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Structure factors in amorphous and disordered harmonic Debye solids
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Expressions for the static and dynamic structure factor of Van Hove and for the static structure factors
appropriate for x-ray and neutron scattering and for resistivity are presented in harmonic approximation for
amorphous and disordered solids having a Debye phonon spectrum. A useful model dynamic structure factor
containing a temperature-dependent function of K is defined. The high- and low-temperature limiting forms
are examined in detail and the entire temperature dependence is discussed qualitatively. Applications in the
areas of resistivity and scattering of x-rays are discussed.

I. INTRODUCTION and

The dynamic structure factor S(K, &u} introduced
by Van Hove' can be expanded in the form

S(K, w) =So(K, &e) + S,(K, &e)+ ' ' ',
where in harmonic approximation

S,(K, (u) = a(K)e '~&" '5(&d)

We shall attempt to elucidate the properties of
the various structure factors arising in the study
of glassy and disordered solids and will discuss
a model dynamic structure factor Se(K, &d) pro-
posed in a previous publication. ' We shall assume
a Debye phonon spectrum throughout the sequel.

S, (K, W) n(-u) + hK'
e-2w~K } —~ 2M

+ a(K —|I)5(&d —&d, )],
where e '~' ' is the Debye-Wailer factor and

q =(II,j) with polarization index j, and defining
x =h~/kT,

n(&d) =(e"—I) '.
We shall use this definition of x throughout.

The structure factor a(K) is defined as

(3)

II. STATIC STRUCTURE FACTORS FOR A HARMONIC
APPROXIMATION DEBYE SOLID

For a Debye solid Eqs. (3) and (6) yield

hK~
Sf(K) = g &e,

' [a(K-g)(n, + I)+a(K+ Q)n, ]

1
= o&(K) —d —[n(x) + ~] —a(K+ g) . (8)

o i&a &D 4m

Similarly Eqs. (3) and (7) yield

a(K) = —g exp[iK ~ (m —n)]. (&)N„
Systematic theoretical investigation of S(K, &d) in
crystalline solids and liquids has proven highly
enlightening. ' Furthermore, as is well known,
S(K, &d) is directly accessible to experiment.
Disordered and amorphous solids have contin-
uous structure factors a(K} which yield physical
effects different from those occurring when a(K)
is a sum of 6 functions.

It has proven useful to define static structure
factors appropriate for various physical processes.
In this work we will be interested in the static
structure factor appropriate for x-ray or neutron
scattering, S*(K), and the static structure factor
appearing in Ziman's expression for the electrical
resistivity S'(K). These functions are defined as

hK2 h
Sf(K) =- p [a(K+II)+ a(K —fl)]n(x)n(-x)

a

= —&r(IC)(e/T) d —n(x}n(-x}
ga gL}

dQx —a(K+q) .
4m

(9)

III. HIGH-TEMPERATURE FORMS

In these integrals x = hv, /kT = (h&eD/kT)(q/qn)
=(0/T)q/qn. The abbreviation n(K) =3(hK) e ' &x'/

Mke will be used throughout. Given a structure
factor a (K) and a Debye temperature 8, Eqs. (8)
and (9) allow computation of the static structure
factors to arbitrary precision. However, we shall
proceed in a general way.

S(K, (d)d&d (6)
At high temperatures n(x) =—n(-x) = x ' » I for

most q values in the integral of Eqs. (8) and
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(9). Thus,

1

S,'(K) = S,"(K)—a(K) — d — —a(K+ q) . (10)8 0 q~ 4m

S„(K,&o) =—S,(R, &u) +S„,(K, &u) +

where So(K, &u) is defined in Eq. (2) and

(17)

The integral in Eq. (10) averages a(R) over a re-
gion within q~ of K. This average will effectively
smooth out the variations in a(K) and approach its
average value of unity.

IV. LOW-TEMPERATURE FORMS

S„,(R, ~}-=i

0, /x/&O.

(18)

At low temperatures n(x) «1 for most q values.
Thus, in Eq. (8) for the x-ray static structure fac-
tor the zero-point motion term will dominate and

1

S,"(K)--,'a(K) 2 q d—
0 qg) qL}

—a(R+q) . (11)
4n

(12)

—a(K+q) =a(K)+ —a (K)+ ~ ~ ~,dQ ri
4w

The integral in Eq. (11) is a weighted average of
a(K) over a region within qn which will again ap-
proach unity at all K.

In Eq. (9), on the other hand, there is no zero-
point term and the presence of the n(x) factor will
cause the dominant contributions to the integral to
come from regions of small q, i.e. , the average
of the structure factor will be over only a small
region near K rather than over all values within

qD of K. Thus, we can make a Taylor expansion of
a(K+ q} about a(K) and neglect higher-order terms:

a(R+ q) = a(R) + q V-„a(K)

+ —,
'
qq: V, V, a(K) + ~ ~ ~ .

For glassy materials a(K) = a(K) and so

S„,(K, &u) as been constructed in analogy with Eq.
(3) and satisfies the detailed balance condition and

gives the proper x-ray and neutron static structure
factors. This will be shown next.

VI. X-RAY AND NEUTRON SCATTERING

Integration of Eq. (6}using (17) and (18}yields

S„*(K)=a(K)e ' ~ '+a(K)(T/BpI(8/T)A"(K)+ ~ ~ ~

=a(K)e ' ' 42W(K)A*(K)+ ~ ~ ~ (19)

where

= a(K)e "'«&+A"(K)(1 e- "'&&&) (2o)

I(X) = x(n(x)+-,'dx,
0

(21)

and a(K)(T/8)'I(O/T) is the exponent in the Debye-
Waller factor. The form expressed in Eq. (20) is
a generalization of the Debye independent oscillator
expression, ' which is often assumed for structural-
ly disordered systems. ' ' Our analysis indicates
that A"(K} is a coarse average of the structure
factor a(K} at all temperatures. In particular at
high temperatures

where

a"(K) =-', [a"(K)+ 2a'(K)/K], (14)
q dQ

A "(K)- d — —a(K+ q},
q~ 4m

(22)

I„(X)—= x"n(x)n(-x)dx .
0

(16)

V. MODEL DYNAMIC STRUCTURE FACTOR

We have shown how the various averages of the
structure factor a(K) play a role in determining
the static structure factors. We are thus led to
define a model dynamical structure factor S„(K,u&)

containing a temperature-dependent averaged
structure factor A(K).' In analogy with Eq. (1) de-
fine

with differentiation with respect to K indicated by
prime. Thus,

S;(K) = a(K)(T/8)'[a(K)I, (8/T)+ a"(K)(T/8)'

x I,(8/T) + ~ ~ ~ ], (15)

where

and at low temperatures

A"(K) — 2 —d — —a(K+ q} .q q dQ

qD qD 4W
(23)

VII. ELECTRICAL RESISTIVITY

Integration of Eq. (7) using (17) and (18) yields

S'„(K)= a(K)e '~«'+ a(K)(T/8)'I, (8/T)A'(K) .

(24)

We have used this form in a previous publication'
to explain the 1 dependence of the electrical re-
sistivity observed in numerous disordered and
glassy metals at low temperatures. In that publi-
cation we stated that at low temperatures A'(K)
goes to the ordinary structure factor at low tem-
peratures and that at high temperatures it ap-
proaches unity. This can be verified by examina-
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tion of Eqs. (10), (15), and (24). At high tempera-
tures

A'(K)— d — —a(K+ q) =A*(K) .q dQ

q~ 4m
(25)

which goes to a(K) at T =0. We also see that the
deviations go as (T/8}' at low temperatures.

We see that A'(K) varies from a(K) at absolute
zero to a coarse-grained average of the structure
factor at high temperatures in a continuous man-
ner.

VIII. CONCLUSIONS AND SUMMARY

(i) In harmonic approximation with a given pho-
non spectrum Eqs. (2)-(I) can be used to compute
static structure factors at any temperature. For
a Debye solid, Eqs. (8) and (9) can be used to com-
pute static structure factors at arbitrary temper-
ature. I.imiting expressions valid at high and low
temperatures are provided in Eqs. (10), (11), and
(16).

(ii) The model dynamic structure factor defined
in Eqs. (2), (1V), and (18) provides a useful frame-

A'(K) is a coarse average of the structure factor
a(K} and is therefore approximately equal to unity
for all K. At low temperatures

A (K}= a(K) + (T/8)'a (K)I4(e/T)/I2(e/T) + ' ' (26)

work for the analysis of x-ray and neutron scatter-
ing experiments and resistivity studies in amor-
phous and disordered materials.

(iii) For x-ray or neutron scattering the averaged
structure factor A(K} appea. ring in the model dy-
namic structure factor is a coarse-grain average
of the structure factor a(K) within q~ of the argu-
ment K at all temperatures, i.e. , A*(K) = 1 at all
temperatures in amorphous and disordered solids.

(iv} For resistivity, the averaged structure fac-
tor A'(K) = a(K) at T =0 with deviations going like
(T/8)' at low temperatures. At high temperatures
A'(K) =A*(K) = 1. Thus, as temperature is in-
creased A'(K) goes over smoothly from the gener-
ally highly structured function a(K) at T =0 to a
coarse-grained average of a(K) at high tempera-
tures.

(v) The approximate form for the static struc-
ture factor for x-ray or neutron scattering given
in Eq. (20) is given a physical basis in terms of
the averaged structure factor A "(K) defined here.
One sees that for amorphous materials a rough
approximation may be obtained at all temperatures
by substituting unity for A "(K) in Eq. (20).

(vi) As previously reported, ' for any metal whose
structure can be represented by a continous a(q),
the low-temperature resistivity varies as T' rather
than T' and at high temperatures, the resistivity
should vary linearly in T as in the crystalline case.
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