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The conduction-electron contribution to the electric field gradient has been calculated for zinc and cadmium.
From a study of the conduction and core electron distributions relative to each other, it is concluded that
different components of the field gradient due to the conduction electrons, such as from the local and plane-
wave components of the conduction-electron densities, should be shielded differently. A value of about vy_,/2 is
estimated for the field gradient due to the plane-wave component of the density. Using the calculated field
gradients in the two metals, the quadrupole moments of ®’Zn and '''Cd are obtained as 0.50 and 0.76 b, the
latter being in good agreement with the value derived earlier from ionic crystal measurements. The effect of
the larger antishielding factor on the earlier calculated field gradients in beryllium and magnesium is discussed
and it is concluded that the earlier good agreement between theory and experiment for these metals is not
significantly affected. Finally, the bearing of the results of the present work on the empirical correlation
obtained recently between the conduction-electron and lattice contributions is discussed.

I. INTRODUCTION

The subject of nuclear quadrupole interactions
in metals and alloys is currently one of consider-
able interest.! One of the reasons for this is the
recent success? in obtaining the signs and accurate
values of quadrupole coupling constants e2¢Q in
the excited states of a number of nuclei by per-
turbed-angular-correlation techniques. In addi-
tion, of course, MOssbauer measurements® can
also provide the signs and accurate magnitudes
of e%q@ in the metastable states of a number of
nuclei, these nuclei and levels often complement-
ing those observed by perturbed-angular-corre-
lation techniques. Conventional resonance tech-
niques,* both magnetic and quadrupolar, provide
measurements of only the magnitudes of e%¢Q for
ground states of nuclei, but not their signs. An
accurate calculation of the electric field gradient
q at the nucleus, when combined with ¢2¢Q data,
enables one to determine the nuclear quadrupole
moment @. Alternately, in those nuclei for which
the atomic quadrupole coupling constants are
available, the value of @ is determined by calcu-
lating g for the atom, which can be done more ac-
curately than in the solid, The value of @ can then
be used to extract ¢ in the solid state from experi-
mental e’q@ data, g then serving as a property
that can be utilized to test the calculated electronic
structure of the metal. Electric field gradients
have been obtained in the past from calculated
electronic wave functions in beryllium,® mag-
nesium,® and cadmium’ metals, the results in the
latter metal having been reported briefly. The
wave functions of the conduction electrons were
determined in the former two metals using calcu-
lated one-electron potentials®® and employing a
linear combination of orthogonalized plane waves
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as a basis set. For cadmium, a pseudopotential®®
was utilized to obtain pseudofunctions from which
the actual wave functions were obtained by the
usual procedure of orthogonalization to core
states.

Recently the field gradient ¢ in zinc has been
studied,!! following the measurement!? of the mag-
nitude of €@ in the metal for the $* state (spin
I=%*) of "Zn. The aims of this calculation, which
has been briefly reported before, are threefold.
The first was to determine the magnitude of @ of
®’Zn in the §* state, the second was to obtain the
sign of ¢ so that the sign of @ could be determined
in the future when the sign of e¢2¢Q became avail-
able, and the third aim was to compare the value
of @ obtained from the data in the metal with the
one obtained from ionic crystals,® when e2¢Q of
the 3* state of °’Zn becomes available in these
latter systems. In the calculations in both cad-
mium and zinc, extensions of the empirical
pseudopotentials!® were used in determining the
wave functions for the conduction electrons. The
original pseudopotentials had been found® to pro-
vide good explanations of a number of properties of
the Fermi surface in these metals. In the ex-
tension used to calculate the field gradient, an
implicit dependence of the pseudopotential on the
wave vector k has been incorporated. In the pres-
ent paper, we present a more complete descrip-
tion of our work™!! on the field gradient in the two
metals and focus major attention on the question of
the appropriate antishielding factors to be used for
the various contributions of ¢ from the ionic
charges and conduction-electron distributions,
particularly the latter. It will be shown that the
proper choice of antishielding factors is of crucial
importance in determining the net field gradient
in the metal. This question of the appropriate
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antishielding factors for the various parts of ¢ has
become important at the present for two main rea-
sons. The first is the discrepancy found recently
in the values of @ of ''Cd (3*) derived from cad-
mium metal'® and ionic cadmium compunds.'® The
second reason is the recent analysis'® of quadru-
pole coupling data for '''Cd and other nuclei in a
number of different alloys using the former as
solute where, from a knowledge of the signs and
magnitudes of the quadrupole coupling constants in
the alloy systems, one is able to derive the con-
duction-electron contributions to g, the latter ap-
pearing to depend on the antishielding factor'’
(1-v,) of the soluteion. The bearing of our work
on this question will be discussed.

Section II presents the choice of the pseudopo-
tential and the procedure adapted to calculate the
contributions to ¢ from the conduction electrons.
Section III deals with the choice of the antishielding
factors for g at the nuclear site from the ionic
charges in the lattice and various regions of the
conduction-electron distribution, internal and ex-
ternal to the core-electron distribution. Section
IV discusses the results of our present investiga-
tions on cadmium and zinc and the general con-
clusions that may be drawn from them regarding
the question of the appropriate antishielding fac-
tors (including metals like beryllium and mag-
nesium investigated earlier™) and the bearing of
the present results onthe interpretation'® of data
in alloys.

II. PROCEDURE FOR EVALUATION OF FIELD GRADIENT
DUE TO CONDUCTION ELECTRONS

The procedure for calculation of the conduction-
electron contribution to the field gradient involves
two main steps, the determination of the wave
function and the evaluation of the electronic field
gradient from the occupied Fermi volume. The
electronic wave functions were obtained by the
pseudopotential procedure.™!® %1% The pseudo-
wave-function is given by a linear combination of
plane waves, namely

¢ = I Cri Xow K+K), 1)
K
with
XPW(E+ B)= [1/(N°QO)1/2] ol (B+K) 7 , @)

where N, is the number of Wigner-Seitz cells, ,
the Wigner-Seitz volume, K the reduced vectors,
and K the reciprocal-lattice vectors. The coeffi-

cients Cg, g are obtained variationally by solving the
appropriate secular equations involving the pseudo-
Hamiltonian. The pseudopotentials used for both
the metals were based upon the empirical ones,

derived by Stark and Falicov'® for the explanation
of Fermi-surface properties, suitably adapted
to apply over the entire Fermi volume as we shall
now discuss.

The Stark- Falicov pseudopotentials!® for the two
metals given by

V,se(E)=U+ D v,P, 3)
t

had both local and nonlocal components corres-
ponding to the first and second terms on the right-
hand side in Eq. (3), with the U and v, for cadmium
and zinc listed by Stark and Falicov. The P, are
projection operators for the core states defined

as

Pt=lXt><Xt'7 (4)
with
o= 5 2 et ) 5)

being the tight-binding wave functions for the core
electrons and £,(F - T,) the fth atomic-type core
wave function for the ion located at F,.

The matrix elements of V, o over the plane-
wave wave functions in Eq. (2) are

<Xpw(i+ K) I Vo, sr [ XPW(E"’K'))

=Ug g+ tZ Ut<)(I-‘w(E“‘I-<—)lXe><)(z|Xpw(E +K')> .
(6)

In order to make the matrix elements in Eq. (6)
real, the origin for the plane-wave functions is
taken at the midpoint of the line joining the two
atoms in the non-Bravais unit cell of the hep lat-
tice.

This gives

. ke ..
(xpw®&+K) [x) = N iy} (K+K) cosGK D)
0

X]()-mj,(|ﬁ+ﬁ|r)Pn,(r)rdr, (7

p representing the vector joining the two atoms in
the cell. Of the nonlocal terms involving the core
states, those which refer to the 3d states (in Zn)
and the 4d states (in Cd) give the largest contri-
butions. In view of this and the relative sizes of
the local parameters for the d states, these terms
in the pseudopotential make the leading contribu-
tion to the matrix element in Eq. (6).

Since the field gradient calculation involves the
entire occupied k space, in addition to the Fermi
surface, we need an energy-dependent pseudo-
potential applicable to the entire Fermi volume.
The adaptation of the pseudopotential in (3) for
this purpose was carried out as follows. The



16 THEORY OF NUCLEAR QUADRUPOLE INTERACTION IN... 3003

energy-dependent pseudopotential may be written
in the general form!®*°

VAE)=V.+ ) (E-E)P,, (8)
t
E, being the energies of the core states { and V,

the crystal potential. V, can be split up into local
and nonlocal parts according to the relation

V,=U+ ) a,P,, ©
t

where the parameters a, have to be determined.
This is done by substituting Eq. (9) in Eq. (8) and
then comparing it with Eq. (3) at E=E . Obtaining
a, by this procedure and substituting back in Eq.
(6), one obtains

V,(E)=U+ ) (E~Egp+ v)P,. (10)

t

Using the plane-wave matrix elements of the

pseudopotential in Eq. (10), coefficients Cg, g can
be shown to satisfy the linear equations

% C§+§[(Hp)i+i(., 'ioi' - ESE+R, E+f(.' ] = 0 ’ (11)
with
(Hpig, keir = (x PW(E+ K) l‘ Vi+U

+ ) (0= EQP|x py &+ K")) (12)
t
and

SLI;.LE’:(XPW(E'*’ K),I ‘ZP: lXpw(iE+ ﬁ')) ,
7

(13)
where I is the identity operator.
Equation (11) leads to the secular equation
det | (H,)i.% ki - ESii i [=0- (14)

The pseudo- Hamiltonian matrix elements in Eq.
(12) depend on the value of the Fermi energy E .
both this and E being conveniently referred to the
bottom of the energy band as origin. E in Eq.
(10) was determined self-consistently, using the
calculated energy values to obtain a histogram of
states and filling them up to obtain the four elec-
trons characteristic of the two divalent atoms per
unit cell. The value of E ; obtained in this way dif-
fered very little (about 9% of E . for zinc) from the
value obtained from pseudoband calculations using
the Fermi-surface pseudopotential'® in Eq. (3).
One point of procedure about the choice of the
atomic wave functions used in this calculation
should be mentioned here. In obtaining the pseudo-
potential matrix elements in Eq. (12) we used Her-
man-Skillman Hartree- Fock- Slater?® core wave

functions for the sake of consistency, since Stark
and Falicov'® in deriving pseudopotential param-
eters U and v, had also employed these wave func-
tions for the cores. Once the pseudofunctions

¢z(T) in Eq. (1) are obtained, one can get the actual
wave functions ¢; by replacing xpw(l?+ K) in Eq.

(1) with orthogonalized-plane -wave (OPW) func-
tions xopw (K+ K):

@)= 2 CriAtXopw®+K) (15)
K

where

Xorpw (E'*' ﬁ) = xpw(1?+ I‘Z) - tE <Xpw(i;+ K) l xt> Xt
(16)

Ag= (; ‘CLR 2= izfé't Ci‘i'czti&(Xl IXPW(E+ K)

- -1/2
X { xpw(k+K) l Xe) )

1"

In constructing the OPW functions in Eq. (16)
to obtain the actual functions y;, one has to employ
Hartree-Fock wave functions, rather than the
Herman-Skillman wave functions, since for the
field gradient calculations, an accurate knowledge
of the conduction-electron wave functions near the
origin is required.?

Once the wave functigns z,b;',-(F) for various bands
i and reduced vectors k are obtained, ¢ due to the
conduction electrons can be calculated using the
equation

q=- Z <¢E,¢(F)

-4 s
k,i

@), (9)

3cos?6-1
1/3

with ¥ and 6 referring to the nucleus as origin, the
¢ axis being taken as Z direction. The negative
signon the right-hand side in Eq. (18) is a consequence
of the negative charge on the electron. The sum-
mation over k in Eq. (18) involves the entire Bril-
louin zone and the contributions to the field grad-
ient from all states which had energy less than or
equal to the Fermi energy E,. The scanning pro-
cedure for k in our calculation involved 189 points
in = of the Brillouin zone, equivalent to a total
of 4536 points over the entire Brillouin zone.
From earlier analyses in other hcp metals,> ¢ this
number of sample points was expected to be more
than adequate for the accuracy desired for the field
gradient.

For the purposes of physical understanding and
the proper consideration of antishielding effects,
it was felt convenient to break up the electronic
contribution ¢,,, the field gradient from the con-
duction electrons, into parts as described by Egs.
(19)-(23). Thus using Eqgs. (15)-(18), one obtains
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de1=dpw-pw +9drp-TB+ 2dpw- T + Gatst. » (19)
where
2 64m3 \ 1/2 -
9pw-pw = ( ) Z IAtk Iz Z Ct,k#K' C; K+ KS(K K ) zo( -K) , (20)
2 /10247° )1/2 3 2 3 o
= — Al-' < C - 2:C: ) +KS (K)S(K)
drB-TB N2, < 5 i l kl X Jek Uik
x 2 @)L, ®ReR)Y, K+RGwL, K+ RG0!, &+ RN)F (nl,n'1')(Im |201'm") 1)
"
-2 (10247° )1/2 . Z . A
== (= Az C g C; 1. S(K)S(K')
9pw-TB N, ( 5 i'z. ! tkl e JEK'Ci ke K
- - - - - - - 22)
x 2 )Y (R K Y, K+ K)G (el K+ K)H @I, 17, K+ K){I'm’ | 2001m) , (
Im
’l"m'
2 /4m\1/2 \r) 03
qd‘s"=1_\]—(-5_> Z ( ZC,'“K> 2° , (23)
0 i,k

Ylm(;) = Ylm(ef'y d);) )
@omy|tometgmy= [ f Yz;ml(e,m Yy, (6, 0)

(6, 9) sin6dodo ,

13rn3
(24)
S(G)=cos(z 5 G), (25)
G(nl,E+K)=an,(r)j,(|E+§|r)rd7, (26)

- - 1
k+K|’}’);§d’V,

Hnl 1", K+ K):fm Py ()i (
@7
F(nl,n’l’):f P,,,(r)% P (r) dr., (28)

(]

Equation (20) represents the contribution to qe1
from the plane-wave (PW-PW) component of the
electron density around the nucleus. If it was
possible to represent the wave functions of the
conduction electrons by single OPW functions,
then the field gradient would vanish, since the
electronic distribution would be spherical in na-
ture. It is the presence of the lattice potential
which makes the wave functions consist of linear
combinations of OPW functions and hence leads to
nonspherical charge density and finite field grad-
ient. Equation (21) gives the contribution to G
from the tight-binding (TB-TB) component of the
wave function and Eq. (22) that from the hybrid
combination (PW-TB) of the plane-wave and tight-
binding components.

The expression in Eq. (23) is for the contribu-
tion from a source which is referred to as the

r

distant term in the literature and arises from con-
duction-electron charge densities on ions other
than that containing the nuclear site at which the
field gradient is being studied. Its physical sig-
nificance has also been explained in earlier liter-
ature®? as referring to the contributions to the
field gradient from the orthogonalization hole
densities associated with the conduction-electron
distributions at the various ionic sites. The sum-
mation over T, in Eq. (23) is related to the ionic
contribution to field gradient given by

3cos 6 -1
qionic 22'

2(4”)1/22 2V5or) | (29)

7-3

The primes over the summations in (23) and (29)
denote that the site under consideration is ex-
cluded from the summation. The factor of 2 in Eq.
(24) arises from the ionic charges at the lattice
sites.

The lattice summation in Eq. (29) has been
carried out® for divalent hcp metals earlier in the
literature as a function of ¢/a and is given by the
expression

@ ionic = 2[0.0065 — 4.4584(c/a - 1.633)] /a®.

This expression can be used to obtain the ionic
contributions to q,,,;. in zinc and cadmium using
the appropriate values of ¢ and a. For standard
temperature and pressure, we have used?*

€,=4.8618 A, a,,=2.6596 A,
ca=5.5261 A, @ =2.9684 A.
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III. ANTISHIELDING FACTORS FOR VARIOUS
CONTRIBUTIONS TO THE ELECTRIC FIELD GRADIENT

In order to obtain the actual field gradient, one
has to multiply the contributions to the field grad-
ient from the conduction electrons in Eq. (19) and
from the ionic charges in the lattice by appropri-
ate shielding factors. In the past it has been the
practice®” to apply one antishielding or shielding
factor to the entire electronic contribution (ex-
cept for the distant term) to the field gradient in
the metal. This one factor used has been assumed
to be about the same as the antishielding factor for
field gradients due to valence electrons in atoms?®®
which are often rather small and indeed, in some
of the earlier calculations,®” the antishielding ef-
fect has been neglected for the conduction-electron
contributions. We shall analyze separately the
antishielding effects for the different contribu-
tions, in Eq. (19), of the field gradient from the
conduction electrons and point out the need for
using very different antishielding factors for these
different contributions. The antishielding factor
to be used for the ionic contribution to the field
gradient is a relatively simpler matter, namely
something of the nature of'” y,. for the ion
(Zn%* or Cd**) due to an external point charge.
However the presence of the conduction electrons
does change the core-electron wave functions
on the ions and the influence of this on y, has to
be considered.

We consider first this question of the proper
antishielding factor in the metal for the field
gradient due to the ionic charges. The core elec-
trons on the Zn** or Cd** ions feel the charges on
neighboring ions in the corresponding metals as
totally external. The core electrons therefore
provide antishielding effects to the field gradient
at the nucleus due to the ionic charges in the
lattice which are similar to those experienced by
the field gradient due to a point charge totally
external to the core electrons. This antishielding
factor y, would appear at first sight to be that
typical of free Zn?* or Cd* ion. However, since
the conduction electrons are present and do pro-
vide some screening of the potential experienced
by the core electrons in the ion, the core elec-
trons are expected to be somewhat more loosely
bound in the metal than in the free positive ions.
To test the influence of this loosening of the wave
functions of the core electrons on y ., we have
calculated the latter for Zn?* ion using the same
configuration 1s22s22p%3s23 p®3d'° as in the free
ion but with the wave functions for these electronic
states taken as those in the neutral atom where two
additional electrons in the 4s state are present.
The procedure employed was the conventional

one?® involving the solutions of the differential
equations for the perturbations in the one-electron
wave functions due to the potential produced by

the nuclear quadrupole moment. The value of v,
obtained in this way?” with the neutral Zn® wave
functions for the core electrons was

(Veo) gu2+ = — 13.96

as compared to the value of y,, for free Zn®* ion
with electronic wave functions corresponding to
the free Zn®* ion, namely

(7)o = - 12.73.

It is seen that the two values differ by less than
10%. Therefore no significant error is made in
using values of y, corresponding to the free Zn?*
ion in zinc metal and free Cd* in cadmium metal.
For zinc metal, since we had it available, we have
used the value of (v,)%,2+. For cadmium metal,
we have used a value of y,, equal to*” -31.9 cor-
ponding to Cd®* ion for the ionic contributions to
the field gradient. The same antishielding factor
is also appropriate for the distant conduction-
electron contributions to the field gradient.

We consider next the question of appropriate
shielding factors for the various conduction-elec-
tron contributions to the field gradient in Eq. (19),
excluding of course the distant contribution. As
remarked earlier in this section, it has been the
practice in the past'® to consider the conduction-
electron field gradient to be subject to a small
shielding effect appropriate for the valence elec-
tron in the atom. However there is an important
point of difference between the valence-electron
distribution in the atom and the conduction-elec-
tron distribution in the metal. The valence-elec-
tron distribution is usually peaked?® a short dis-
tance outside of the maximum of the density from
the outermost core electron and then vanishes ex-
ponentially. A major part of the valence-electron
density therefore strongly overlaps the core den-
sity distribution and cannot perturb the core elec-
trons as effectively as a totally external charge,
which is the reason for the great difference be-
tween the shielding factor R for the valence elec-
tron®® and y,, for the external charge.!” The con-
duction-electron distribution also has a peak dis-
tribution in the region of the core electrons which
usually extends up to about one-half the radius of
the Wigner-Seitz sphere. However, over the rest
of Wigner-Seitz sphere, the conduction-electron
distribution does not vanish but instead assumes??
a near-uniform distribution described by a linear
combination of plane waves. The fact that there
is a linear combination of plane waves brought
about by the potential (or pseudopotential) is im-
portant because a single plane wave would give an
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FIG. 1. Plots of core and plane-wave parts of the con-
duction-electron (I =2 component) densities to demon-
strate the relative externality of the latter. The ordi-
nates of the various curves have been scaled for visual
convenience.

isotropic density distribution and hence zero-field
gradient. The crucial point is that, unlike the
atomic case, the conduction-electron distribution,
instead of dying down to zero away from the core
region, stays finite over a volume of about 7 of
the Wigner-Seitz volume. From this latter region
the antishielding factor is expected to be closer®®
to ¥, due to an external charge than to R for the
valence electron. The reason for this expectation can
be clearly emphasized by plotting the radial part
pr¥-E¥(r) of the /=2 component of the PW-PW part
of conduction-electron density as described by Eq.
(30), namely
P o " (1) = ST Yoo () + PLUEN () Vg (F) -+
(30)
against » and comparing it with the radial densities
due to the 3p and 3d core electrons. This is done
in Fig. 1, from where it is seen that while
Py omt' () does penetrate into the core region, a
major part of it is in fact external to the core den-
sity distribution. If there were no penetration into
the core region, one would be justified in employ-
ing antishielding factor vy, for the field gradient due
to the PW-PW component of the conduction-elec-
tron density. From the fact that there is some
penetration of p; %.0*(r) into the core region, .
in fact appears to be an upper limit for this case.
From Fig. 1 it appears that a reasonable lower
limit to the antishielding factor y for the field
gradient due to the PW-PW component would be
éy,,, with the actual antishielding factor lying
between v, and 3y.; most likely somewhat closer
to the lower 1imit®® rather than the upper, but
certainly very sizeably larger than the small value
R, appropriate for valence electrons in atoms.
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For the other components of the density in Eq.
(19), namely the TB-TB component and the hy-
brid PW-TB component, the corresponding p,(¥)
closely overlap the core distribution and it would not
be very erroneous to neglect shielding or anti-
shielding effects for the field gradient due to these
conduction-electron density components.

IV. RESULTS AND DISCUSSION

Tables I and II present the results of our calcu-
lation of the field gradients in the metals zinc and
cadmium with the results broken up into contribu-
tions from the first four bands (the third row in
the tables being the sum of the contributions from
the third and fourth bands) which are either fully
or partially occupied, the last row being the to-
tal from all four bands. In both of these tables,
the first column gives the indices of the bands.
The second, third, and fourth columns present
the contributions from the sums from each band
of the TB-TB and hybrid PW-TB terms in Egs. (21)
and (22), broken up according to the combinations
of I and !’ in the F and H integrals occurring in
these equations. In other words, the various com-
ponents represent the contributions to the field
gradient from the combinations of the I and I’
components in ¥, and ¥, in the TB-TB and hy-
brid PW-TB parts electron density ¥}¥,. The
contributions are given only for the sd, pp, and
dd terms, the density terms involving [ compo-
nents of the wave function beyond d making very
small contributions. In the fifth, sixth, and
seventh columns, we have listed the PW-PW con-
tributions from various bands using antishielding
factors y [in the net multiplying factor (1 - y)] of
0, %y., and y,,, respectively, with the second
choice (in the sixth column) being the most plausi-
ble as pointed out in Sec. III. The choice in the
fifth column corresponds to that used in earlier
calculations and the seventh column is expected to
represent an overestimate. The eighth column
gives the distant term given by Eq. (23) but multi-
plied by the antishielding factor (1-y.). The
ninth, tenth and eleventh terms represent the net
conduction-electron contributions corresponding
to the three choices of y used in columns five,
six, and seven for the PW-PW contributions to
the field gradient.

Considering first the results for the local or
TB-TB and hybrid PW-TB contributions, the sums
of which for the various bands are listed in the
second, third, and fourth columns, there are three
main features of these results. First, the major
contribution to these terms arises from the TB-
TB term, the hybrid PW-TB making a small con-
tribution of opposite sign. Thus, in zinc, the TB-
TB and hybrid terms contribute, respectively,



3007

THEORY OF NUCLEAR QUADRUPOLE INTERACTION IN...

"uoTINqLIjU0d dABM-duBId 9y} 10} S1030€] BUIP[OIYSIIUE JO SIOIOYD DIy} SY} 03 I9JAI SUWN[OD Y} SYL ,

'06°2€=""A—1 SI pasn 10308} SUIp[SIYSIjUE JO 9ot0yD
"G6°9F ="AZ—1 ST pasn 1030¥] SUIPIAIYSIIUE JO 0T0YD,
"SWLI9) PLIqAY pue Surpurq-3yS3 Jo wns oYL,
"gWO/MS3 (0] JO SHUM,

26°€6% €8°69¢ YL'S¥e 62°€1— 96°662 L8°TET 8L°L 06°¥%7 9L°G€3 6S°0 183001
86°92— 06°€1— G800~ 00°0 86°9¢~ 06° €1~ 280~ 00°0 00°0 00°0 €
1541 89°16 S6°87 c8'1— G0°0ST 63" LL 98'% L0°€ €L°CT 10 14
6%°96¢ G0°263 19°L2% Ly Ii— 26°2¢7 8%°89 Y0¥ €8°11 €0°€362 81°0 T
¥py ¥®pho II @o10YO I 9o10Y0 papiatysun 127 dq s puedg
o UOTINQLIUOD uornqraIjuod uwﬁgmzwﬂc{ 5 duIp[eIyYsS1IUY Md-€Llpy 4 GL-E1p
UO0JI}O9[9-UOTIONPUOD [BI0T, JueISIQ Md=Mdpo 130919 [B00T

uoTINGIIJUOD dABM-dUB[]

2 PO Ul SUOJ}093 UOT}ONPUOD WIOIF JUSTPBLS PIATJ Y3} 03 SUOIINIIJUOD SNOLIBA JO ISTT “II ATHV.L

‘uo|NqIIIU0d daEm-duE[d Sy} 10} SI030E] SUIP[TYSHUE JO SSITOYD 991y} Y] 0} I9JAI SUWN[OD Iy} YT,

‘96°%7="A— ] SI pasn 10308} SuIpP[dTYSTIUE JO ?d10yD
"86°L="A £—1 SI pasn 10}0e} SUIP[SIYSTIUE JO IOT0YD ,
"Sur19} praqhy pue Surputq-jysy jo wns 9yl
*UID/MS3 0T JO SHIU[),

L8°G¥¢ 91°661 LY 2ST 86 %~ 607007 8€'€S 69°9 8T°0T LY 6ET TT°¥ 1ejoL
99°'9~ 8L 1~ e ¥ 0~ Ly or— 6G°G— 040~ G0'¥ G6°2 S1°0 €
28°99 9L°TY 0L°91 gL 0~ T1L°€S G9°8¢ 65°€ ev'e 96°0T Sv°0 14
TL°S8T 81°6ST 99°2¢€T1 c6'€~ G8'9G cg'0€ 08°¢ L9 96°G621 16°0 T
©pha ¥¥®pho II @o10Yd I @ot0yo popiatysun op dq s pueg
5 UOTINQIIJU0D uoTINqIIFUod p3uIpeIYSTIUY  , SuIp[erys1uY Md-8lpy + GL-91lpp
U0JI}09[9-U0T}ONPUOD [BIO], ueIsIqQ Md=Mdpo q399330 [800T

uoTINrIjuod aAEM—9UB[d

¢ UZ Ul SUOJI}O9]9 UOTJONPUOD

WOy Ju9IpPeIs PIaTy oY} 0} SUOTINQIIIUOD SNOTIEA JO ISTT I ATAVL



3008

102 and -2% to the net local term. Second, of the
contributions from the three components sd, pp,
and dd listed, the pp make the most important
contribution, almost 79 and 76% for the first band
and 26 and 14% for the second band of zinc and
cadmium, respectively. The third feature is that
the first band makes the major contribution to the
local part of the field gradient, comprising 88 and
94%, respectively, of the total electronic part of
the field gradient in zinc and cadmium. This fea-
ture is in some contrast with the situation in the
two metals beryllium and magnesium, with ¢/a
closer to ideal, the first and second band contribu-
tions in these metals being comparable in magni-
tude but opposite in sign.!*

The first of these features for the local contri-
bution can be understood by noticing from Egs.
(21) and (22) that gp5_rp involves the integral
F(nl,n’l") while qp_py involves H(nl,l’, |k+G|).
The former, from Eq. (28) is seen to involve
the product of two core radial functions P,; and
the latter, from Eq. (27), involves P,, and
7j,.(|K+G|7). The core radial function has rela-
tively much greater amplitude near the origin and
therefore makes a much larger contribution to the
integral involving 1/7% than the Bessel function
(multiplied by 7). The second feature, the greater
contribution to the field gradient from the pp com-
ponent of the local density, is also observed in
molecular systems.3! The reason for this is that
the pp component involves wave functions with the
lowest value of I and therefore the largest density
near the nucleus that can contribute to the field
gradient, the ss contribution being zero due to its
spherical symmetry. The sd contribution involves
two different  components and therefore two dif-
ferent types of radial functions, whose overlap
with each other is less effective than for two with
the same radial character as in the case of the pp
component. The third feature, namely the largest
contribution from the first band, is a little more
difficult to explain, but the following explanation
may be offered. The first band, being completely
occupied, fills a complete Brillouin zone which
departs rather strongly from cubic symmetry for
zine and cadmium. The k- space anisotropy,
which through the k integration leads to T-space
anisotropy, is expected to be more pronounced
for this band than for the other bands, because
while the occupied part of k space for the first
band reflects the symmetry of the Brillouin zone,
the higher bands which only partially fill the
Brillouin zone tend to occupy a region of k space
intermediate between the shape of the Brillouin
zone and a Fermi sphere, the latter being the ex-
treme case characteristic of free electrons.

Considering next the PW-PW contributions, it
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is seen from ihe columns five, six, and seven of
Tables I and II that while gpy._py iS very small
compared to the local contribution when one ne-
glects antishielding effects, for both the choices
Yo and Y., py.py DeCOMes comparable in impor-
tance to ¢rp.rp +drp-pw- The other noticeable fea-
ture is the fact that for g,y_py, the first and sec-
ond band contributions are of equal importance in
contrast to the observed behavior in the local case
in this respect. The reason for this difference in
behavior in the two cases is probably due to the
fact that the PW-PW contribution depends on the
fractional importance of plane-wave character of
the wave functions, in contrast to the importance
of the core character for the local contribution.
The plane-wave character is perhaps of greater
importance for the second band, but this is partly
neutralized by the greater anisotropy of the k
space over which integration is carried out in the
case of the first band, making gpy.py 0f compara-
ble importance from both bands.

The eighth column presents the distant contri-
bution. Its significance has already been dis-
cussed in Sec. IIl and the antishielding factor used
for it is y,. The last three columns in the tables
give the total contribution to the field gradient
from the conduction electrons for the three choices
0, $y., and y., for the antishielding factor for
dpw.pw- These three values of the net field gradi-
ents are percentagewise less different from each
other than the three corresponding PW-PW con-
tributions, since the latter are all added to a
common sizeable local contribution. From an
examination of the charge distribution in Fig. 1
and from preliminary calculations®® that we have
performed on the shielding for conduction elec-
trons by a first-principle procedure, it appears
that the choice of 3y, for the PW-PW contributions
is a reasonable choice. Nevertheless, in choosing
our confidence limit in obtaining the quadrupole
moment of ®Zn and *!Cd from the quadrupole
coupling constant in the metal from perturbed
angular correlation data, we shall use a range
of error of about +20 x 10'® and +30 X 10'% esu/cm?
for zinc and cadmium, respectively, for the field
gradient which correspond to about 40% of the
difference between the values of gpy.py With the
antishielding factors of 3y, and y.. These error
ranges should also cover other possible sources
of error such as possible inaccuracies of the con-
duction-electron wave functions and in the summa-
tion in k space. Thus, the conduction-electron
contributions to the field gradient for the two
metals can be written

€qcona(Zn) = 199.2 X 10'2 esu/cm?
€qo0na(Cd) = 369.8 X 10'3 esu/cm3

(31)
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at standard pressure and temperature of 760
Torr and 0°K, respectively. Combining with the
ionic contributions of

€qomc(Zn)= —64.4 X 10** esu/cm?, 2

€q,on1c(Cd)==119.6 X 10'* esu/cm?,

the total field gradients, including the confidence
limits we have chosen, can be written

eq(Zn) = (135 +20) X 10** esu/cm?, (33)

eq(Cd) = (270+ 30) x 10** esu/cm?.

Using the experimental quadrupole coupling con-
stants for zinc and cadmium at standard pressure
and the temperature, namely %32

€*qQ(°*"Zn(3"))=49.5 MHz,

(34)
e*qQ(*''Cd(3*))=137.5 MHz ,
the quadrupole moments obtained are
67 9+)) =
Q('Zn(£*))=0.50£0.08 b, (35)

Q('Cd(3*))=0.76+0.14 b.

The quadrupole moment for !Cd is in surpris-
ingly good agreement with the value (=0.77+0.11
b) obtained from ionic crystal data'® and substan-
tially smaller than the large value* of 2.17 b ob-
tained earlier, when the antishielding effect for
dpw-pw had been neglected. For ¢’Zn(3*), there is
no value available from other sources to compare
with our value in Eq. (35). There has been no
perturbed angular correlation measurement in
this particular level of ’Zn in ionic crystals.
There are Mdssbauer measurements®® in ionic
compounds of zinc for a M&ssbauer active level,
67Zn™(3"), but unfortunately no data in the metal
are available for this nuclear state. It will be in-
teresting to have both the metal and ionic crystal
environments to be able to make a similar com-
parison as in *!Cd™ It should be noted that our
value of @ for Zn(3*) in Eq. (35) is not as dif-
ferent from the earlier published value'* as was
the case for !Cd(3*). The reason for this is that
there was unfortunately a numerical error in the
earlier calculated conduction-electron field gradi-
ent in zinc, particularly in the local contribution.
The value that one actually obtains using the con-
duction-electron field gradient in the eighth col-
umn of Table I, in which gpy_py is included with-
out antishielding effects, comes out rather large,
namely 1.3 b.

It should be pointed out that in the case of be-
ryllium and magnesium metals, good agreement
has been obtained™® in the past between theoreti-
cal and experimental values of the field gradient
using unshielded PW-PW contributions. The ex-
perimental values of the field gradients, for com-

parison with theory, were derived from the mea-
sured values of the quadrupole coupling constants
€%qQ/h in these metals for the stable °Be and
2Mg nuclei obtained®* % by nuclear magnetic res-
onance techniques and dividing the measured
e%qQ/h by the available nuclear quadrupole mo-
ments®® 37 of these nuclei. The theoretical values
of the field gradients in these metals should also
incorporate PW-PW contributions that are anti-
shielded in the same manner as in the cases of
zinc and cadmium. However, due to the rela-
tively small values of y,, in these systems,
namely®® —3.2 and +0.185, respectively, in Mg**
and Be**, one does not expect the incorporation
of antishielding effects on gpy._py to make them
comparable in importance to the local contribu-
tions, as in zinc and cadmium, and hence have an
important influence on the net field gradient in
beryllium and magnesium. Thus, in the case of
magnesium, if we apply an antishielding factor of
3y, =- 1.6, the value of the total eq is changed to
1.95 X 10** esu/cm?, not significantly different
from the value of 2.1 X 10'® esu/cm?® obtained
earlier® without applying any shielding correction
to gpy.pw. The revised theoretical value of the
total field gradient in magnesium,® as also is the
case with the earlier theoretical value, is in very
good agreement with the experimental value of
2.04 X 10'% gsu/em®. For the case of beryllium,
where y, is very small, namely —0.185, the anti-
shielding of qy._py iS expected to have even less
significant effect on the net field gradient than in
the case of magnesium and should therefore leave
unaffected the good agreement between theory and
experiment found in earlier work.®

Last, we would like to comment on the relation-
ship between our results, and particularly the
incorporation of different shielding effects for
different parts of the field gradient contribution
from conduction electrons, on the empirical re-
lationship observed recently'® between the elec-
tronic and lattice contributions to the field gradi-
ent in a number of alloys and pure metal systems.
Thus, by a combination of the measured magni-
tudes and signs of the total quadrupole coupling
constants and the lattice contributions to them
from summations of the contributions from the
ions in the lattice, the conduction-electron con-
tributions were found,'® in a number of alloy and
pure metal systems, to range between -2 to —3
times the lattice contribution, antishielded by
(1-v.) of the ion containing the nucleus. The
antishielding factor thus corresponds to the im-
purity ion in the case of an alloy and the ion in the
metal for the pure metal case. From our present
results in zinc and cadmium in Tables I and II,
the ratios of the conduction electron and lattice
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contributions come out as -3.1 for both metals,

in good agreement with the empirical relation-
ship.!® Without the antishielding effect used in
this work for the PW-PW contribution, the corre-
sponding ratios would be —2.4 and -2.1, respec-
tively, which are also over-all in the empirically
observed range.'® The important point is that
whereas in the earlier work,'* all parts of the
conduction-electron contribution were assumed
not to be antishielded at all, in our present work,
the PW-PW contribution is subjected to a signifi-
cent shielding effect involving 3y, it not y,. In
the present theoretical analysis there is therefore
more support for the empirical correlation.'® In
alloys, however, both the lattice and conduction-
electron contributions are expected to be affected
by the distortion of the lattice around the impurity
ion relative to the configuration of the host lattice.
This is perhaps the reason for the significant de-
partures observed® from the empirical range of
the ratios ¢,,,4/qonic in cases (with a few excep-
tions) where the c/a ratio is close to ideal and the
host lattice has a relatively small field gradient.
For host lattices with relatively large ¢/a as in
zinc and cadmium where the departure from cubic
symmetry is already quite large in the pure metal,
the percentage changes in the field gradient con-

tributions from the lattice and conduction elec-
trons (aside from the antishielding factors) in the
alloys, due to lattice distortions around the im-
purity ions, are expected to be relatively less
important compared to the field gradients in the
host lattices, than would be the case for host lat-
tices with ¢/a close to ideal. The conduction
electron and lattice contributions are therefore
expected to follow the same empirical correlation
(as is indeed observed to be the case) in the alloy
systems with zinc and cadmium as hosts, as in
the pure metals. Our present work shows that
for the latter, the theoretical ratios for g,/
Qionic 3gTee well with the experimental trend.!®

V. CONCLUSION

The field gradients due to the conduction elec-
trons in zinc and cadmium are calculated using
a pseudopotential procedure to obtain the elec-
tronic wave functions. From a careful study of
the conduction electiron distribution relative to
that of the core electrons, the plane-wave con-
tribution is estimated to be antishielded by a fac-
tor of about (1- 3y.). Using this choice the quad-
rupole moments of *Zn($*) and ''Cd(3*) are eval-
uated, the latter being in good agreement with
the value obtained from ionic crystal data.!®
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