into the region of supercooled liquid above
the pressure of the melting curve.

Experimental details are discussed in Sec. II.
The data and the central ideas behind this work are
presented in Sec. III. A summary, including our
unsuccessful attempts to explain the behavior of

R,«along the isotherms, will be found in Sec. IV.

II. EXPERIMENTAL DETAILS

Measurements of both the viscosity q and the
positive- ion mobility p in the liquid were made

along the melting line in the temperature range
approximately 1.7 to 1.95 K, corresponding to
melting pressures from about 28 to 36 atm. In

addition, each quantity was measured along four
isotherms, approaching the melting curve from
below at temperatures of approximately 1.7, 1.8,
1.9, and 1.95 K. Since the upper triple point oc-
curs at 1.7633 K and 29.741 atm, these data span
the X. transition {Fig. 1).

A. Temperature and pressure control

The general apparatus is an improved version
of that described in Ref. 1, hereafter called GSS.
Its sketch is shown in Fig. 2. It consists of a
double-cell system: a main body A, made out of
oxygen- free high- conductivity copper, assures
good thermal contact between the two cells. Stain-
less-steel flanges B, fastened to A by indium 0-
rings, allow gas and electrical connections to the
two cells. The upper cell C contains liquid helium

in equilibrium with its vapor and acts as the ther-
moregulating element of the system, with the help
of the pumping line D and the thermoregu1. ator ele-
ments E (germanium thermometer) and F {heater).
The lower cell G contains liquid helium at the
same temperature as cell C and at the desired
pressure: feed of the gas and pressure control
are performed through capillary II. The measur-
ing device, located in cell G, can be either the
mobility-measuring diode or the viscosity-mea-
suring vibrating wire system. The two techniques
will be described below. The temperature in cell
G is monitored by the germanium thermometer I.

The whole system is held in a vacuum can J,
evacuated through K, and everything is immersed
in the liquid-helium bath L. Depending on the tem-
perature stability requirements in the experimen-
tal space (G), this bath can be held at 4.2 K or
thermoregulated at a temperature close to the ex-
perimental temperature. Under the best conditions
{the latter), the temperature within the cell G is
kept constant to better than 10 ' K.

The pressure is monitored by a Bourdon pres-
sure gauge, ' with which it is possible to detect the
pressure and keep it constant within 6P/P=2
x10 '.

With this apparatus it is possible to reach any
point in the P, T plane at temperatures froIn 1.2
up to 2.17 K and pressures up to the melting curve
with the quoted accuracies.
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FIG. 1. Phase diagram of 4He in the vicinity of the
upper triple point.

FIG. 2. Schematic diagram of the experimental ap-
paratus. See text for details.
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C. Measurement of the mobility of positive ions

The method used to measure the mobilities of
positive ions has been described in detail in GSS. '

Here only a very short outline of it is given.
A diode, consisting of two plane parallel elec-

trodes contains the l.iquid helium under investiga-
tion. n particles from a "'Po source painted upon
one of the electrodes ionize a very thin layer of
the liquid. An electric field draws to the other

T = l.7K P= 28 atm
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FIG. 3. Chart recorder trace of pressure vs time
showing how the melting transition is identified, as dis-
cussed in the text.

B. Working on the melting curve

Starting from a point close to (below) the melting
curve, at constant temperature, a small flow of
gas is admitted into cell G (some 10 ' mole(sec),
causing the pressure to increase slowly and lin-
early with time. In Fig. 3 the display on a strip-
chart recorder of the pressure-gauge output is
shown. When the melting pressure is reached,
solidification begins and the pressure stops in-
creasing (A). A certain time is allowed in order
to be sure that a finite (though small) quantity of
solid is formed. Then the gas flow is stopped (B):
the pressure undergoes a very small decrease,
due to the nulling of the pressure gradient between
gauge and cell that occurs when gas is flowing.
The pressure after (B) is the melting pressure.
The example shown in Fig. 3 occurred in a run at
T=1.7 K, i.e. , the liquid is superfluid. For runs
above the (upper) X point, due to the finite thermal
conductivity of the liquid, the gas flow introduces
thermal transients which smooth out the steps
shown in Fig. 3. Nonetheless, the melting pres-
sure is equally well determined.

When working along the melting curve, measure-
ments are normally started at the highest temper-
ature. Then, by simply decreasing the tempera-
ture without admitting or releasing gas, the sys-
tern is forced to follow the melting curve.

electrode ions of the desired sign, and a current
i is measured. If the source is strong enough,
complete shielding of the electric field at the
source electrode is obtained (full space-charge
limitation). In this case, a simple relation between
the applied potential V and the ion current i holds'.
i = a V'. a is proportional to the ion mobility
through a geometrical factor. Thus, the measure-
ment of the i, V' characteristics of the diode gives
the value of the mobility.

In GSS a differential method is described which
was devised to yield high resolution. It consists
in performing the measurements at constant cur-
rent i, while using a vibrating reed electrometer
as a zero meter, by sending into it a signal which
nulls the current i,.' The sensitivity of the elec-
trometer can then be increased by a factor of up
to 100. In this condition, the value of the applied
voltage V is a relative measurement of the mobil-
ity (p=PV ', P being a geometric constant). If the
mobility changes, say to p, ', a new value of the
voltage V' will be required in order to null again
the current i, : then p, '= PV'~. With this method
changes in mobility with a resolution up to 5g/p,
=10 ' have been measured.

The mobility measurements reported here have
been performed with the latter differential tech-
nique. Thus they had to be normalized at some
point to calibrate the geometry of the measuring
cell. The absolute values of p. reported in this
paper have been chosen so that on the melting
curve at 30 atm, p, =1.44 x 10 ' cm', ~V sec. With
this choice the values are in agreement with those
reported in GSS. Those data in turn had been nor-
malized to agree with a point reported by Ahlers
and Gamota, ' arising from a time-of-flight mea-
surement at the saturated vapor pressure.

D. Measurement of the viscosity

The technique used for the viscosity measure-
ments is that devised by Bruschi and Santini to
measure the viscosity of liquid 4He near the X

transition, along the vapor-pressure curve. "
Here only the main features of it will be given.
For a more detailed description the reader is re-
ferred to Ref. 9.

The idea is based on a technique introduced by
Tough, McCormick, and Dash. " A taut tungsten
wire in a transverse magnetic field is caused to
vibrate by passing an electric current through it.
The damping of the vibrations is dominated by the
hydrodynamic parameters of the fluid in which it
is immersed. In particular the product of the vis-
cosity and the density (gp) can be determined.

The original technique (Tough ef al. ) consisted in
the study of the decay of the vibration produced by
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a short pulse of current in the wire. Continuous-

wave methods have been devised since then in

which the wire is forced to vibrate by a small
sinusoidal current of constant amplitude and the

resonance response curve is measured. The
method devised by Bruschi and Santini, which uses
a feedback circuit to lock onto either the in-phase
or +45' out-of-phase component of the response
signal, is the most sophisticated and reliable of
these.

In principle, the method should have an absolute
precision of about 10 ' in gp, and a sensitivity of
about 10 4 to changes in gp. Ho-vever, two special
problems arose in our case which tended to limit
the precision of our results.

The tungsten wire has two fundamental modes of
transverse vibration which are degenerate in a
first approximation. However, internal strains,
accidental asymmetries in clamping the ends of
the wire, etc. always lift the degeneracy to some
extent. Following Bruschi and Santini, our wire
was purposely clamped between flat plates at the
ends, with the result that the modes parallel and
perpendicular to the plates differed in frequency
by about 10 Hz (typically, the resonant frequency
was about 2700 Hz and the quality factor Q about
300-1000 in helium). The magnetic field is then
carefully oriented so that only one of the two modes
is excited. However, the alignment in our appara-
tus is done at room temperature and deteriorates
on cooling. In practice it was found that the se-
condary mode had about one-fifth the amplitude of
the principal mode.

Rather than go through the impossibly tedious
process of tracing out the full double-resonance
curve for each experimental point, a procedure
was developed in which measurements were made
only of the principal curve, and corrections were
applied based on tracing out the complete double-
resonance curve at least once in each run. These
corrections amounted only to about 1 or 2% in the
viscosity. The mathematical technique for making
this correction was kindly worked out for us by
Dr. T. J. Sluckin.

Values of gp for pressures up to about 25 atm
have been reported by Goodwin, "who used the
technique of Tough et al. To test the overall. func-
tioning of our technique we made measurements
designed to reproduce those of Goodwin. On cer-
tain days we were unable to reproduce his results,
invariably obtaining values of gp considerably
higher than his. With the help of a suggestion by
Bruschi and Santini, this problem was eventually
traced to impurities in the helium we were using.
We have no explanation for how impurities could
have caused the result: we estimated that the im-
purity level could have been no higher than about

50 ppm (given the helium temperature capillaries
through which the helium gas was introduced into
the cell). However, our values of qp were higher
than Goodwin's by a factor of 2 to 3. Nevertheless,
the problem vanished when we adopted a procedure
in which the gas to be condensed for measurement
of viscosity was first passed slowly under pres-
sure through a l.iquid-nitrogen- cooled zeolite trap,
and considerable care was taken after condensation
that no contaminants were introduced subsequently
into the measurement cell. With these precautions
we could always reproduce Goodwin's results with-

in his stated uncertainty of a few percent, and that
check was made in the course of each run from
which data are reported in this paper.

As stated above, the measurements yield es-
sentially the product gp. Above the A. transition
small variations in the density with temperature
and pressure were obtained from a smooth func-
tional fit to the equation of state, "so that g could
be extracted. Below the A. transition, however, p„
has to be taken into account rather than p, and
this quantity varies much more rapidly. There
were no independent measurements of p„available
in the region of P and T of interest. Thus, an in-
terpolation procedure for p„had to be adopted in

order to deduce g.
Romer and Duffy" have reported values of p„/p

along isobars, at roughly 5 atm intervals up to
25 atm. In addition Ahlers'" has given a universal
formula for the limiting dependence of p, /p
= 1 —p„!p as the X line is approached at any tem-
perature and pressure. By extrapolating the X

line to pressures above the melting curve and as-
suming that Ahlers' formula continues to be valid,
it was possible to construct plots of p„/p vs pres-
sure for a series of constant temperatures.
Smooth curves were drawn which passed through
the points reported by Romer and Duffy and had
the limiting slope required by Ahlers. Since the
region of interest for our data fell between the
limits of the Romer and Duffy data and Ahlers'
formula, this procedure resulted in values of p„lp
that were interpolated rather than extrapolated
from either side. A finer grid of interpolations
along isobars between these isotherms was finally
constructed in order to find p„/p at the precise
values of P and T where our data lie.

It is difficult to estimate the uncertainties intro-
duced by this procedure. They include extrapola-
tion of the X line (assuming constant slope) into the
region of supercooled liquid, the use in this region
of Ahlers' formula which is essentially a fit to data
at lower pressures designed to conform to the as-
sumption of universality in critical phenomena, and
finally, an interpolation between data arising from
different laboratories. On the other hand, smooth



3112 SCARAM U ZZI, SA VOIA, GOODSTEIN, AND COLE 16

interpolation curves were remarkably easy to draw
between these data, so that a table of values of
p„/p with three significant figures could be con-
structed with some confidence. Moreover, the
corrections by interpolation are not very large.
Typically, each value of p„/p finally used falls
within 10% of the nearest measured value of Romer
and Duffy; thus a substantial error in the 10% in-
terpolation still introduces an absolute error in g
of order of the other uncertainties in the vibrating-
wire linewidth measurements themselves. The
relative values of q are affected even less. For
example, along the viscosity isotherm at 1.690 K,
p„/p was found to vary by only about 7% over the
pressure range studied.

Taking into account all of the difficulties out-
lined above, including the uncertainties introduced
by the evaluation of p„/p below the X transition and

by possible thermal problems above the transition,
we estimate the possible error in the reported ab-
solute values of the viscosity to be roughly 2%,
and in the relative values about 0.2% or less.

In the mobility measurements, the errors are,
respectively, about half as large. These estimates
are in good agreement with the observed repro-
ducibility of the results.

A. Viscosity

All of the viscosity data above the ~ transition,
both melting curve and isotherm data, are plotted
vs pressure alone in Fig. 6. At high pressures,
all of these data are seen to fall on a single curve,
implying that the viscosity in this region is inde-
pendent of temperature, depending only on pres-
sure. Over the limited range studied, these data
are well fitted by a straight line shown in the fig-
ure,

q (P) = 2 98P —10.5. (2)

where g, is expressed in p. P and P in atm.
Below approximately 33 atm, the melting data de-
part from this behavior, but the isotherm data
continue to follow it. Moreover, the isotherm

III. DATA AND DISCUSSION

Absolute values of the positive-ion mobility
along the melting curve are plotted in Fig. 4. Rel-
ative changes in p, along isotherms are plotted as
open circles in Fig. 9 below.

Data for the viscosity along the melting curve
together with the values of p„/p that were used are
tabulated in Table I, and the viscosity is plotted
in Fig. 5. Relative values of viscosity along the
isotherms are shown in Fig. 9 and tabulated in
Table II, together with the values of p„/p used in
deducing them.

3.
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FIG. 4. Positive ion mobility vs pressure gower scale)
or temperature {upper scale) along the melting curve.
Circles: points taken while following the melting curve,
as described in Sec. II of the text. Triangles: end points
of isotherms shown in Fig. 9 below.

t = [T —T,(P)]/T„(P), (3)

where the X temperature at pressure P, T„(P), is
found by extrapolation of the ~ line mentioned
above when P is greater than the pressure of the
upper triple point. If the interpretation we are
pursuing is correct, then the difference between
the measured values, g, and the values r)o(P) given
by Eq. (2) should be a universal function of t. Fig-
ure 7 is a plot of q*=rt, (P) —q vs t, showing that
g~ is indeed a function of t alone.

A recent theory by Goodstein" of the viscosity

data at 1.8 K depart from the melting data, run-
ning more nearly parallel to the line followed at
higher P.

There is a simple interpretation to these obser-
vations. In the region under study, a given de-
crease in pressure along the melting curve brings
the system much closer to the X transition than
would the same decrease in pressure along an
isotherm (see Fig. 1). Thus the data suggest that
the viscosity in this region consists of two parts:
an underlying temperature-independent component
given by Eq. (2), and a second part which is a con-
sequence of approaching the ~ transition. To test
this interpretation, we use as a measure of the
distance from the transition a reduced tempera-
ture t given by
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TABLE I. Data for the viscosity g along the melting
curve, together with the values of p„/p that were used.
The values of the end points of the four isotherms are
also reported.

TABLE II. Relative values of viscosity (q —q)/p (p

is the value of the viscosity at the melting curve) as a
function of the pressure P along isotherms in the vicinity
of the melting curve. The values of p„/p that were used
are also reported.

T(K) P (atm) p./p
P (atm) (g —q)/q p„/p

1.690
1.690
1.704
1.721
1.739
1.739
1.759
1.759
1.779
1.798
1.816
1.835
1.835
1.835
1.853
1.871
1.903
1.925
1 ~ 940
1.690
1 799
1.902

~1.948

28.19
28.19
28.44
28.77
29 ~ 16
29.16
29.65
29.65
30.19
30.74
31.26
31.82
31.82
31.82
32.41
32.97
34.00
34.73
35.26
28.19
30.74
33.97
35 ~ 94

31.30
30.81
33.88
37.32
47.14
47.60
64.30
64.37
73.60
77.91
80.92
83.64
84.07
82.61
85.14
87 ~ 36
91.06
93.22
94.60
31.52
75.07
91.48
95.47

0.614
0.614
0.659
0.751
0.802
0.802
0.936
0.936

0.614

T=1 799 K

T = 1.902 K

29.36
29.36
29.83
30.07
30.30
30.52
30.74

30.92
32.58
32.85
33.14
33.44
33.75
33.97

T = 1.690 K 26.80
27.03
27.26
27.49
27.72
27.96
28.1.9

0.1237
0.1060
0.0835
0.0696
0.0451
0.0244

0

0.0812
0.0644
0.0516
0.0377
0.0242
0.0120

0

0.1186
0 0549
0.0475
0.0343
0.0225
0.0166

0

0.575
0.581
0.587
0.594
0.60 1.

0 ~ 608
0.614 melting

melting

melting

~ End points of the isotherms. T = 1 ~ 948 K 34.32
35.56
34.80
35.03
35.26
35.49

0 ~ 0420
0.0336
0.0240
0.0159
0.0092

0 melting

1.70 l.75
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l.95
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90
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c) 70

50

30 30 32
p (atm)

34

FIG. 5. Viscosity vs pressure (lower scale) or tem-
perature (upper scale) along the melting curve. Circles:
points taken while following the melting curve, as de-
scribed in Sec. II of the text. Triangles: end points of
isotherms shown in Fig. 9 below.

of helium near the & transition suggests that the
viscosity above the transition should divide in just
this way, into a part representing the behavior of
normal fluid far from the transition, and a (neg-
ative) contribution owing to approaching critical
behavior. In particular, in this view, the negative
contribution, or g*, is proportional to the volume
fraction of the liquid, which at any instant has
undergone a fluctuation into an isolated region of
superfluid, whose characteristic dimension is of
order of the correlation length (. Thus, g* would
be proportional to the fraction of the fluid which
is superfluid by fluctuation. An earlier work by
Ferrell et al. ,

"similarly describes spatial vari-
ation of the superfluid properties. This work
yields an estimate of the superfluid density at
fixed finite wave number above the transition which
has the same characteristic convex downward
shape shown by g* in Fig. 7.

These comments are, of course, no more than
suggestive. However, it should be worthwhile to
obtain further viscosity data at lower pressures
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FIG 6 Viscosity vs
pressure above the lambda
transition showing points
both along isotherms and
along the melting curve.
The straight line follows
Eq. (2) of the text.
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in the range roughly 0.01 & t & 0.1 to see if these
observations continue to hold.

B. Mobility

The original motivation for the work reported in
this paper was the possibility of extracting the
liquid-solid surface tension of helium, cr, from
measurements of the positive-ion mobility near
melting. The positive ion in liquid helium may be
thought of as an unshielded charge in a dielectric
medium. The electric field of the ion polarizes
helium atoms, then attracts the resulting dipoles.
There is thus an attractive force on the medium
arising from a potential which varies as the square
of the electric field. The simplest approximation
takes the liquid to be incompressible, in which
case the pressure p, at distance r from the ion
exceeds the applied pressure P by a function

as the pressure in the bath approaches the melting
curve. However, before these investigations be-
gan, it was well known that p, did not go to zero as
the melting curve is approached. ""

The reason R,«does not go to infinity as melting
is approached depends on the existence of a solid-
liquid surface tension at the interface between the
solid sphere induced about the ion and the liquid
medium. If we compress a bulk so),id and liquid
in equilibrium with a planar interface, the volume
of solid can grow at constant pressure without any
increase in interfacial a,rea. However, the spher-
ical solid around the ion cannot grow without in-

Ip I I I I I I I I ~ I I I T I I I I

P) —P =P/v, r', (4)

where P depends on the polarizability of helium,
and v, is the molar volume. At some distance, say
R, from the ion, P, becomes equa, l to P, the
melting pressure of helium at the bath tempera-
ture. If the helium became solid at that point,
we could imagine the ion surrounded by a self-in-
duced sphere of solid, whose radius according to
Eq. (4) would grow to infinity as P approached P

For temperatures in the vicinity of T„and above,
the mobility, the viscosity, and the radius associa-
ted with the ion should be related by Eq. (l) arising
from Stokes' drag. If, as argued above, R,ff
= R - ~ as P-P, then we should observe p, - 0

0
CI C1

Q Q
QQ P

—] ! I I I I I I I I I I I I I I I I I

Q

0 0.04 0.08 0.12 0.16

FIG. 7. The excess viscosity, q*= qo(p) —q as ex-
plained in the text, vs reduced temperature as defined
in Eq. (3). Symbols are the same as those in Fig. 6.
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TABLE III. Definitions of radii used in the text.

Rgf f ~

Rss

Roj

Rm.

distance from the center of the ion core.
Stokes or hydrodynamic radius, defined in Eq. (I).
radius of solid sphere presumed to be induced

about the ion by electrostriction.
radius of the sphere of normal fluid induced about

the ion by electrostriction.
characteristic distance derived from parameters

of the fluid. Defined by Eq. (13).
distance from ion core at which the bulk melting
pressure is reached.

P —P= P 2' v,
vER R v$ —v (8)

where v, is the molar volume of the solid. This
entire argument was originally put forth by At-
kins. '

creasing its surface area. Since there is a posi-
tive surface tension, or free energy per unit area
of interface, there is a higher cost in free energy
to increase the volume of the sphere than to in-
crease the volume of the bulk solid. The result
is that the local pressure at which the helium solid-
ifies is higher than the bulk melting pressure P,
and the ion is then surrounded in the region be-
tween the solid and R by supercooled but stable
liquid. Conversely, as the applied pressure ap-
proaches P, R,«remains finite.

These considerations are easily expressed
thermodynamically. To avoid confusion with the
mobility, let us use the symbols g, (P) a,nd g, (P)
for the chemical potentials of the liquid and solid,
respectively, at pressure P (the temperature will
be assumed constant). We also introduce the sym-
bol R, for the radius of the solid, recognizing
that it may not be equal to the hydrodynamic radius
R,«defined in Eq. (1). (As an aid to the reader,
we present in Table III, a list of the various radii
used in this paper. ) If the pressure in the liquid
at the interface of the sphere is P„ then the pres-
sure in the solid is P, +2o/R, . Thus,

g, (P, +2o/R, ) =g, (P,).
We also know that g, —p/r' is uniform from r=R,
to r=~:

g, (P) =g, (P,) P/R,'.
We can refer these chemical potentials to the bulk
melting pressure, where

g, (P }=g,(P ).
Using the identity (sg/aP) r ——v and appropriate
equations of state, these equations can be used to
find R, as a function of P. If for simplicity we as-
sume incompressibility of both liquid and solid,
we find
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FIG. 8. Plot of (P -g)/p for an isotherm approach-
ing melting at 1.71 K.

Thus, although R, does not diverge, it does in-
crease as P is increased towards P and its mag-
nitude is governed by 0,"especially near P .
Therefore, a measurement of how R, depends on
P near melting would afford a sensitive means of
measuring v. The solid- liquid equilibrium sur-
face tension is a quantity of fundamental impor-
tance, which has never been measured in any
substance by any other means.

The idea, then, was to measure the mobility,
use the result to find R,(P}, and therefore deduce
the surface tension. The sensitive differential
technique, developed for measuring the critical
behavior of p, near the A. transition would be applied
near the melting transition where R, varies most
rapidly, and depends most sensitively on o. If
we assume R, = R„„we may substitute Eq. (1}
into Eq. (8) yielding a dependence of p, on P (at
constant T) of the form

P —P= a p,
' —bp, ,

where a and b will be constants if the variation of
g with P may be neglected. If these arguments are
correct, and the approximations we have made
are reasonably good, a plot of (P —P)/iJ. vs p'
should be a straight line whose slope and inter-
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cept would yield the viscosity near melting (not
then yet measured) and a.

Accordingly, mobilities along isotherms near
melting were measured, and the required plots
were made. " An example, from data at 1.71 K,
is shown in Fig. 8. Excellent straight lines were
obtained, and values of q and o deduced. In the
case illustrated, the results were g =45.4 p, P
and o= 3.04 && 10~ ergs/cm'. The value for q, as
we may now see from our own data, Fig. 5, is a
bit high, the directly measured value being about
35 p. P at melting, but it is of the right order
of magnitude. The value of 0 seems sensible as
well; one would expect it to depend on the dif-
ference in density between the phases separated
by the interface. The solid-liquid density dif-
ference is about 10 times smaller than the liquid-
gas density difference, and the deduced value of 0,
is, indeed, about 10 times smaller than the known
value of the liquid-gas surface tension (approxi-
mately 3.7 x 10 ' ergs/cm').

Nevertheless, we found it disquieting to observe
that 0 seemed to change more rapidly with tem-
perature over the narrow range studied than could
reasonably be expected. The surface tension ap-
peared to increase from 0.030 ergs/cm' at 1.7 K
to 0.036 ergs/cm at 1.8 K, and again to 0.041 ergs/
cm at 1.9 K. Over the same range, the solid-
liquid density difference barely changed, and in
fact, decreased slightly. We would have expected
o to remain nearly constant, independent of tem-
perature, over this range.

After carefully repeating the experiments, re-
analyzing the data, and reevaluating the theory
(including, e.g. , the assumption that the liquid and
solid are incompressible), it was decided that the
principal source of error in this analysis was the
assumption that the viscosity did not vary signifi-
cantly along the isotherms studied. In Eq. (9), the
coefficients a and b both depend on the viscosity.
If q varies with P, then the dependence of p on P
is due not only to the changes in R, when P is ap-
proached, but also to the changes in g. Thus the
interpretation of Fig. 8 and the resulting values for
cr would be in error. It is also true that R, might
not be equal to the measurable quantity R,«, but
we had reason to believe the two might be related
by a constant factor. "

It was as a consequence of this argument that we
installed the instruments for measuring g. The
idea was to measure the variation of g with P along
the same isotherms that we measured p(P). The
contribution of the variation of g could then be sub-
tracted from the change in p, and 0 extracted from
the remainder. This comparison could be done with
reasonable accuracy even if each quantity changed
by only a few percent per atmosphere, since the

0.04

0.02

0

0,04

0.02

0
0.08

0.04

0

O. I 2

0.08

0.04

0 l.0
DP (atm)

FIG. 9. Changes in p and q with respect to their values
at melting, on isotherms approaching melting. Lines
are drawn through mobility data to facilitate comparison
with changes in viscosity.
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techniques for measuring both p. and g are much
more sensitive to changes than to absolute values.

The results of this program are shown in Fig. 9.
On each of four isotherms, (p, —p )/p, (open
circles) and (g —q)/q (triangles) are plotted versus
P —P. The reason for plotting the data in this
way is that (}"—p )/p —(q —q)/q "gq- p

Reef Reff mi where Refr m is the value of R,«at
melting. Thus the difference in these curves on
each isotherm shows the variation of R,«as
melting is approached. It is seen that, contrary
to all expectation, (p —p )/p —(q —q)/q. In
other words, interpreting these results in light
of Eq. (1), it appears that in all cases R„, re-
mains constant or decreases as P approaches P .
In view of the possible implications of these ob-
servations for the long-standing and widely ac-
cepted picture of the structure and hydrodynamics
of the positive ion, we defer further discussion of
this point to Sec. IV.

Although the most surprising feature of these
data is the fact that g generally changes more rap-
idly than p, , it should also be noted that the pro-
duct g p, really changes very little. We can see from
Fig. 9 that R,ff changes by no more than about 1%
along any of the isotherms studied. To investigate
this point further, we have constructed values of
R,ff along the melting curve in order to see how it
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changes with temperature.
The values of R,«could not be constructed di-

rectly from the data, since we do not have (g, p)
pairs at the same temperature and pressure on
the melting curve. Instead, the smooth curve
shown in Fig. 4 was used to find values for p. at
the points where g had been measured. The re-
sulting behavior of R,«at melting is shown in Fig.
10.

Far above the X transition, R,«rises gently as
T is decreased. Below the transition, it rises
more sharply, passing through a maximum at
about 1.72 K, then falls again. Ahlers and
Gamota, ' studying R,«along the 'He vapor-pres-
sure curve, have also noted a maximum about 40
mK below the transition. They suggest that the
phenomenon may be due to electrostriction, "but
express doubt that the 40-mK displ. acement can be
accounted for quantitatively on that basis. We wish
to present a model which shows how it may be
done.

The model applies anywhere along the A. line.
For simplic'ty we will discuss its application to our
own data at melting. Imagine the liquid to be near
the melting curve, below the X point, and once
again consider the effect of electrostriction. The
radius of the solid sphere is not very important for
this argument, so we shall take it to be constant
(equal to 7.95 A). At some distance R„ from the
ion, the rising pressure induced by the ion passes
through the extrapolation of the X line into the
supercooled liquid as sketched in Fig. 11. Thus,
two phase transitions occur as we move outward
from the ion: at R, the solid changes to liquid,
then at R„ the normal liquid changes to superfluid.
R„ is given by the value of r in Eq. (4) when P,
is equal to the extrapolated X pressure, P„.

The viscosity of the fluid surrounding the ion
depends on pressure (as we may see from our own
data) and therefore varies continuously with dis-
tance from the ion core. However, to understand
qualitatively how the mobility of the ion may be ex-
pected to behave, it is sufficient to simpl, ify the
picture.

S'ince the viscosity changes rapidly in the vicinity
of R„, and relatively slowly elsewhere, we can
take the ion to be surrounded from R, to R„with
fluid of viscosity g„, a value characteristic of the
normal fluid above the A. transition, and between
R„and infinity by fluid of the measured viscosity

Now let us imagine qualitatively, the behavior
of the quantity R,«deduced from measurements of
p, and q and plotted in Fig. 10. At the A. transition
and above, R~ is infinite, so the core is surrounded
to infinity by fluid of viscosity g„. However g„
is also the value measured by the vibrating wire.
R,« is therefore just equal to the core radius,
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7.95 A. Qn the other hand, below the transition, as
P,(T) increases, R, becomes small, eventually
becoming equal to the core radius. At that point,
the sphere is surrounded to infinity by fluid of
viscosity g, which is once again the value mea-
sured by the vibrating wire. Thus at both of these
extremes, R, = and R„=R„R,« is just equal to
the core radius R, = 7.95 A.

However, between these extremes, the core is
surrounded out to a finite radius R, by a fluid
whose viscosity is larger than the measured value.
Consequently, the mobility is lower than one would
expect on the basis of the measured viscosity.
R„, as defined in Eq. (l) is therefore larger than
the core radius. Since R,« is equal to the core
radius at both extremes and larger in the middle,
it follows that it must have a maximum. We
believe this to be the explanation of the observed
behavior.

The arguments we have given may be made some-
what more quantitative using a result presented by
Goodstein. " He has calculated the drag on a sphere
for precisely the model we have proposed, the core
surrounded by a self-induced sphere of different
viscosity from that further away. The result for
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FIG. 11. Sketch illustrating the effects of electrostric-
tion induced by a positive ion in ~He below the A, line.
Left: schematic of the pressure-temperature plane
including extrapolation of the ~ line into the super-cooled
region. Right: sketch of the ion.
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FIG. 10. Effective radius vs pressure gower scale) or
temperature (upper scale) along the melting curve. Solid
curve is the prediction of the model discussed in the text.
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R,f~ as we define it in Eq. (1) is

R« ——qRA, (10)

where q = q„/q and

4 R+ q —1 10 (R' —I)'(Q —1)
3 R 3 R'(3q+ 2) + 2(q —1)

where R=R„/R, . To use this result in the sim-
plest possible way, we have calculated R,«along
the melting curve, taking q„= q (the measured
value) above the X transition, and q„ fixed at q„
below the transition (q„ is the measured viscosity
at the transition). R, is assumed constant, R„
due to electrostriction is calculated at each point,
and measured values of g are used. The result
is shown as a solid curve in Fig. 10. Above the
transition, R„=~,q=1, A=&, so R,« =R,. Below
the transition, the expected maximum in R,« is
clearly seen, occurring just where the experi-
mental maximum is observed.

Various quantitative refinements of the model are
possible. For example, instead of the choice
made above for g„, we could use the values given
by Eq. (2), taking q„ to be equal to q, (P). In that
case, the rise in R,«as the transition is ap-
proached from above is produced by the model
(since q is no longer constant above the transition),
and the maximum in R,«below the transition is
also produced, once again in the same position.
However, the quantitative assumptions (e.g. ,

ignoring variations in the density of the fluid,
variations in the viscosity within each region, and
so on) are not meant to be convincing in detail,
and we do not expect to be able to fit the data with
a theoretical curve. The simpler model plotted in
Fig. 10 serves to illustrate that the qualitative be-
havior is understood in principle. In particular,
we believe the maximum in R,«observed both at
the vapor pressure and at the melting curve, is
due to an electrostrictively induced A. transition
around the ion. Thus, the maximum shown in Fig.
10 along the melting curve is clear evidence that
the X line may be extrapolated through the melting
curve into the region of supercooled liquid.

If the solidification of helium could be retarded,
and the supercooled liquid studied, it certainly
seems reasonable to believe that the X line would
be observed to continue into this region. To our
knowledge, however, the maximum in Fig. 10 is
the first empirical evidence that it actually does
so. It has been possible to obtain this empirical
evidence because the supercooled liquid is in fact
thermodynamically stable in the vicinity of a posi-
tive ion, and its properties thus influence the be-
havior of positive ions.

IV. ANOMALOUS PRESSURE DEPENDENCE NEAR MELTING

The principal dilemma presented in this paper
is the fact that close to the melting curve the
mobility of positive ions varies less rapidly with

pressure than does the shear viscosity. This
observation is surprising when viewed in the con-
text of macroscopic thermodynamics and con-
tinuum hydrodynamics where the two measure-
ments are related to each other by means of
Atkins' "snowball" model of the ion and Stokes'
law for the drag on a sphere. This approach has in
the past enjoyed considerable success, and so we
shall in this section discuss whether reasonable
modifications of the theories involved can help
to account for our observations.

The problem can be divided into two parts: the
structure of the solid sphere on the one hand, and
the hydrodynamics on the other. Let us consider
them separately. What we need to explain is why
the effective radius of the sphere as defined in.

Eq. (1) decreases with increasing pressure along
isotherms approaching the melting curve (see
Fig. 9).

In spite of a number of uncertainties, it is dif-
ficult to imagine any sensible model in which the
actual radius of the sphere, R„decreases when
the pressure is increased. We have already seen
that for an incompressible fluid, R, always in-
creases with increasing pressure. Better quan-
titative predictions can be made by using more
realistic equations of state for both liquid and
solid, and also by including other effects such
as the potential acting in the fluid due to the en-
hanced density of the solid. " In all of these cases,
the liquid-solid surface tension o enters as a
parameter, but is assumed to be constant, in-
dependent of R,. In all cases, regardless of the
choice of v, R, increases with increasing applied
pressure.

One could reasonably imagine that for these very
small spheres (typically R, 5 to 7 A) &r should be
taken to vary with R,. In particular we would ex-
pect 0 to decrease towards its flat interface value
as R, increases on the basis of a simple model
describing atomic interactions at the interface.
This decrease in a only causes R, to increase
even more rapidly with increasing applied pres-
sure than one would predict with the assumption
of constant 0.

We conclude, therefore, that the answer to our
dilemma will not be found in any thermodynamic
analysis of the behavior of the radius of the sphere.

It is possible, of course, that a solid sphere, in
the sense of an interface at which the density is
nearly discontinuous, never forms at all. If no
solid forms, one must imagine a. continuous varia-
tion of q and p in the fluid surrounding the ion.
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q(r) q er ( Rslr& (12)

Our own measurements of what is here called q„
show that it varies with P according to Eq. (2).
Moreover, the local pressure P, is related to the
applied pressure by Eq. (4). Letting P in Eq. (4)
be called P„ to be consistent with the present
notation, and substituting P, in Eq. (4) for P in
Eq. (2), we find

p'-=q„1+ ~
y (13)

where Sri„/SP„= 2.98 uP/atm according
to Eq. (2), and R, =[p(sq„/sP„)/v, q, j'~'=6. 5A
near melting at 1.95 K Rp is a character-
istic distance given by properties of the
fluid and is not related to any property of the ion.
Eq. (12) agrees with Eq. (13) at large r if we
choose m =4 and 7 =(R,/R, )'. Equation (12) is then
a possible extrapolation of the viscosity to the

One cannot know with confidence the associated p. ,
but it is at least possible that p, would change less
rapidly than the measured viscosity. However,
since we cannot be certain the extreme step of dis-
carding the snowball. model would help to explain
our observation, we turn. now to a discussion of the
hydrodynamic problem, retaining the picture of
a solid sphere formed about the ion.

The hydrodynamic problem is to modify the
Stokes solution of the Navier-Stokes equations to
take into account the fact that owing to electro-
striction neither the density nor the viscosity of the
fluid are uniform, both increasing as the ion is
approached from far away. No general analytic
solution to this problem exists, but Ostermeier and
Schwarz" have given numerical solutions for some
special cases, and we shall use their solutions as
the starting point of our discussion.

In order to make quantitative use of the Qster-
meier-Schwarz solutions (or any other solutions)
it is necessary to know how, e.g. , the viscosity
varies with distance from the ion, q(g. At suf-
ficiently large distance, the necessary depen-
dence can be deduced from our own data for how g
depends on P. However, as we have seen, at small
r, the fluid is supercooled (i.e. , the pressure P
is greater than the melting pressure P ) and in that
region the viscosity is not known and cannot be
measured. Although we must therefore use ex-
trapolations, the results, as we shall see, do not
seem to be very sensitive to the technique used
for extrapolating.

To simplify the analysis, we accept Ostermeier
and Schwarz's finding that density variations do
not affect the result greatly, and take the density
to be constant. Ostermeier and Schwarz param-
eterize the viscosity variation by the form

region close to the sphere [Eq. (13) by itself is an
alternative extrapolation] .

In the solution given by Ostermeier and Schwarz,
p and 7i are related by Eq. (1), with R,«given by

Remi = FRs (14)

where F depends on the parameters m and 7.
With the choice m = 4, we find that the results of
Qstermeier and Schwarz satisfy

F=1+0.15m, 0 ~ 7 & 2.5, (15)

with F falling below this line for larger values of
Together with the identification of w above, we

have

R„,= R,[1+0 15(R.,/R, )'] . (16)

(17)

using the summation convention. Here the volume
integral extends over all space and v, are the
components of the velocity field. If the ion drift
velocity is u, then the drag force is E/u, and-
the mobility is eu /E. To find -the leading order
correction to the standard Stokes problem, we
use for the velocity field the well-known Stokes
solution for constant viscosity, "but for the
viscosity, we use the expression given in Eq. (13).
Performing the integral indicated in Eq. (17), we
find that the mobility once again obeys Eqs. (1)
and (14), with

F = 1+ + (Ro/R, ) (18)

Recognizing that —", =0.15, and comparing to Eq.
(15), we see that we have reproduced the Oster-
meier and Schwarz (OS) solution in this domain.
Conversely, from the OS solution, we see that the
range of validity of the approximations we have
made in this argument is 0~(Ro/R, )'&2.5. Notice

This equation means that if we could increase R,
without changing g(r) in the fluid, we would find that
R,«has a minimum at (R,/R, )'= v=2. 2. For
smaller R, (larger r), R,«actually decreases as
R, increases; everything else remains constant.
Thus this result affords a possible basis for an
explanation of the observed decrease of R,«with
pressure. However, before pursuing the point it
is desirable to have a clearer idea of the physical
reasons for this behavior than the numerical cal-
culation affords us.

Fortunately, it is possible to give an analytic de-
rivation of Eq. (15) which does shed light on the
physical mechanism involved. " Rather than trying
to solve the Navier-Stokes equations for the
velocity field of the moving ion, we start instead
from the expression for the rate of energy dis-
sipation in the fluid, "
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that in this domain it apparently does not mat, ter
whether we use Eq. (12) or Eq. (13) to extrapolate
the viscosity. Thus the uncertainty introduced by

extrapolating the viscosity may not be serious.
By examining Eq. (17), we can now see what

governs the drag on the ion in the nonuniform fluid.
The density of energy dissipation [the integrand of

Eq. (17)j depends on both the viscosity and the de-
rivatives of the velocity. In the real fluid, when g
becomes large at small v, it tends to damp grad-
ients in the velocity field, keeping the energy
dissipation low. That effect is not taken into ac-
count in the approximation we have made, which

is the reason the result fails at large (R„/R,)'.
Thus, in this approximation, as R, grows, it
freezes out regions of very high energy dissipa-
tion, so that the drag force itself can actually ap-
pear to decrease. Even when this solution is valid,
however, R,«can decrease as R, increases. In
a realistic solution, the integrand of Eq. (17}goes
to zero both at large r and at small r (where the
motion is frozen out, either by rising viscosity or
by actual freezing of the sphere). Clearly, there is
a region of maximum energy dissipation in be-
tween, and it is not hard to guess that this must
occur around v=R, . Thus, as R, increases to-
wards R„ it tends to freeze out regions of rela-
tively high dissipation and this mechanism can
actually cause R,f f to decrease.

The arguments we have given here tend to in-
dicate that the hydrodynamic solutions at hand are
capable of giving a qualitative, and even a fairly
good quantitative account of the observations under
discussion. Accordingly, we have tried to fit the
data using the following analysis: using the best
available data for the liquid and solid equations of
state, we calculated R, (P) at each of the tempera-
tures for which we have data. The calculation fol-
lows that outlined in Sec. III, except that incom-
pressibility is not assumed. The surface tension
a is used as a free parameter. The result yields
values of R, which fall within the domain of Eqs.
(14} and (15), and those are used to fit the ob-
served behavior of R,«near melting at each tem-
perature by choosing an appropriate value of o'.

It was found, for example, that at 1.8 K, 0=0.043
ergs/cm' and at 1.95 K, @=0.105 ergs/cm'. We
do not consider this outcome to be satisfactory.

It was because we were disturbed that o appeared
to vary (less rapidly! ) with temperature that the
present measurements were undertaken in the
first place.

To summarize this discussion, then, we have
identified a possible qualitative explanation for
why R,«might decrease with increasing pressure
under certain conditions, but the explanation does
not give a satisfactory quantitative account of the
observations, and we therefore do not believe it
to be well established. In particular, if o is ap-
proximately independent of temperature as one
would expect, R,«would not be expected to de-
crease (or remain constant) with increa, sing pres-
sure just near melting at each of the temperatures
studied as we have observed it to do. To study
the question further will require measurements of

q and p. over a larger portion of the P, T plane in
order to determine whether R,«at least behaves
qualitatively as the appropriate hydrodynamic
calculation predicts over a larger domain.

The questions that arise in connection with this
work are important. Does an ion cause a solid
sphere to condense about itself? This question
may be related to the mechanism of nucleation
of solidification of the bulk. " It is possible that
further light may be thrown on it by studies of
impurity ions in helium. " Can the behavior of
ions be studied using continuum thermodynamics
and hydrodynamics with bulk parameters? Can
the otherwise inaccessible solid-liquid surface
tension be deduced from the behavior of ions&
Can we learn more about the properties of the
supercooled liquid by studying ions~ We think
the present work has opened or reopened these
questions in part due to the precision of the mea-
surements, which has made possible comparisons
which were not possible before.
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