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The Metropolis Monte Carlo method is used to sample the square of an antisymmetric wave function

composed of a product of a Jastrow wave function and a number of Slater determinants. %e calculate
variational energies for 'He and several models of neutron matter. The first-order Wu-Feenberg expansion is

shown always to underestimate the energy, sometimes seriously. The phase diagram for ground-state Yukawa

matter is determined. There is a class of Yukawa potentials which do not lead to a crystal phase at any

density.

I. INTRODUCTION

E = dR P*(R}Hg(R) « ls(R) I

where H is the Hamiltonian

By the variational principle, this energy is an
upper bound to the ground-state energy E, of the
Schrodinger equation

Hpo=E0$0, E ~ED .

In recent years, there have been many Monte
Carlo simulations of Bose systems. The simplest
of these uses the Metropolis method from classi-
cal statistical mechanics to sample a variational
Jastrow wave function and to find an upper bound
to the ground-state energy. " Recently, a more
complex Monte Carlo algorithm has been used to
find exact ground-state properties. Among the
Bose systems that have been studied with this
method are hard sphere, 3 Yukawa~ (a crude model
of neutron matter), and Lennard-Jones' (a good
model of 'He). To our knowledge there have been
no equivalent simulations of Fermi systems with
more than four particles.

In this paper, we will show how the usual Metro-
polis method can be applied to sample the square
of an antisymmetric wave function, and how the
physical properties of the system can be calcu-
lated. We will base our variational calculations
on wave function of the form

g(r)=4 (r)D,

where ~I)~ is a Jastrow or product wave function
and D is a product of Slater determinants of single-
particle wave functions. The trial wave function
is adjusted to minimize the variational energy

Other ground-state properties are also computed;
their values are not stationary but are expected to
be representative of the ground state if the trial
wave function is good.

Direct sampling of the A'-particle probability
yields a rigorous upper bound to the energy; all
other methods ultimately involve an expansion,
and only the lowest-order terms can be evaluated.
Although the systems we study here are quite sim-
ple, Monte Carlo methods lend themselves easily
to more complex problems. In this paper we are
only concerned with homogeneous systems of
identical particles. With the same method one
can simulate nonhomogeneous systems consisting
of mixtures of particles with different masses,
statistics, and interparticle potentials.

This paper is divided into two parts. First, we
discuss the Monte Carlo algorithm: how one sam-
ples the square of a wave function of the form of
Eq. (1) efficiently; how one calculates other prop-
erties of the system; and how one can best mini-
mize the energy. In the second part, we apply to
method to several physical problems: 'He, sev-
eral different models of neutron matter and
Yukawa particles. The energies of these Fermi
systems have been calculated by other authors
using the Wu-Feenberg "perturbation" expansion.
Recently, "however, doubts have been raised as
to whether this expansion converges quickly enough
to be of use in calculating the equation of state.
Our calculations show that this approximation al-
ways underestimates the energy because the struc-
ture function is not accurately computed. W'e have
computed the energies of both fluid and crystalline
phases for a wide range of Yukawa potentials. The
Yukawa system can be characterized by the single
de Boer parameter A~=h/o(m ~)'i'. Our calcula-
tions show that if A*)0.72 then there is no crystal
phase at any density. We have recently found a
similar result for boson systems.
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d, =det(D;f), Dff =4f ((r, s),) . (6)

At this point we do not need to specify u(r), y (r),
or 4, as nothing in the algorithm depends on
special properties, except that they be readily
computable.

B. Metropolis algorithm

The method of sampling the wave function is
identical to that used for classical ensembles. '
The only complication that arises is the evalua-
tion of the determinant. Initial coordinates are
chosen for each particle; typically they are either
on a lattice or are a result of a previous Monte
Carlo calculation. The particles are then moved
one by one to new trial positions. Suppose particle
1 is being moved. Then its new trial position r„
is

mew= r1+ ~

where $ is a random vector uniformly distributed
in a cube of side 6 centered at the origin. The
new position for particle 1 is accepted with a
probability equal to

II. SAMPLING THE TRIAL WAVE FUNCTION

A. Wave function

In this paper, we are concerned with a homo-
geneous system of N identical particles in three
dimensions with g spin states for each spatial
state. The particles are placed in a cube with
periodic boundary conditions in all three direc-
tions. We assume that in the ground state the g
spin states are equally populated. Let the co-
ordinates of the particles be (r, s}f where s is the
spin coordinate, 1 ~s~g, and 1 ~i I=N—/g The. n
we assume the wave function is of the form

N N

d(R)= e(e-L x(,) —g ('e))
)=1 i&/

x lj d, ((r, s},.), (5
s=1

where r(r) is the single-particle pseudopotential,
u(r} is the two-particle pseudopotential, and d, is
a determinant

The presence of nodes in the wave function will not
affect the ergodicity of the random walk; the value
of the step size b, is large enough so the walk can
easily jump over the nodal surface. In fact this is
observed to happen frequently.

The expectation value of any operator E is sim-
ply the average value of the operator evaluated for
the coordinates of the random walk with M moves

(R) =f dR 0 (R)R(R)d(R)

The most effective way to handle this wave func-
tion is to calculate the inverses of the matrices
D' at the beginning of the random walk and then
update them as the particles are moved. This in-
verse is needed to compute the Metropolis ac-
ceptance ratio [Eq. (8)] and the variational energy.
Let D' be the inverse of the transpose of D' of Eq.
(6). Then, by definition,

I

Q DffD»f =«» . (10)
j =1

Note that the first index always represents an
orbital, the second a particle. Now the deter-
minant of a matrix is equal to the scalar product
of any column (row) of the matrix with the same
column (row) of the matrix of cofactors. Let par-
ticle 1 (with spin s) be moved to a new trial posi-
tion [E(l. (I)]. Since only one particle is being
moved; only one column of the matrix D' will
change, and the required ratio of wave functions
is easily evaluated. Since D' is proportional to
the matrix of cofactors, the ratio of determinants
js

I
D&1@'y &new =a' )

and

4(R')
4(It)

, =eexe g (r'„)- (r„)).

If the move is accepted all of the elements of D'
need to be changed.

I'= min[1,
~
P(r„)/g(r) ~'] . (8) Ds Df;/q, Ri =1,

(12)
If the absolute value of the wave function at the
new position is larger than at the old, the new co-
ordinates are automatically accepted. This ran-
dom walk is Markovian and by the usual argument'
the set of coordinates generated by a sufficiently
long calculation is an unbiased sample drawn from
the probability distribution

/q(It) /' dR [y(It) f' .

I Ds
Ds Ds '(e»f @»(mew}

y4 y1~
g

It is easy to check that the new inverse matrix
satisfies E(l. (10).

C. Energy estimation

The real utility of the inverse matrices D' is in
computing the average energy for a given trial
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wave function. Since the particles are identical
we need only consider the average energy of the
first particle:

(13}Ex = Vz+ 2Ty Ey

where V, is the average potential energy,

j -"2

and F'„ the mean square "pseudoforce, "
(14)

52
(V lng)'

2m

h2
v, u(r„) —v., ~(r, )

I 2

+ Djslvle rl
j= 1

The average kinetic energy is the difference of
two terms, 2T, and E'„where

1 82 h2
(16)

There are several "Green's relations" which can
be used to convert these averages to other forms.
For example it is easy to show that the kinetic
energy is equal to the mean square pseudoforce, '

pie Bose and Fermi problems is from 4 to 20
times larger than that of the direct form. To
understand this consider the ideal gas. The direct
form will give the correct answer at each step of
the random walk, while the transformed form (19)
is unbounded because the pseudoforce diverges at
a nodal surface.

In a Bose calculation it is convenient to eliminate
the pseudoforce from the energy, then the energy
is an integral over the radial-distribution function
g(r). Hence, only g(r) need be calculated by the
Monte Carlo simulation and scaling' can then re-
duce the number of simulations needed to find the
variational minima at different densities. The
pseudoforce cannot be conveniently eliminated with
a determinantal wave function, and we need to find
other methods for quickly finding the variational
minima. The additional computation needed to
calculate the forces (about 20%%uo in a Bose problem)
is well worth the increased accuracy and reliability
of the resulting energy. We use the two Green's
relations as a check on convergence of the random
walk, since they will be satisfied only if the entire
configuration space is adequately sampled.

The pressure is computed from the virial theo-
rem

&i =+& ~ (17} +4 (22)

This relation is usually used to eliminate the
pseudoforce in the energy (13). Another rela-
tionship is due to Feynmann'

, l„(d)~2 ( )~' =0 (16)

Using this we can transform the average energy to

It is known" that the virial pressure will be the
same as the thermodynamic pressure (-dE/dv)
if the energies are evaluated at the variational
minima. The consistency of these two quantities
implies nothing about the closeness of the wave
function to the ground state.

Ei =Em+Em (19} D. Energy minimization

where E~ is the boson energy"

h2z, =v, ~
2 g v', (~„.)+v x(r)))', ,

ja2
g2

&(v, »4,}), (20)

and ED is the antisymmetric part of the pseudo-
force

Z'= D', ve r (21)

However, there is a good reason not to use
these transformed formulas for the energy. The
variance of the original form [Eq. (13)] goes to
zero as the wave function approaches an eigen-
state of the Hamiltonian (This is strictly true only
for the total energy ZP, E,). We have found that
the variance of the transformed energies for sim-

We have used two methods to facilitate the search
for the parameters of the wave function that give
the minimum energy. These methods are different
ways of finding the change in energy for a small
change of parameters. The first method uses the
technique of correlated sampling to find the effect
of a small change of the variational parameters.
One begins with the configurations generated by
the Monte Carlo random walk for the wave function

~
g~D ~'. Suppose we want to find the energy for the

different Jastrow function g~, using these con-
figurations. To do this use E(l. (13) with relation-
ship (17) to eliminate the pseudoforce; the expres-
sions for potential energy and the energy from the
Slater determinant are unchanged. Use
) gz (R)/$~(R) (' as weights to calculate these energies.
The variance of the relative energy E~, -E~ is
much less than of the energy alone since the two
energies are highly correlated. The weights must
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be of the same order of magnitude if the answer
is to be reliable so this method can be used only
if $~, is near g~.

The second method involves calculating the
derivative of the wave function with respect to a
parameter n. Since the Hamiltonian H is Her-
mitian, it is easy to show that

' = (T(R)E,(R)) —(T(R})&E, ,(R)),

(,( x ()=("((——„)
x((1 —5, , )5'(x, —r, )5 (x —r )) . (27)

The total-correlation function is simply g(r) =g~(r)
+g~((). For an infinite, homogeneous, isotropic
system this function depends only on r=

~
x, —x, ~

and will go to a constant for large r.
The structure functions are Fourier transf orms

of the correlation functions. Let
where T and E,(R) are defined by

T(R) =2din((R)/da, E,(R) =H, (I)/(I) . (24)

N

~ fir ~ r)
SOf

i =1
(28)

If ( were the true ground state, then E(R) would be
spatially constant, and the estimate of dE/dn wouid
have zero variance. Hence for good wave functions
we expect this estimate of the derivative to be ac-
curate. For example, suppose the pseudopotential
(((r) is proportional to ()(. Then T= —2(((r)/a and
the derivative of the energy with respect to n is
the correlation between the total system energy
and the pseudopotential. In this case, we can see
that the variance of the estimate of the derivative
is proportional to the number of particles for a
large system. We can write the derivative as

1=1+p d3re'" ' «r (28)

and

Sv(k) = ~ Q &p"*p", (1 —5,,~))
1 2

The structure functions for parallel and antiparal-
lel spins are then given by

1
S~(k }= —P &

p'(*p'2 5, )
Sy+

' = —2Q &u(r, ,)E,(R))

1= p d'r gU(r) —1+— (3o)

+2+ &u(r(, )}&E,(r)}. (25)

E. Correlation functions

In this section, we define the two-particle cor-
relation function, the structure function, the sin-
gle-particle density matrix and the momentum-
distribution function. The two-particle correlation
function is the probability density that two par-
ticles will be separated by a certain distance. For
a spin system the probability depends on the par-
ticles's relative spin. If r,o, and r&a& are the
spatial and spin coordinates of two particles then
the correlation function g~(r) for parallel spins is

The contribution to the average comes mainly
from pairs (i, j) close to particle 1, the particle
singled out in E(I. (25). All of the other pairs con-
tribute to the variance but not to the average value.
Hence, in order to make this estimate accurate
for a large system, these other pairs must be ex-
cluded from the sum.

The usual structure function S(k} is the sum of
S~(k) and S~(k). In our computations we find the
structure functions both by Fourier transforms of
the g(r) is and directly from the momentum co-

S
ordinates pg.

The sing1. e-particle density matrix is a measure
of the change in the wave function if a particle is
displaced,

n(x„x,) = (5'(r, —x,)f(x,)/P(r )} (. (31)

(k)=p f d're" ' (r) . (32)

In a fermion system, because of the Pauli princi-
ple, there is no momentum condensate, and n must
go to zero for large ~x( —x, ~. For an infinite ho-
mogeneous system, n will depend only on r= x, —x,
and in magnitude must be less than or equal to
unity. " In contrast to a Bose system n(x„x2) can
be negative.

The Fourier transform of this function is the
probability density that a particle has momentum

1g~(x„x,) = V 1 ——

x&5. .5'(x, —r()5'(x, —r,)) .
i j

The correlation function g~(r) for antiparallel
spins is

(28)

Assume that the coordinates of the Monte Carlo
random walk and the inverse matrix D' have been
saved. Then we calculate these functions by ran-
domly placing a new coordinate in the simulation
cube. ' The new particle at r' is assumed to have
been displaced from one of the old particles (say
r,). Then
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N I
exp zg f' 1 l R Kl f') Dg4

f =2 j=1

(33)

The momentum density can be calcul. ated either as
the Fourier transform of n(r) or directly as

n(k)=(e" "~ "'P(r')/g(r, )) . (34)

F. Computational considerations

It is often stated" that it is not computationally
feasible to sample the square of a fully antisym-
metric wave function for a reasonably large num-
ber of particles —of the order of 100. Indeed a
casual comparison of the storage and operational
requirements of a Fermi and a Bose simulation
suggests that a fermion computation will be much
more costly. Storing the inverse matrix will re-
quire an additional N'/g numbers. If a move is ac-
cepted, the number of operations needed to update
this matrix is about 21'. In an equivalent Bose cal-
culation without neighbor tables, the amount of

storage and the number of operations needed at
each step of the random walk is proportional to S.
If the potential is short range, then nearest neigh-
bor tables can be used and the number of opera-
tions is proportional to the number of nearest
neighbors. For such short-range systems it is
possible to conduct simulations with several
thousand particles.

While at the present time it would be difficult to
simulate a Fermi system with thousands of par-
ticles, we have found it possible to do a system
with over 100 particles. For such a system, the
comparisons of computer time are deceptive since
the operations involved in updating the inverse ma-
trix are very simple and on most computers can be
performed very quickly; computing the boson part
of the wave function involves calculating periodic
distances in three dimensions, and finding the
pseudopotential and pseudoforce. We find that we
can simulate a 114 particle Fermi system in only
twice the time as a Bose system. '4 Much larger
systems will require both a larger computer
memory and more operations. With the present
rate of computer evolution it will be possible to
simulate much larger systems in the near future.
The moderately large systems we have considered
appear to be good representations of an infinite
medium for many problems. In most cases we have
estimated the size effect by performing calcula-
tion for systems having different N.

In the Metropolis algorithm, the step size 4 is a
free parameter. Usually it is continually adjusted

so that the acceptance ratio will be 2. But for a
fermion calculation, updating the inverse only
needs to be done when a move is accepted, so that
one can speed up the calculation by increasing 6
and thus decreasing the acceptance ratio to the
range 10% to 30%. The information calculated for
the rejected moves is not discarded. Suppose that

f(R) is a function to be averaged over all con-
figurations. If R„„is a new set of trial coordi-
nates, and P is the probability of accepting this
new move from Eq. (8), then it is easy to show

that the average value off can be obtained by
averaging the "expected" value of f,

(f ) = (Pf(R„„)+ (I —P)f(R„~)) . (35)

III. APPLICATIONS

The remainder of this paper will contain the re-
sults of the Monte Carlo algorithm applied to vari-
ous physical systems with different potentials,
Table I. We start by describing the various wave
functions we have used. Then we take up each of
the systems in Table I, present the Monte Carlo
results, and discuss their relationship with pre-
vious calculations.

The advantage of using this form is that some in-
formation about unlikely moves appears in the final
answer, and hence the variance of f is lowered. As
an example, the energy E(R) diverges at a nodal
surface, but since P goes to zero there [ and PF. (R)
goes to zero] the expected value is well behaved.
The method of expected values is empl. oyed for all
quantities which are averaged over the random
walk-for example the energies, the structure func-
tion, the pressure. Coupled with the low-ac-
ceptance ratio this increases the efficiency of the
computer program.

The propagation of round-off errors in the large
inverse matrices D' could be a problem. However
the Slater matrices D' are well conditioned since
there is usually one element in each row and
column close to unity, large density fluctuations
are ruled out by the Jastrow wave function. Also
a move near a node of the determinant, where the
numerical error would be the largest, is rarely
accepted. We have found that numerical inaccuracy
is not a problem if arithmetic is done with 14 deci-
mal digits, even when the matrices are updated 10'
times. "

We have also investigated two other Monte Carlo
techniques for calculating the energy of a de-
terminantal wave function. They did not prove as
satisfactory as the above method. The interested
reader can find descriptions of them in Appendix
A.
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TABLE I. Potentials. Various interparticle potentials used. Here r is the radial separation and o the spin. A is
the "quantumness" parameter. For the Lennard-Jones potential it is defined as A*= [h/o{me) ]. For a potential which
behaves as r, it is defined by A*=[hpe/{me) ], where e and q p, e are the coefficients of the terms in r and r in the
expansion of the potential about r = 0.

Name

Lennard-Jones
Reid soft core

Reid 2p3

Yukawa
Homework

Potential

4m[(a/r) —(o/r)6] c =10.22'K o =2.556 A.

{3.49f- 933.5f4+ 4152.1f )/p. r; (o& =o&); f=e ""
(-3.49f—1292f4+ 2076f~+ 3242f)/pr (o & o ). p= 0.7/fm

P = ( 10.463f+ 105.468f 3187.8f + 9924.3f )/prf =exp(- p, r)
p, =0.71 fm

e exp(- pr)lr
V = e exp(- p, r)/r; e =9263.1 meV fm; p, =4.9/fm

3.08 ( He)
1.20(o.; & o;)
p, = 5.09
0.89
pe =4.69
h p/(m~)'~'
0.93

Symbol

Pl
P2

P3
P4

P5

A. Wave functions

All of the wave functions used in our calculations
have the form of Eq. (5). The various pseudopoten-
tials and orbitals we used are shown in Table II.
In most cases they are identical in form to ones
used for the corresponding Bose problem.

We have used two different types of single-par-
ticle orbitals. For a liquid the orbitals were the
plane waves of an ideal Fermi gas. The periodic
boundary conditions restrict the plane waves to
those with k=2wn/L, where n is an integer vector
For the ground state, 4 -„can be assumed to be
real; sines and cosines were used. In order for
the trial wave function to have all of the sym-
metries of the true ground state, we chose the
particle number N =gI so that a complete shell in
k space would be filled. That is, I was chosen
from the following sequence of numbers: 1, 7, 19,
27, 33, 57, . . . .

For a solid, the orbitals were Gaussians cen-
tered at a set of lattice sites. If the coordinates of

a particle are r and s, its orbitals were
exp[ —c(r —R;)'] where R; are the coordinates
of a simple cubic sublattice. Each spin species
has its own sublattice. For g=2, the total lattice
is bcc with an antiferromagnetic ordering. If our
simulationbox is a cube, and g=2, we are re-
stricted to 16, 54, or 128 particles.

A single-particle pseudopotential y(r) (W3) was
also used to localize the particles on lattice sites.
This symmetric function was then multiplied by a
Slater determinant of plane waves so that a fuBy
antisymmetric function was obtained. This type of
wave function, called "charge-density waves, " has
been proposed" as the ground state of "jellium. "
However for the soft-core Yukawa potentials the
Slater determinant of Gaussian orbitals combines
the energy of antisymmetrization and the energy
of localization thus saving some energy. It may be
that a more complicated y(r), still having the
periodicity of the lattice, would be a good ground-
state wave function for some soft-core system.

The two-particle pseudopotentials u(r) are also

TABLE II. Trial wave functions used in our calculations.

Component Name Function Parameters Restrictions Symbol

y„(r) or X(r„)

X(r)

plane wave

Gaussian

density wave

Mc Millan

Yukawa

sine

2 7Tcos —n ~ x
L

~ 2 m
sin —n- x

L

exp[-c(r —r„) ]

C a~.r

(bolr)

~~-~"(1 ~-"»)lr

-2 in[sin(7rr/2b)]r & b

0 r&b

C-
k

bm
m=4, 5

A, B,D

L =box edge
n = integer vector

2n/L In I ~kr

r„ lattice vector
G(L/2) » 1

k a reciprocal-
lattice of crystal

! These were smoothed
{see text)

!
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bl II. The cutoff method was used inshown in Ta e
calculating all interparticle averages; i e is-
tance between two particles was greater than
—,'L that pair was disregarded. It wast was found for the
systems stu ie e w-d' d th t o-particle correlation func-
tion (r} had reached its asymptotic constant value
at —,'L, hence a tail correction could e u

cu aing el t' the potential energy and the pressure for
red so thatr& ,'L. T—he pseudopotential u(r) was alters

it went smoo y o zthl t ero at -'L. The wave function
and i s irst f t derivative must be continuous in order
for the energy to be a rigorous upper boun .
u's of Table II were smoothed by finding a point
r'( ,'L suc-h that the polynomial up(r —L/2) p+ u,

matched ujr~ up o ant and including the second deriva-
tive at r'. Then, the altered pseudopotential u'(r)
we actually used was

u(r) —u„r(r',
( 1u'(r)= u, (r —,L)', r—'~r~ ,L, —

I actice because of the continuity of the
ed.matching, the pseudopotential was little change .

B. Ideal Fermi gas

As a test of our Monte Carlo algorithm, we sam-
pled the square of the wave function for an ideal
Fermi gas: the single-particle orbitals were plane
waves, the pseudopotential was zero. The direct
energy [Ecl. (13}] is identically correct, but we

f' d the Green's relation Eq. (17) and com-
puted the two-particle correlation function, an e
structure function. These agreed with the known
results within statistical errors.

The ideal Bose ground state is a trivial system
with all of the particles in the zero-momentum
state, and for this reason it shows no size depen-

O. I4-

o. ii-

0.08-
E{I)-E{m)

E{m)
0.05—

0.02—

-0.04—

-0.07-

-0. I 0
0

I I

50 60

FIG. l. Energy of an ideal
I the number of particles in

I II I

90 I 20 150 !80
I

Fermi gas as a function of
a spin state.

dence. On the other hand the ideal Fermi gas does
have size dependence since as the number of par-
ticles increases, more and more shells in mo-
mentum space are filled. For this reason one
might expect the size dependence of any Fermi
system to e grea ert b ater than that of the corresponding
Bose system. Figure 1 shows the energy of the
ideal Fermi gas, in periodic boundary conditions,
as a function of the number of particles.

C. Hehum 3

Sch'ff d deerlet' have done a variational calcula-
tion for He using Lennard-Jones potential (Pl) in
Table 1, and the McMillan pseudopotential (W4) in
Table II. They accounted for the Fermi statistics

3 d fferent densities and various particle numnumbers. NTABLE III. Results of Monte Carlo co pm utation for He at three x eren
V is the otential energy, TD is the Slater kinetic ene-n r-are the Jastrow parameters, is t e po en xa e

divided

1s the number of particles, 5 and c a
all in 'K). y is Lindemann s ra xoa m . ' ' t' (rms deviation from a lattice sitels eP ' th pressure, and E is the energy a

f t metric or antisymme r~c wave function respectively. L and Sby nearest-neighbor distance). B and F re er o a symm
refer to a aquil 'd or solid wave function, respectively.

System Density
He

BL
BL
FL
FL
FL
BL
FL
BS
F S
F S

0.237
0.237
0.237
0.237
0.237
0.414
0.414
0.427
0.427
0.427

54
256

38
54

114
114
114
864

54
128

1.13
1.13
1.13
1.13
1.13
1.1.45
1.145
1.092
1.092
1.092

0
0
0
0
0
0
0
2

2
2

-11.50
11.52

-11.59 + 0.15
-11.39 +0.05

11.55+ 0.03
21.34 y0. 10

-21.35 +0.13
-22.3 + 0.3

22.0
-22.1 +0.2

0,0
0.0
2.34
2.16
2.26
0
3.20
(7.386)
7.20
7.16

0.31
0.17

-0.29 +0.15
0.18 +0.05
0.16+ 0.05
8.6 +0.4
9.0 +0.4
4.6
7.66
7.9 +0.5

-2.95 +0.02
2.82 +0.03
1.34 +0.07

—1.31 +0.03
-1.20 + 0.03

0.437 + 0.18
2.84 +0.06
1.07 +0.3
1.57 + 0.08
1.38 + 0.1

0.297
0.324
0.322
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by using the Wu-Feenberg (WF) expansion" up to
the second order. We have repeated their calcula-
tion at the density at which they obtained zero pres-
sure (p=0.237/o') using exactly the same Jastrow
parameters (m = 5, b = 1.13) for a 54 and for a 25d for a 256
particle Bose system, and for 38, 54, an d 114
particle Fermi systems. The results are shown

in Table III. The Bose energies are in agreement
with theirs, indicating that the size dependence of

the energy is less than 0.1 'K. The fermion re-
sults are in fair agreement, the first-order energy
of the Wu-Feenberg expansion being somewhat
closer to our results than the second order. The
change in energy in going from 54 to 114 particles
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PEG. 2. (a) Radial-distribution functions of He, for like spins gz(r), unlike spins, gv(r) and tota] g(r). r is in units
upper curve g(r) middle curve g~, lower gl. (b) Structure functions S(k), S (k) and

S k for He; k is in units of 0 Solid curve S(k), dashed curve S&, lower dashed Sz. Density is p.237/0 . (c) Single-
7/ (d) Momentum-distribution function,particle density matrix, n(r), for 3He; r is in units of 0. Density is p.23, 0 .

n(k). The rectangle is the i ea -gas is ri u ionh d l- d t 'b t for spin- —' fermions. The points are taken from our simulation o He.
The two arrows represent the rms values of k for the ideal gas and for 3He. k is in units of ~ . n (k) is normalized so
that f dtkn(k) =1. Density is 0.237/et.
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is about 0.1 K; judging from the Bose system,
these two energies probably bracket the infinite
system variational energy. Figure 2(a} shows the
three distribution functions for this liquid

(g, gU, g~). Note that the nearest neighbors to a
given particle are usually particles of the opposite
spin. The three-structure functions (S, Sc, Sz},
are given in Fig. 2(b), the single-particle density
matrix n(r), in Fig. 2(c). Figure 2(d) shows the
momentum-distribution function n(k). The points
are direct evaluations of n(k) along several direc-
tions. " The effect of the Jastrow wavefunction is
to excite 50% of the particles above the Fermi
level, the sharp edge at ~F remains —a much
larger system would be needed to see this func-
tion in detail. The rms value of k (proportional to
the total kinetic energy) is 2.7/o (compare this to
1.4/o without the Sastrow factor. ) Pandharipande
and Bethe" have used a variational method based
on the hypernetted chain (HNC) equation to cal-
culate the energy of this problem. The antisym-
metry is again handled by a permutation expansion.
For a sphericaliy symmetric Jastrow factor u(r),
they get -2.99 'K (Bose statistics) and -1.30 K
(Fermi statistics). However when they allow the
correlation function to depend on relative mo-
mentum and spin, they get a lower energy
(-1.97 K). When we choose a pseudopotential
which depends on the relative spin of the two par-
ticles

u, , (r(,) =u(r(, , b) [ +1,6, (P —1)], (37)

we find no significant lowering of the energy (less
than 0.1 'K). This is true because the determinants
have already separated like spins and the energy
is insensitive to the pseudopotential between them.

Table III also contains our results for both Bose
and Fermi liquid 'He at the crystalization density
(p=0.414/o'). Here, the first-order WF approxi-
mation underestimates the energy by 1.1 K. This
inaccuracy will effect the published estimates' of
the liquid-solid transition density from variational
calculations, pushing it to lower densities. "

Hanson and Levesque" have calculated the en-
ergy of solid bcc 'He using a Jastrow function with
Qaussian localization but without antisymmetriza-
tion. We have repeated this calculated with identi-
cal parameters (p = 0.427/o', b = 1.092, c = 2.0),
changing the product of Qaussians to a determinant
of Qaussians. The results are in Table III. The
energies are in good agreement; our Fermi energy
is two standard deviations higher than theirs,
(about 0.3 K). The density is quite close to the
melting density but the particles are still localized.
A pair of particles interchanged lattice sites once
in 2 x 10' steps of the random walk. Lindeman's
ratio y, defined as the ratio of rms deviation from

a lattice site to the nearest-neighbor distance, is
0.32. Both this ratio and the pressure are larger
than the values of Hansen and Levesque. It ap-
pears that the pressure and y are sensitive to the
antisymmetrization of the Gaussian orbitals.

D. Neutron matter

The other systems that we have studied have
soft-core potentials, of the type used to model
neutron and nuclear matter. Recently there have
been a number of calculations concerning the equa-
tion of state and solidification of neutron matter in
the interior of neutron stars. Different techniques
yield widely varying values for the solidification
density of neutron matter, "from a density of 0.3
neutrons/F' to no solidification at all." For a
review, see Baym. ~ The calculations we will de-
scribe are not realistic models of neutron matter
since the potential between neutrons is not ac-
curately known for small separations, and a non-
relativistic treatment is clearly not adequate if the
kinetic energy is a significant fraction of the rest
mass. Nonetheless, accurate variational calcula-
tions are likely to provide some guidelines for the
convergence of the expansions that are used in other
treatments of this problem.

E. Nosanow and parish model of neutron matter

Nosanow and Parish" have assumed that the po-
tential between two neutrons in a singlet state is
the Reid soft core 'S„ in a triplet state they use
the central part of the 'P, potential. They have
done a Monte Carlo calculation with a symmetric
wavefunction and two pseudopotentials: the Mc-
Millan function with m = 4 (W4), and the sine func-
tion (W6). For the solid phase they used the Gaus-
sian y((), (W2). They used the WF expansion up to
first order in the liquid phase. In the solid phase
they used an expansion based on the van Kampen
cluster method. ' A liquid-solid phase transition
was found at a density of 0.3 to 0.45 neutrons/F3.

To test the convergence of the WF expansion we
have repeated their calculation at one density, 0.3
neutrons/F~. The potential is P2 in Table 1. Using
the same pseudopotentials we find the results given
in Table IV. Since like spins must be in a triplet
state, they interact with a Reid soft core 'P, . On
the other hand, it is equally likely for unlike spins
to be in either a triplet or singlet state; they there-
fore interact with the average of the 'S, and 'P, po-
tentials. We find that the WF expansion consistent-
ly underestimates the energy by 15 to 30 MeV. The
error is greatest for the soft sine Jastrow func-
tion (W6) where most of the error comes from the
potential energy term. Later, it will be shown that
this is a general characteristic of the WF expan-
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TABLE IV. Results for the Monte Carlo simulation for potential P2, at a density p=0.3
neutrons/F3 in both the liquid and solid phase. The results marked MC are ours, those
marked WF are from Ref. 12 and calculated using the Wu-Fecnberg expansion. N is the num-
ber of particles b, c,A, B,D are variational parameters (see Table II). V, TJ, TD, and E are
the various energies in MeV. y is Lindemann s ratio.

Wave
Method function N TD

MC
MC
WF
MC
MC
WF
MC
WF

MC

w4
W4

W4

W4- W2

W4- W2

W4- W2

w6
w6

54
114

54
128

54

0.425
0.425
0.425
0,45
0.45
0.45
1.11
1.11
A
2.1

0
0
0
0.40
0.40
0.40
0
0

B D
1.6 0.5

—21.7
—21.3
—38.0
—25,7
—26.4
—55.7
—29.3
—.41.4

28.5
28.4
25.9
30.8
30.2
27.6
39.2
27.6

48.4
47.9
53.1
44.4
62.9
67.3
57.6
50.8

55.2 +0.8
55.0 +0.6
41.0
49.5 +1
66.7 +0.6
39.2
67.5 +0.6
35.3

—26.1 30.3 45.5 49.7 + 0.8

0.555
0.517

sion. Table IV also contains results obtained for
the Nosanow-Parish model with the Yukawa trial
function (W5}. The energy is only slightly lower,
indicating that the energy is not too sensitive to
the two-body trial function. Note that the energy
of the solid increases by 15 MeV when the system
is changed from 54 particles to 128 particles.
This is a result of the discontinuity of the first
derivative in the Gaussian orbital at the edge of
the box. To get a rigorous upper bound one must
smooth the orbitals as was done with the pseudo-
potential. The localization of this crystal is very
weak. Lindemann's ratio is 0.517. For a homo-
genous liquid it would be 0 ~ 577." It is highly un-
likely that a crystal with this localization would be
stable. Indeed, we find that this crystal wave func-
tion has a higher energy than the liquid.

F. Spin-independent Reid potential ('S,—'D, )

Recently, Pandharipande et aL" have compared
the hypernetted chain variational (HNCV) method

with the Brueckner-Bethe-Goldstone (BBG) ex-
pansion for several nuclear matter potentials.
Surprisingly, the HNCV method gives energies
lower by about 10 MeV at nuclear matter densities,
for two different Reid potentials. This disagree-
ment is quite serious since it casts doubt on the
widely accepted BBG method of finding the ground
state of nuclei, as well as the conventional models
of two particle nucleon interaction. Using the
Yukawa-Jastrow function (W5} we have calculated
the variational energy of one of these potentials,
the central part of the Reid ('S, —'D, ), at three
densities in the liquid state for bosons (labeled
g= ~), neutron matter (g= 2) and symmetric nu-
clear matter (g=4). The variational parameters
we used and the results are shown in Table V.

The Bose fluid calculations made with HNCV are
indistinguishable from our Monte Carlo results
over this density range, a result that has been
noted for other Bose fluids. '" The lowest-order-
Brueckner-theory (LOBT) energy2' is quite good
for densities less than 0.4 neutrons/F'. Above

TABLE V. The result of the Monte Carlo simulation for potential P3 at three densities (in
neutron/F ) in the fluid phase. The wave function was Yukawa (W5), N is number of particles,
andA, B,D are the variational parameters (in F). V, TJ, TD, and E are the various energies
in MeV. P is the pressure and EHNc is from Ref. 18.

P g + A B D EHNC

0.182
0.182
0 ~ 182
0.386
0.386
0.386
0.822
0.822
0 ~ 822

54 1 5 14 0 15
2 54 17 16 01
4 108 17 16 01

54 2 1 7 0 08
2 54 2 1 7 0 08
4 108 2 1.7 0.08

54 33 27 025
2 54 33 27 025
4 108 3 3 2 7 0 25

—41.0
-44.5
—42.3
—93.1
-98.1.

-94.0
—150
—160.0
—147

22.1
22.3
23.08
62.8
60.9
61.9
14.9

140.0
141.1

0
31.3
21.34

0
57.12
34.4

0
80
60.1

—2.4
—0.6
-0.2
—2.6

6.6
4.7

100
129
139

—17.3

—1.7
-28.7

—6.4
0.0

22.0

—17.7 +1
12 + 0.4
1.9

30.2 +1
17 3+1
3.4 +5
1.6 +2

60 +2
54.5+5
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that it rapidly becomes too small indicating that
the approximation is breaking down. Unpublished
results' of the next higher order of BBG complete-
ly remove the disagreement for bosons between
BBG and HNCV at low densities.

However, for the fermion nuclear fluid (g =4)
the different methods give different answers. Our
energies are higher than those obtained using
HNCV, but lower than those using LOBT. The
disagreement seems to be roughly proportional
to density. There are two plausible explanations
for this discrepancy. First the class of wave
functions over which the energy is minimized in
HNCV is larger than with our variational calcula-
tion. The HNCV correlation function in a Fermi
fluid can depend on the relative angluar and linear
momentum of the two particles. (When this addi-
tional freedom is introduced into HNCV in cal-
culating 'He binding energy, the energy drops by
0.6 K.") For this nuclear matter potential we
have also tried using the spin dependent u in Eq.
(37), and again we found no significant drop in the
energy. Since only —,

' of the other particles in the
fluid have the same spin, and they are kept apart
by the Pauli principle it is very unlikely that a
spin-dependent pseudopotential could ever be im-
portant for a spin-independent interaction. A more
likely candidate for the disagreement is the permu-
tation expansion used in the HNCV approximation.
The convergence of this expansion has never been
tested, particularly for soft-core Jastrow func-
tions and soft-core potentials. We discuss this at
greater length below.

G. Repulsive Yukawa potential with A* = 0.93
(potential P5, Table I)

A number of other workers'" have calculated
the liquid and solid properties of the potential P5."
There is now agreement that both the Bose and
Boltzmann systems with this potential will not

crystallize. We have found that a Fermi system with

this potential also does not crystallize. In our work
the Yukawa Jastrowfunction(W5) was used. The

variational parameters and results are given in
Table VI. Table X shows that the results of the
first-order WF approximation always lie below the
variational energy, the difference being much
larger at high densities. Figure 3(a) shows the
three distribution functions for this fermion liquid
at nuclear matter density; Fig. 3(b) shows the
three structure functions. Figure 3(c) gives the
single-particle density matrix, Fig. 3(d) the mo-
mentum distribution function. These functions
show a much more gaslike behavior than those for
liquid 'He at its equilibrium density. The edge of
the momentum distribution at the Fermi wave vec-
tor remains but only 23/p of the particles have
been excited above it.

H. Yukawa fermions

The potential P5 is an example of a broader
class of potentials of the Yukawa form, (P4).
These potentials can be characterized by two di-
mensionless parameters: the DeBoer "quantum-
ness" parameter A*, and r„ familiar from the
electron gas, "

kg, em
(38)

In the limit p, -0, we expect this system to behave
like an electron gas. For the Bose ground state,
we have mapped out the phase diagram variational-
ly in the (r,', g) plane. In this plane, lines of
constant potential or A* are hyperbolas in which
(1/r, )p ~A~. We have checked the variational re-
sults with an exact Monte Carlo calculation which
will be published elsewhere. With the knowledge
of the boson phase diagram we were able to select
a few points of r, and A* and locate roughly the
Fermi liquid-solid phase line.

TABLE VI. Potential P5 fermions Oiquid). Results of the Monte Carlo simulation with po-
tential P5 for neutron matter (g=2) at 5 densities (in units of Neutrons/F ) in the fluid phase.
N is the number of particles A, B,D are the variational parameters for the Yukawa wave
function W5 in F. E,t is the static (Madelung) energy of the fcc lattice, P is the pressure,
E& is the Bose energy, and V, Tz, and E are the energies. Energies are given in MeV, dis-
tances in F.

p N A B D Est

017 54 20 10 01
0.17 114 2.0 1.0 0.1
0.3 54 2.8 1.0 0.35
1.0 54 2.7 2.0 0.30
2.0 54 2.5 2.1 0.19
4.0 54 2.0 2.8 0.15
4 0 114 2 0 2 8 0 15

1.35
1.35
9.09

214.5
886.1

2981
2981

63.2
63.2

138
726

1860
4730
4730

16.9
16.4
61.8

1 039
5 160

25451
25 655

27.6
26.2
66.5

519
1452
4068
4077

31.8
31.7
66.8

166.7
385.5
599.4
597.2

88.5 +0.6
89.6+ 0.7

174.9 + 0.7
782 +2

1976 +6
4897 +7
4909 +2
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FIG. 3. (a) Radial-distribution functions g&, g&, and g(r) for neutron matter at a density 0.17/Fm . r is in units of
fermis. Upper curve g(r), middle curve gU, lower curve g&. Density is 0.17/Fm . {b) Structure functions SL, SU, and
$(k) for neutron matter; k is in units of Fm . Solid curve $, dashed curve $&, lower dashed curve $&. Density is 0.17/
Fm . {c)Single-particle density matrix, n(r), for neutron matter. r is in units of Fermis. Density is 0.17/Fm . (d)
Momentum-distribution function, n (k). The rectangle is the ideal-gas distribution for spin-~ fermions. The points are
taken from our simulation of neutron matter. The two arrows represent the rms values of k for the ideal gas and for
neutron matter. k is in units of Fm ~. n(k) is normalized so that j d3kn(k) =1. Density is 0.17/Fms.

The Yukawa function (W5) was used for the
pseudopotential. In the solid the single particle
orbitals were Gaussians (W3), with the bcc anti-
ferromagnetic ordering. Spot checks with the
density-wave pseudopotential (W3) plus plane-wave
orbitals (Wl) produced higher eneriges. The phase
diagram we found is shown in Fig. 4. The energies

and variational parameters are given in Tables
VI-VIII. In Tables VII, VIII the units of length are
such that the density is unity, and the units of en-
ergy are such that ti'/2m is unity. We are limited
to comparatively large values of p. because of the
slow decrease of the potential. As discussed
earlier, the potential and pseudopotential outside
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the simulation cube is only taken into account in an
average way. If important correlations are not to
be missed, the "Ewald image" method, "or an
equivalent, would have to be used to study Yukawa
systems for small values of p, .

The topology of the phase boundary is probably
correct, but the actual position is somewhat in
doubt. Consider a point in the crystal phase. As
the density is increased along a line of fixed A*,
the system eventually becomes Coulomb-like, and
since the high density phase of "jellium" is gas,
the phase boundary must eventually bend over and
touch the line p, =0. In other words, any Yukawa
system compressed enough will pressure-melt.

FIG. 4. Phase diagrams for the ground state of the
Yukawa potential as found in our variational calculations.
p, , r~, and A* are defined in the text. The circles are
points which we found to be in the liquid phase, the X's
are in the solid phase. The phase line is from the
Gaussian model.

Qn the other hand, if the density is decreased along
the same A* line, the potential energy will go to
zero exponentially fast, and the kinetic energy will
eventually dominate. Hence, any Yukawa solid will
melt if allowed to expand. If one fixes p. and goes
to very Large values of r „(or lets h-0) one
would eventually expect to have a classical solid,
since the kinetic energy would go to zero. For
small p, the classical system prefers a bcc lat-
tice,"at p. =1."l2 there is a phase transition (which
we find to have a width 5p/p= 1.2 && 10 ') to the
close-packed (fcc) lattice. One would expect spin-
—,
' fermions to favor the bcc lattice since nearest
neighbors then have different spins. Accordingly,
we have drawn a tentative phase line curving sharp-
ly to the right.

The liquid-solid line in the vicinity of the points
marked X was calculated by interpolating between
the variational energies of the liquid and solid
phases. Outside that region, the phase boundary
is extrapolated by following a contour of constant
Lindemann's ratio as predicted by the Gaussian
model" of a Boltzmann solid. This procedure can
be partially justified because within the region we
have simulated the phase boundary lies on one of
these contours, as it does for bosons. The Gaus-
sian contour we have chosen characterized by is
y= 0.147. However, Lindemann's ratio for the
Jastrow wave function is about 0.3. y is much
smaller in the Gaussian model since the particles
must be tightly bound to the lattice sites to make
up for the absence of two-particle correlations to
keep them apart. In addition, we find that between
1% and 3% of the Wigner-Seitz cells are vacant.
We believe the ground state may contain some de-
localized vacancies. This question is being investi-
gated in detail for the Bose ground state.

This work gives a rough guide to where the elec-
tron gas or "jellium" crystallizes, namely x, = 56.
Other estimates for the Wigner transition vary
widely, "from r, = 5 to r, = 700. Our estimate for
r, probably gives a lower bound to the transition
value of r, because the variational wave function

TABLE VII. Yukawa fermions (liquid). Results of Monte Carlo simulations with the Yukawa
potential (P4) and pseudopotential (8'5) for a liquid. A and 1/r~ are dimensionless parame-
ters which characterize the potential. p, is the potential curoff. Units of length are chosen so
that the density is unity. A, B, and D are the variational parameters, N is the number of
particles (spin-q), P is the pressure, V is the potential energy, TD is the Slater kinetic en-
ergy, and E~ is the total energy. The units of energy are such that k /2m is unity.

1/3 103 -i B D

0.628 3.24
0.344 7.43
0.628 7.33
0.628 7.33
0.628 7.33

4.97
0.65
2.2
2.2
2.2

4.2 1.6 0.1
3.1 1.8 0.04
2.2 2.3 0.1
2.2 2.3 0.1
2.2 2.3 0.1

54 55.4
54 3.60
38 1.73
54 1.83

114 1.73

141.5
29.9
13.7
13.1
13.6

4.48
5.30
4.45
5.08
5.18

164.6 y0, 1
48.26+ 0.04
25.9 + 0.1
25.9 + 0.1
26.5 + 0.2
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TABLE VIII. Yukawa fermions (solids). Results of Monte Carlo simulations with a Yukawa potential (P4), and pseudo-
potential 5) for a solid. The orbitals were Gaussians centered about bcc lattice sites. C is the Gaussian localization,
y is Lindemann's ratio, and Vo is the probability that a igner-Seitz cell will be vacant. See the caption of TABLE VII
for the definitions of other symbols and units.

103xy-,' Vo

4.90
3.88
3.08
3.24
7.33
7.43
7.43

7.20
8.95

11.42
4.97
2.2
0.65
0.65

2 2.7 3.0 0.5 54
29 22 25 025 54
3.2 1.8 1.6 0.24 54
3 4 1 8 5 3 0 17 54
1.75 2.3 5.3 0.13 54
215 186 43 004 54
2 15 1 86 4 3 0 04 128

55
127
307
54.6
1.73
3.42
3.44

28.91
43.8
30.55

134
8.94

25.9
25.9

9.14
7.88
5.67

16,1
15.0
13.1
13.0

41.41 + 0.2
60.44+ 0.01
94.2 + 0.1

162.7 + Q.l
29.8 +0.4
47.6 + 0.2
47.8 + 0.6

0.384
0.379
0.418
0.288
0.314
0.320
0.324

0.012
0.031
0.034

for the solid is probably "better" than the liquid
one. %e have found this to be true for the equiv-
alent boson Yukawa system, the variational phase
line lying at higher values of A* than the exact
phase line. The critical Lindemann's contour at
very large values of p. obeys the equation

(1/r, )p', =0.0022 .
In retrospect, the widely varying values"'" of

the crystallization density of neutron matter found
in other calculations can be traced to this phase
diagram. The energy of soft-core potentials, after
the static energy is removed, varies slowly as a
function of r, and A*. Furthermore, the energies
of the liquid and solid phases are very close
throughout this range of r, . Hence it is easy for
various approximations to place a Yukawa or Cou-
lomb system in either the liquid or solid phase.
Recently, Glyde et al."have estimated that the
Fermi one component plasma will melt at r, = 70.
This estimate is fairly close to our own. It is
however based on using the Vfu-Feenberg expan-
sion to estimate the effect of the Fermi statistics
on the Bose system.

According to our variational calculations, unless
a system has A* &0.72 it can never form a solid at
zero temperature. The values of A~ for the other
potentials are shown in Table I. These values
were estimated for the other potentials: e and p,

are found by equating the terms proportional to
1/r and r in the small r expansion of the potential
to the corresponding terms in the Yukawa poten-
tial. Most neutron matter potentials have A*= j..

I. Convergence of the Ku-Feenberg expansion

Recently Brandow' has argued that the W'u-Feen-
ber g" expansion does not converge well enough to be
useful. According to his argument, the effect of the
exclusion principle is spread out over all orders
of the permutation expansion. Hence, for an N
particle system, the first order term only con-
tains -1/N of the effect of the exclusion principle.

&= (-'p/2) d' gr(r)~(r), (40)

52
T~=(-,'p/2) fd'rg(r)

2
V'~(r) . (41)

The remainder of the energy TD [Eg. (15)] is

T,=-(g'/4m}(~', lnD) . (42)

In the first order of %F, one keeps terms from
the determinant involving only pair permutations.
The two-particle correlation function is thus ap-
proximated by

g'(r) =g, (r)g„,(r),
where ger(r) is the free-fermion pair-correlation
function

1 sinkrr krr cos—krr '
(44)g"F r

2 (k,r)'

Here, g„(r) is the ideal-gas correlation function
and g~ is the correlation function arising from $J.
Then to first order in permutations the energies
V and T~ are given by (40) and (41) with g replaced
byg' and TD is given by

52 1
T~= — k2r 1 —20 y dy[S„r(2kry) —1]

0

x [Ss(2kry) —1]

S„F is the free Fermi structure function

The simulations we have done allow us to test the
convergence, we will concentrate on the first
order, since it should account for most of the anti-
symmetrization energy, if the series converges.

The energy of the wave function $J D can be split
into three terms; the potential energy V, the
kinetic energy arising from the Jastrow factor TJ,
and the kinetic energy arising from the Slater de-
terminant TD. V and TJ can be expressed as in-
tegrals over the radial distribution function:



16 MONTE CARLO SIM U LATION OF A MAN Y-FERMION SYSTEM

TABLE IX. First-order Wu-Feenberg energies and their deviations from variational results
for He at two densities. A prime indicates a WF result. V is the potential energy, Tz the

Jastrow kinetic energy, TD the Slater kinetic energy, and E the total energy (all in 'K) $0 is
the structure factor at k = 0, 8 the average Pauli condition (see text).

v' V- V' Tg Tg Tg TD TD TD E EI

0.237 -10.95 -0.60 7.29
0.414 -21.09 -0.26 19.61

0.81 2.32 -0.07 -1.34 0.14
1.38 3.25 —0.05 1.77 1.07

—0.68 1.70
-0.61 3.27

Sar(k)= 'y ' y ' y=k/2k' .&1

1, 1&y,
(45)

The structure function in the first-order QF ex-
pansion is given by

S'(k) = Ss(k)+12 y2dy [S„r(2kry) —1]

x [ Ss(2k+ y) 1] . (46)

Schiff and Verlet' have found that the energies of
the successive WF orders seem to converge rapid-
ly for 'He. However, the energies V, and T~ do
not converge nearly as well. Table IX gives the
results of the WF expansion to first order for 'He
at two densities. The lower density is very close
to the zero pressure liquid, the higher is in the
two phase region of liquid and solid. At zero pres-
sure the errors in T~ and V, about 0.7 K, nearly
cancel out, so the energy as predicted by WF ap-
proximation is close to the variational value. At
the higher density this cancellation does not take
place, and the total energy is underestimated by
1.1 'K. Although this is only a small fraction of
either the kinetic or potential energies, about
20 K, the first-order WF expansion has only given
half of the antisymmetrization energy. This error
comes only from V, and T~, the kinetic energy TD
is given accurately.

Table X gives the result of the WF expansion ap-
plied to the "homework" potential with g(r) com-
puted from the symmetric wave function (W5).
Here again the kinetic energy arising from the
Slater determinant, T~, is given accurately; while
the terms dependent on g(r) are underestimated,

v. r, . . . ~*a vt~). , a* (a))
1 h2

2p 2v 2w

x $(k)+ const . (47)

Assume the error in S(k) is concentrated in the
region k& p' ' and is roughly constant there. Then
very roughly, the error in the energy will be pro-
portional to the scattering amplitude of the poten-
tial times the density.

E —E~F = 0.65p d'r v (r) (48)

This accounts for the order of magnitude of the
errors of WF for the "homework" potential. The
dependence will be more complicated for 'He since
the Fourier transforms do not exist.

It is likely that TD will be accurately given by
the WF expansion for any dense fluid. This is be-
cause TD depends only on the structure functions
S~ for k&2k~. The structure function for all inter-
acting fluids is quite similar: it is small for small
wave vectors, and rises to unity at about k= p' '.

the error seems roughly proportional to density.
One can understand this to some extent by con-
sidering the structure factor at k=0, S,. The struc-
ture factor for all of the wave functions in this
paper is positive for all k. (The exact structure
factor is zero at k —0 because of the phonon spec-
trum. ) Tables IX and X contain S,' as calculated
with Eq. (46). It is negative between -0.6 and

-0.7 for both the potential P5 and 'He and is almost
independent of density. This problem with S(k) has
been noted by other authors. " Transforming the
energy integrals over g to ones over S, one finds

TABLE X. First-order Wu-Feenberg energies and their deviations from variational results
for the potential P5 (primes denote WF results). Ez is the sum of the potential energy and
Jastrow kinetic energy, T& the Slater kinetic energy, and E the total energy in MeV. $0 is the
structure factor at k=0, g the average Pauli condition.

E,—E', Tp TD TD E' E—E'

0.17
0.30
1.0
2.0
4.0

52.4
119.7
657.2

1687
4346

5.5
14
52

162
328

33.0
46.6

100.1
158
256

1+3
-4.9

1 Q 3
—31
-22

85.4
166.3
757.2

1845
4602

4.2
8.6

51
131
306

—0.73
-0.69
—0.63
—0.64
-0.065

3.05
7.37
4.96
8.80
7.74
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The second-order term as calculated by Schiff and
Verlet' appears to be in the wrong direction for
zero pressure 'He so the convergence of the whole
series for TD is still questionable. The first-order
structure function S' will always be negative, for
the same reason that T~ is a good approximation:
it only depends on the low k part of S~.

In addition, Tables IX and X contain the values
of the average Pauli condition. It has been sug-
gested~ that 8 defined by

8 = p d'r(1 —e "'"')g»(r) (49)

might be a convergence parameter for the Brueck-
ner expansion. 8 may also be useful as a con-
vergence parameter for the WF expansion. How-
ever it is large for these two systems, and its de-
pendance on density is not monotonic for the poten-
tial P5. For the "Nosanow" system (P2) with wave
function W4, h is smaller (0.25), but the WF ap-
proximation does not appear to be any better. A
good convergence test for the WF expansion is
more likely the value of the structure factor at
small k, since the expansion seems to have the
most trouble there. A small error in So can lead
to a major error in the energy. It may be also
useful to look at the spin-dependent structure fac-
tors, since they contain more detailed information.

In conclusion, the WF expansion does not con-
verge quickly for any of the liquids studied in this
paper. It is unlikely that inclusion of the next order
will substantially increase the precision of the ex-
pansion at all densities. Since the magnitude of
the errors we have found with the P, potential is
roughly the same as the difference between our en-
ergies and those of Nosanow and of Pandharipande
et al. , their lawer energies can perhaps be ascribed
to their use of WF.

Finally, consider the van Kampen permutation~
expansion in the solid phase. The convergence of
this expansion is probably controlled by the local-
ization of the particles on the lattice sites (i.e.,
C of W2). In solid helium changing the product of
Gaussians to a determinant of Gaussians made
little difference in the energy, since the localiza-
tion was already high. The zero-order term was
enough. However, for the weakly localized crystal
of Nosanow" the convergence of the expansion was
quite poor. We conclude that the use of this expan-
sion may be limited to reasonably-well-localized
crystals.

IV. CONCLUSION

We have shown that the Monte Carlo sampling of
the square of the antisymmetric wave function is
certainly feasible, and probably the only accurate
way of getting good upper bounds to the energy of

a dense Fermi fluid. The Wu-Feenberg approxima-
tion can lead to significant errors in a Lennard-
Jones fluid at high densities, and to serious errors
for soft-core potentials. We believe that this ap-
proximation should be used wi. th great caution in
any fermion system. The energy of solid 'He is
hardly affected by the Fermi statistics; other
physical quantities such as the pressure and Linde-
man's ratio seem to be more sensitive. We have
determined an approximate phase diagram of
fermions interacting with a Yukawa potential. By
extrapolating the liquid-solid phase boundary, we
have estimated the melting density of the Wigner
crystal.

We believe that a realistic calculation of the
crystallization density of neutron matter is ex-
tremely difficult. First, the Schrodinger equation
is not a good description of relativistic neutrons.
Second, the crystallization density is highly sensi-
tive to the nucleon-nuol. oon interaction. If the
"quantumness parameter" of the system is too
large, (A* a 0.72) the nucleons will never solidify.
For crystallization, the important part of the po-
tential is its form for small ~ which is not yet well
known. Third, various approximations to the
ground-state energy can drastically change the
solidification density. We believe that the Gaus-
sian wave function is a good approximation to the
true crystal ground state, probably much better
than the Jastrow function used for the liquid. For
this reason, a variational calculation will tend to
favor the solid phase. For a soft-core potential,
the energies of the liquid and solid phase are very
close throughout a large range of densities. In
order to obtain a good value for the transition den-
sity, one must calculate the ground-state energy
very precisely.

Future developments will concern ways to simu-
late larger systems, improvements in the varia-
tional wave function, and the study of different and
more complex systems. The presence of nodes in
the ground state of a fermion system, precludes
the use of the same Monte Carlo algorithm used
to find the exact ground state of Bose systems. If
one assumes a particular nodal surface for the
ground state, for example the nodes of the free
Fermi gas, one can find the lowest energy state
with those nodes. For most systems this may be
a very good approximation to the exact ground state
energy. Development of an exact fermion algo-
rithm appropriate to a large ensemble of particles,
hinges on an understanding of the nodal surface of
the true ground state.

APPENDIX

In this Appendix, we describe two other methods
for sampling the square of a determinantal wave
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function. Although for the problems we con-
sidered, neither of these methods were as good

as the one described in the text, there are other
systems in which these methods may be effective.

S2
+2 f dR/@, E)2.

(Al)

Let us choose g~ to be the boson ground-state
wave function and E an antisymmetric function of
spin and spatial coordinates. Then the energy in
(Al) will be an upper bound to the fermion ground-
state energy. Using the Green's function Monte
Carlo method, we can evaluate E~ exactly, and
generate configurations (R,) drawn from the dis-
tribution ~gs ~'. Then for a sufficiently large set
of configurations, an upper bound to the fermion
energy is estimated from

Q2
Z', =Z, + —Q (VE(R,) (2 g (E(R )( . (A2)

Let us choose E to be a Jastrow function g~ times
D, a Slater determinant of plane waves. Suppose
there are g spin states for each spatial state. If
g is greater than I, we must partition the Bose
particles into the g spin states; for N particles
there are N! /(I!) of doing this partition, where
I=N/g. In order to calculate the most important
contributions to the energy integral, one must
sample a number of different partitions for each
R,. We tried doing a Metropolis random walk in
this partition space, with D as a probability den-
sity; D' is clearly highly dependent on the parti-
tion. For example D' is very small if all of the
"up" spins are close together. With this method
the upper bound is

&~(I'D) '
2m ~ D(R) Q 4(Rg)' (A2)

However, the need to partition complicates the
method, and is symptomatic of a fundamental dif-
ficulty: unless the function E' has its region of
maximum probability in the same region of con-
figuration space in which $~ is large, configura-
tions drawn from $2~ will miss the most important
region of configuration space for evaluating the
energy integrals. Unless E is spatially slowly
varying, of the same order of magnitude every-

1. Feynman upper bound

The first method uses the Feynmann form for
the energy of a product wave function. If g~ is an

eigenfunction of the Schrodinger equation with an

eigenvalue E~, then the energy of the wave function

gsE is given by

where, this energy upper bound is likely to be un-

reliable. But an antisymmetric function can never
be slowly varying, since it must have nodes.

This method may be useful in other situations,
but only if the weights E'(R, ) in the denominator of

(A2) are of the same order of magnitude, and the

probability distributions ~gs ~' and ~Egs ' overlap
to a significant degree.

2. Multiparticle Metropolis random walk

In the usual Metropolis method for sampling a
given g', only a single particle is moved at a time.
Most of the results in the paper were calculated
with this method. We have also used a Metropolis
method where all of the particles of the same spin
are moved simultaneously. Ordinarily this would

cause the acceptance ratio of the random walk to
become very small, since the chance of moving to
an improbable configuration increases with the
number of particles.

To compensate for this, the moves were made
with a nonuniform probability distribution; we
"aimed" the moves toward the region where the
wave function was large. For simplicity assume
that the particles are all of one spin species (g=1).
Let R be the coordinates of the particles, and sup-
pose we choose new trial coordinates R' from the
probability function K(R -R'). The new coordinates
are accepted with probability

K(R'-R)P(R')
' K(R-R')P(R) (A4)

It is easy to check that this algorithm satisfies the
detailed balance condition:

P(R)K(R R')P(R -R')

0, R'g D(R),
K*(R -R') =

4(RI)2

(A6)

dR" P(R"), R' c D(R).

The average acceptance ratio at the point R for this
transition function is

= $2(R')K(R' —R)P(R' R), (A5)

and hence the sequence of steps of the random
walk will lead to a density which approaches P(R)
asymptotically.

The acceptance ratio of the random walk can be
made close to unity if the transition probability
K(R -R') approximates P(R')/f'(R). Construct a
domain D(R) about each point R. Suppose we could
sample the transition function K* where
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(R )

dRi P»(R )

x max dR" P(R "},
D(R)

P(R")dR"
(Ri )

(AS)

Now if D is large enough f~t» dR" g'(R") will be
roughly independent of R and the acceptance ratio
will be almost one. Of course when D becomes
the entire space, K* is simply $2, which we cannot
sample. To increase the acceptance ratio of the
random walk, we must find a form of K(R -R')
which we can sample and which is an acceptable
approximation to K* in D. Expand the wave func-
tion $ in a Taylor series about the point R, and let
D be a Cartesian product of spheres of diameter 4
centered about each particle. Then if the wave
function is g slowly varying in D, a good approxi-
mation to K* is

[1+6,(r', —r)]'
K»(R -R') = Q 1+ n»G» /20

G, =V, lng(R) . (A8)

This probability distribution was sampled by a
rejection technique: for each particle (i} a random
point x, uniformly distributed inside a sphere of
diameter 6 centered at the origin, is chosen.
This point is accepted if

(1+G, X()'~ $(1+ ~G,
~

—,
'

b,)' (A 9)

where g is a random number between zero and one.
Otherwise the pair x, and $ is rejected and a new

pair is generated and tested to see if they will
satisfy condition (A9). The process continues un-
til a satisfactory pair x, and ( is found. Then the
trial position of particl'e i is r', = r,.+ x', . After the
new positions have been found for each particle,
the probability P [Eq. (A4)] of acceptance of the
step R' must be calculated.

standard algorithm takes on the order of I' opera-
tions to move all of the particles.

We have sampled the wave function of liquid 'He
using the two different methods (p=0.237/o' and
1=27}. For a step size of 1.3, the one-by-one
method had an acceptance ratio of 0.42; for a step
size of 0.9 the multiparticle method had an ac-
ceptance ratio of 0.15. To get the same error in
such quantities as the energy and the structure
factor, the multiparticle method took about ten
times longer. Thus this multiparticle method con-
ver ged signif icantly more slowly than the method of
moving one particle at a time. For more particles
the situation would be even worse. Hence, we
believe that for the types of wave functions con-
sidered in this paper the standard Metropolis
method, where particles are moved one at a time,
is s'superior to the multiparticle method.

We have tried two other variants for the transi-
tion function K(R-R'). The first is to let the
domain D(R} be a product of cubes centered about
R and of side D. The other is to allow second-
order terms into K

[1+G(r', —r;)+ T(r', —r,)']'
2( ) II 1+ 1 n2G2+ 6 n»T+ 3 n4T2

4=1 20 5 7

(A11)

Neither change affected the random walk in a sig-
nificant way.

However, there may be problems for which the
multiparticle method is applicable. If one has a
wave function with just a few particles in a spin
state, it may be convenient to move them together.
Inverting a matrix all at once is about twice as
fast computationally as inverting it one row at a
time. If the particles of like spin are well sepa-
rated from each other the linear approximation for
K will be good. Finally, the multiparticle method
would appear to be well suited for determinantal
wave functions where each matrix element depends
on the coordinates of each particle. An example is
the backflow wave function, due to Feymann, for a
Fermi liquid such as 'He. The orbitals in this wave
function are

, =, (1+ —'n'G', .')(1+G,. X,)'
(A10)

N

p» (r,.)=exp ik, r, + g(r, —r&)g(r;, ) . (A12)
f

For a wave function which is a Slater determinant,
evaluating the wave function involves inverting the
Slater matrix D,~(R') which will take on the order
of I3 operations, since every element of the ma-
trix changes. Then, for this method to be as ef-
fective as the standard Metropolis algorithm, the
step sizes 4 should be about the same, since the

If a single particle is moved all of the matrix ele-
ments are changed, and so the entire matrix must
be reinverted. Hence in the standard Metropolis
algorithm this would take I' operations to move
all of the particles. However the multiparticle
method takes only I' operations. The implied ratio
of computing times is valid only if the step sizes
and acceptance ratios are approximately equal.
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