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A new theory of lattice vibrations in amorphous silicon dioxide is presented in which the randomness of the
solid is treated separately from its chemistry. The theory attributes all measurable properties of phonons in
silica to the nearly crystalline nearest-neighbor geometry of the lattice and to the disruptive effects of bond-
angle disorder. Neutron, infrared, and Raman spectra are calculated and compared with experiment. The
theory is an application of the recently developed cluster—Bethe-lattice approach to studying amorphous

solids.

I. INTRODUCTION

The cluster-Bethe-lattice method"'? is a power-
ful new tool for studying the electronic and vibra-
tional properties of amorphous solids. Its basic
precept is that embedding a cluster of atoms in a
solid is nearly equivalent to applying to the clus-
ter a simple dynamic boundary condition charac-
terizing the chemical composition of the host.

It has significantly improved our understanding of
amorphous solids by simplifying the mathematics
used to study them theoretically.

Amorphous silicon dioxide has attracted con-
siderable attention recently as a subject for sur-
face studies.® Light scattering measurements of
surface vibrations are particularly practical in
silica because it is transparent, and because it is
available in a porous state characterized by a
very large surface-to-volume ratio. The feasibil-
ity of surface-sensitive experiments in silica has
stimulated considerable interest in its surface
chemistry.

As yet, no simple theory has been proposed to
complement these experiments which can address
the dynamic interaction between the surface and
the substances adsorbed on it. Such a theory is
needed to interpret and clarify the experimental
results for heavy, weakly-bonded adsorbates,
especially those whose vibrational bands coincide
with those of the substrate. We propose to use
the cluster-Bethe-lattice method to formulate a
suitable theory, making use of the similarity be-
tween pores in the solid and structural defects.
The cluster—Bethe-lattice method was developed
for the express purpose of investigating structural
defects and is ideally suited to constructing a
theory of surface vibrations based on them.

In this paper, we will be concerned primarily
with the preliminary aspects of the synthesis:
constructing the Bethe lattice, obtaining its solu-
tion, and testing against experiment its predic-
tions for bulk amorphous silicon dioxide. Since

the behavior of surfaces is so closely tied to the
behavior of the bulk, we will also concentrate in
this paper on improving our understanding of the
bulk, particularly the relative importance of the
various kinds of disorder. In addition to explaining
how the Bethe lattice is constructed, we wish to
establish the following: (i) What in the Hamiltonian
caused the features in the vibrational density of
states to be where they are? (ii) How are the
atoms moving? (iii) What caused the matrix ele-
ments associated with a given measurement to
assume the values they do? We proceed as fol-
lows. We will first describe the Bethe lattice

and explain how it functions as a boundary condi-
tion for clusters. We will then show that if it is
constructed using reasonable interaction param-
eters, the Bethe lattice possesses a vibrational
density of states similar enough to that of the
actual solid to imply that local geometry is pri-
marily responsible for the character of the vibra-
tions. We will provide evidence that most of the
disparity between the crystal and amorphous den-
sities of states is due to bond-angle disorder. To
establish how the atoms are moving, we will cal-
culate local densities of states, and use them to
determine how the displacements of nearby atoms
correlate at low temperatures. We will then use
the correlation functions to calculate neutron,
infrared, and Raman spectra directly, rather than
following the customary procedure of multiplying
the density of states by the square of the appro-
priate matrix element, in order to explain from a
local point of view why the spectra look as they do.

II. BETHE LATTICE

A Bethe lattice is a bonded network of atoms
which has the topology of a tree. The nearest-
neighbor geometry and local environment of an
atom are the same as those in the actual solid,
but the ordinary necessity of having rings of bonds
in the structure and fluctuations in the interaction
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parameters due to disorder is arbitrarily abol-
ished. The Bethe lattice itself is a poor model for
the structure of the actual amorphous solid, ex-
cept in cases where lattice topology is unimpor-
tant. Its virtue lies in its exceptional simplicity
and in the “transfer matrix” feature of its solu-
tion, this transfer matrix being identical to the
simple boundary condition mentioned previously.
The treelike topology characterizes the Bethe lat-
tice and is responsible for its simplicity and use-
fulness.

We illustrate the transfer-matrix feature of the
Bethe lattice with an example. Consider a tetra-
hedrally bonded crystal, such as germanium,
which we will transform into a Bethe lattice axio-
matically. We postulate that each bond may be
characterized by a 3 X 3 matrix of spring constants
D, which connects the atoms at either end of the
bond. The index v runs from 1 to 4 and indicates
into which of the four possible directions the bond
points. D, is a symmetric matrix.

We pick any atom and label it 0. We label its
first nearest neighbors by 1 and »,, where v, runs
from 1 to 4 and indicates the direction from the
central atom to the one addressed. We label the
second nearest neighbors by 2, v, and v,, where
v, and v, now indicate the sequence of directions
used in going from the central atom to the one in
question. The third nearest neighbors are labeled
by 3, v,, v,, and v,, and so on. In the actual solid,
this labeling scheme eventually becomes redun-
dant, as it specifies a particular path of bonds
leading to the labeled atom, which cannot be
unique. However, we can conveniently convert the
solid into a Bethe lattice simply by declaring every
atom indexed in this manner distinct. If this is
done, the vibrational Green’s function of the new
treelike lattice satisfies a simple, repeating set
of equations.

If we let G,, denote the part of the Green’s func-
tion connecting atom 0 to itself, G}} the part
connecting to a first nearest neighbor, and so on,
then we have

(@2=A)Gyo= D D, Goi+ 1, (1)
"1
(w? —A)G;i"DulGoo"' Z DVZG:;'V2, (2)
va#vy
(@ =46 =D, Gol + 30 D, G, (3)
<ide]

b
where A is the matrix of spring constants connec-
ting an atom with itself, given from translational

invariance of the Hamiltonian by

=~ D, (4)

We have set the masses of the atoms to 1. These
equations have a solution of the form

Gt =2,,Goo, (5)
Goy?=9, Gl (6)

o1

o ?

provided that the four transfer matrices &, satisfy

(W?-A)®,=D,+ ) D,2,5,. (7)
r#Y
Finding the transfer matrices is a difficult task,
but once they are found, the Green’s function is
relatively easy to construct. For example, from
Eq. (1) we obtain the diagonal term

G00=<w2—A—Z;Du<bu>-l 8)

from which the remainder of the Green’s function
may be constructed by repeatedly applying the
transfer matrices.

Knowledge of vibrational Green’s function of any
large mechanical system greatly simplifies deter-
mining the vibrational behavior of molecules when
they are bonded to the system. The Green’s func-
tion connecting the ith atom to the jth may be
thought of as the response of the ith atom to an
harmonic force applied to the jth. Suppose an
extra atom is bonded to the jth atom with a spring
having a force constant k. If we denote the dis-
placement of this atom by x, and that of the jth
atom by x;, then we have

ME = F o= ~kx o+ kx,, (9)
and if the motion is harmonic, then
(w3 — ww o= wix,. (10)

However, since G,; describes the response of the
jth atom to forces, we have

x;=GFj/M=Gwix,-x,), (11)
so that w must satisfy the equation
OJZ
w98 )x -0. (12)
< 1+ wiG,,/)"°

If we want to calculate the Green’s function of the
new system, the analysis proceeds along the same
lines and leads to

G =(w2_*“’3 >'l (13)
00 1+ wiG,,/ °

The “molecule” in this example has vibrations
which are shifted and broadened with respect to
the natural vibration at w=0 because the lattice
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FIG. 1. Topology of the Bethe lattice. Every pair of
atoms is connected by one and only one path of bonds.

“loads” the harmonic oscillator as though it were
a transmission line. The diagonal Green’s-func-
tion matrix element G,; corresponds to the impe-
dance of the line.

The loading of the molecule by the solid be-
comes more complicated when the molecule bonds
to the solid in more than one place. If the mole-
cule is connected to both atoms j and j’, then the
off-diagonal Green’s-function matrix elements
G, must be taken into account, and this necessi-
tates inverting a matrix of rank 2. In general, if
the molecule is bonded at » sites, the rank of the
matrix is n. In the cluster—Bethe-lattice method,
the off-diagonal matrix elements are assumed to
be zero, so that each connection can be loaded
independently of the others, and the Bethe-lattice
Green’s function, which is much simpler to cal-
culate than that of the actual solid, is assumed to
model the impedance of the solid adequately. The
validity of these approximations has been verified
by numerous theoretical investigations of elec-
tronic and vibrational states in amorphous solids.}

The silicon dioxide Bethe lattice we have con-
structed differs from the elementary one just de-
scribed only in that it is made up of two different
kinds of atoms. Its topology is illustrated in Fig.
1. Its solution is conceptually the same as that of
the monatomic Bethe lattice, and its details are
addressed in the Appendix.

We have used a Born-model* Hamiltonian in our
calculation because it was used previously with
great success by Bell and Dean® in their random-
network calculation for silicon dioxide. The Born
Hamiltonian assigns to each bond a potential ener-
gy of the form

=30|X-F|*+2(8 - )| & -§) 7|2, (14)

where X and 7 are the displacements of the atoms
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at either end of the bond, and # is a unit vector
pointing along the bond. a and 8 are, respectively,
4x10° dyn/cm and 0.7 X 10° dyn/cm. We have also
employed bond angles and bond lengths approxi-
mately the same as those found in quartz. The
practice of incorporating crystal parameters into
Bethe lattices is well established,! the philosophy
being that the amorphous solid is very similar to
the crystal over short distances.

III. PROPERTIES OF THE SiO, BETHE LATTICE:
DENSITIES OF STATES

We generate the density of states of the Bethe
lattice from the transfer matrices using the rela-
tion!

p(0)= = 2 Z21miG ()], (15)
i

where G; is the diagonal Green’s-function matrix
element associated with the jth degree of free-
dom. Each term in the sum is referred to as a
“local density of states” because it represents
the actual density of states weighted according to
how much the particular degree of freedom parti-
cipates in the state. We rely heavily upon local-
state calculations because they give us an excellent
feel for the nature of the atomic motions while
being relatively easy to perform.

In our silicon dioxide Bethe lattice, atoms of a
given species are all equivalent, so that there
exist only six independent elementary degrees of
freedom. Of these, the three associated with the
oxygen atoms are particularly important because
they are customarily used to identify the major
features in the infrared absorption spectrum. In
their early work on silicon dioxide, Bell and Dean®
suggested that the three primary features in the
density of states could be characterized as bond
rocking, bond bending, or bond stretching, ac-
cording to whether the oxygen atoms were moving
primarily so as not to compress bonds, so as to
bisect the Si-O-Siangle, or tobe parallel to aline
joining the two silicon neighbors, respectively.
Their classification, though reasonable, has never
been supported quantitatively, and for this reason
we are particularly interested in the bond-rocking,
bond-bending, and bond-stretching local densities
of states.

In Fig. 2, we show the calculated local densities
of states, comparing the three characteristic oxy-
gen local densities of states with that of a silicon
atom and with the total density of states. The
three features at 450, 800, and 1080 cm™ are each
enhanced in the appropriate oxygen spectrum, ex-
cept for the bending peak, which is accompanied
by spurious features in the “bending” spectrum.
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FIG. 2. Local densities of states in the silicon-
dioxide Bethe lattice. (a) Average of local densities of
states associated with the three degrees of freedom on a
silicon atom. (b) Average of local densities of states
associated with the three degrees of freedom on an oxy-
gen atom. (c) Average density of states. (d) “Bond-
rocking’ local density of states. (e) “Bond-bending”
local density of states. (f) “Bond-stretching” local
density of states.

The peak at 800 cm™ was found by Bell and Dean®
to correspond to a complex vibration involving sub-
stantial silicon motion in addition to “bending”
oxygen motion, a behavior reflected in the Bethe-
lattice results. This feature is accompanied by a
smaller triangle-shaped band peaking at 550 cm™
which is also predominantly “bending” in charac-
ter, but which does not involve substantial silicon
motion. It is important that this latter band is
the only one which is exclusively bond bending in
character,

The bond-bending local density of states also
manifests large features in the “rocking” bands
at 450 cm™. This is most easily understood from
the standpoint that “rocking” and “bending” are
distinguished from one another only by the pres-
ence of the Si-O-Si bend, which in silicon dioxide
has an angle of about 140°. The bend is a pertur-
bation to the 180° Bethe lattice previously solved
by Thorpe,® in which rocking and bending are de-
generate. The bend causes part of the rocking
bands to split off and become the 550-cm™ fea-
ture, while it mixes the 800-cm™ silicon-silicon
motion with bending oxygen motion, causing this
feature to show up in the bending spectrum. At
180° this feature has no oxygen character. The
rocking features in the bending spectrum are the
states left behind when the 500-cm™ bands split
off,

In Fig. 3 we compare the Bethe-lattice density
of states with experiment. The neutron data shown
in the figure, those of Leadbetter and Stringfellow,’
represent the density of states of amorphous

silicon dioxide modulated by a weakly varying
matrix element. In order to obtain good agree-
ment with experiment, we have artificially broad-
ened the Bethe-lattice density of states by con-
volving it with a Gaussian of width 75 cm™, The
amount of broadening is consistent with the dis-
order effects, which we will address momentarily.
For completeness we have also included in Fig.
3 the density of states calculated by Bell and Dean®
for their random network. The agreement of the
Bethe-lattice density of states with experiment is
tolerably good, except for the feature at 1233 cm™
in the experiment. There are three oxygen fea-
tures with proper widths and intensities, and a
low-frequency shoulder coinciding with the acous-
tic-like bands of the Bethe lattice. Galeener and
Lucovsky® have pointed out that the 1233-cm™ fea-
ture results from a Lyddane-Sachs-Teller split-
ting of the band at 1080 ecm™ which, since it is
due to long-range Coulomb interactions, we expect
to be absent in our calculations.

In addition to Bell and Dean’s classification

SaQw) exp
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FIG. 3. Comparison of calculated density of states
with neutron measurement. (a) Neutron data of Lead-
better and Stringfellow, showing density of states of
silica modulated by a fairly uniform matrix element.

(b) Solid curve is the calculated average density of
states of silicon-dioxide Bethe lattice broadened by

75 em™!. Dotted curve is the density of states of silicon
dioxide weighted as discussed in the text for comparison
with neutron data. (c) Theoretical density of states for
silica from random-network model of Bell and Dean.

1400



2946 R. B. LAUGHLIN AND J. D. JOANNOPOULOS 16

scheme, there exists a scheme recently proposed
by Galeener and Lucovsky® in which the vibration-
al bands in amorphous silicon dioxide can be
viewed as dispersively broadened vibrational
modes of SiO, molecules. Since the normal modes
of an SiO, tetrahedron are as acceptable degrees
of freedom for the Bethe lattice as the atomic dis-
placements, we can investigate the SiO, nature of
the vibrations by calculating the local densities of
states associated with the four fundamental vibra-
tions of a SiO, molecule.® In Fig. 4 we show the
results of such a calculation, in which we use
theoretical normal modes deriving from the same
Born Hamiltonian used in constructing the Bethe
lattice. The SiO, local densities of states do not
emphasize the major features in the density of
states. The projection onto the high-frequency mode
diminishes the rocking bands, but leaves the high-
frequency part of the density of states intact. The
symmetric-stretch mode is similarly insensitive
to rocking, but it is insensitive to silicon motion
as well, causing the 800-cm™ peak to disappear
and the 1080-cm™ peak to undergo distortion. The
two low-frequency modes select out the rocking
motions, but are distinct from one another only in
which half of the peak 450 cm™ they suppress. It
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FIG. 4. Bethe-lattice density of states projected onto
normal modes of SiO; molecule. The modes are identi-
fied in Ref. 9 in order (a)—(d) as vs, vy, vy, V5. Averages
were performed over the degenerate modes.
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FIG. 5. Bethe-lattice density of states projected onto
normal modes of Si,O molecule. The modes are identi-
fied in Ref. 9 in order (a)—(c) as v, vy, vy.

is clear that the vibrations of the Bethe lattice are
not well characterized as SiO, normal modes.

A “molecular” model more in keeping with Bell
and Dean’s® already successful classification
scheme is that of triatomic Si,O units. Triatomic
bent molecules such as H,0 have three fundamen-
tal vibrations which correspond crudely to rock-
ing, bending, and stretching oxygen motions. The
local densities of states of the Bethe lattice cor-
responding to these modes of an Si,0 molecule
are shown in Fig. 5. The projections are much
more systematic for these molecules than for SiO,
units. Each local density of states properly em-
phasizes one of the three major features in the
density of states, and the agreement is good
enough to indicate that silica may possibly be
thought of as an array of weakly interacting Si,O
molecules.

IV. DISORDER

In the bonded amorphous solid, such as silicon
dioxide, we expect to find two kinds of structural
disorder: topological and angular. Bond-length
variations are forbidden because the distortion
energies are too large, whereas bond-angle and
connectivity variations are expected and observed
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FIG. 6. Density of states of silicon dioxide Bethe
lattice with every Si-O-Si angle (a) closed or (b) opened
by 10° with respect to the nominal value of 138°.
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FIG. 7. Density of states of silicon dioxide Bethe
lattice with every dihedral angle (a) closed or (b) opened
by 10° with respect to the nominal value of 22°.
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FIG. 8. Comparison of Bethe-lattice density of states
with that of quartz calculated using the same Hamiltonian.

experimentally in x-ray data.!® Si-O-Si bond-
angle fluctuations of about 10° are typical for
amorphous silicon dioxide,!° and are particularly
important because the positions of the features in
the spectrum, especially the silicon-silicon and
bond-stretching peaks, are very sensitive to this
angle. In Fig. 6 we show the effect on the Bethe-
lattice density of states of increasing or decreas-
ing every Si-O-Si angle by 10°, The most impor-
tant change induced in the spectrum by this distor-
tion is lateral dispersion of the silicon-silicon and
bond-stretching peaks by about 75 cm™. This dis-
placement of the states by bond-angle fluctuations
should cause a smearing of the density of states
in the actual amorphous solid, and was our basis
for broadening the Bethe-lattice density of states
by 75 cm™ when comparing it with experiment in
Fig. 3. The sensitivity of the density of states to
very large Si-O-Si bond anrgle distortions has re-
cently been investigated by Sen and Thorpe.!' In
Fig. 7 we show the effect on the Bethe-lattice den-
sity of states of increasing or decreasing the di-
hedral angles by 10°. Dihedral angles have small-
er distortion energies than the Si-O-Si angle and
are consequently more likely to fluctuate in the
amorphous solid, but the density of states is rela-
tively insensitive to these fluctuations, so that the
most important angle disorder still resides in the
Si-O-Si angles.

In Fig. 8 we compare the Bethe-lattice density
of states with that of quartz calculated using the
same Hamiltonian. Most of the disparity between
the two spectra is attributable to the predominance
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of 12-fold rings of bonds in the structure of quartz.
Since the types of rings of bonds most likely to form
in the amorphous solid are those which form in the
crystal, we expect topology to introduce features
in regions where large disparities occur, such as
that between 100 and 400 cm™. However, we ex-
pect the features to be less distinct than those in-
duced by the crystal topology, as it is known' that
the effect of topological disorder is generally to
make the density of states more closely resemble
that of the Bethe lattice.

The most important aspect of the peaks induced
by the crystal topology is that they are sharp and
narrow, so that when the spectrum is broadened
to account for bond-angle disorder, they disappear
completely, causing the spectrum to be indistin-
guishable from the broadened Bethe-lattice density
of states. As can be seen from Fig. 3, however,
the broadened Bethe-lattice density of states is
itself virtually indistinguishable from that of the
random network of Bell and Dean,® so we have
established the important principle that bond-
angle disorder destroys any explicit manifesta-
tions of the network topology in the density of
states of amorphous silica. This might alterna-
tively be viewed as a consequence of the absence
of small rings of bonds in the solid.

V. INFRARED AND RAMAN SPECTRA

The other two phonon-sensitive experiments
for which data on amorphous silicon dioxide are
readily available are infrared absorption and
Raman scattering. Neither of these is a particularly
good measure of the density of states. We will
test theory against these experiments by calculat-
ing theoretical spectra using the mechanisms for
these processes presumed to be valid for quartz.

The usual procedure for obtaining the normal
modes of the lattice and evaluating the matrix
elements directly is impractical in the Bethe lat-
tice because the normal modes are highly degen-
erate and difficult to orthogonalize. We surmount
this problem by calculating spectra directly from
the Green’s function, using a simple relation be-
tween the Green’s function and the displacement-
displacement correlation function.

The Green’s function is a sum over the normal
modes of the form

F(mF(n)
G“(w)": 2 —i{;%—xi)? ’ (16)

n = %n
where X{"’ is the displacement of the ith atom when
the lattice oscillates in its nth normal mode. w,
is the frequency of this mode. G,; is againa 3
%X 3 matrix which operates on a force at j to pro-
duce a displacement at i:
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- - - X" F,
X;=Gy 0 Fy= Z Xf"’<w2 _ w2>' amn
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Since any displacement can be expanded in terms
of the normal modes

%,= 3 a &, (18)

n

we have
EEM =Y (aapxmxm
nm

=D (la,| %"z, (19)
n
therefore

5 | G ORHeetar

- Z(%? f (an(O)a:(t))e“‘"dt> Zmg{m

=D fw)d(w - w, KWE™, (20)

where f(w) is a function of frequency which depends
on the temperature. However, the imaginary part
of the Green’s function also takes this form

m —(myatn
Im[G, (w)]= - o D 6w - w KME (21)
n

so we have

= [ @Rt at

=- &OT{(—Q’) Im[G, A, (22)
Referring back to Fig. 2, we see that the dia-
gonal correlations of the Bethe lattice are already
quite different from one another, these differences

being associated with the slight enhancement of
the 450-cm™ peak in the neutron spectrum of Fig.
3 over the theoretical value. Inelastic neutron
scattering measures the dynamical structure fac-
tor S(d, w),'? which is related to the correlation
function by

s@0= 2 (3 [ @ROK0-Detal

X ei&-(ﬁ,-ﬁ,)’ (23)

where ﬁ, is the position vector of the ith atom.
This may also be written in terms of the Green’s
function.

s@, w)m-lm(ZE'Gu 'ﬁe“"ﬁ"“‘f’> . (24)
i J

The particular experiment we refer to evaluates
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FIG. 9. Nearest-neighbor correlation functions in the
Bethe lattice. (a) Trace of the correlation matrix, show-
ing negative correlation in the infrared-active bands.

(b) Silicon motion along the bond correlated with ‘bend-
ing” oxygen motion, showing tendency at 800 cm™! for
silicon atoms to squeeze oxygen atoms in the bending
direction. (c) Silicon motion along the bond correlated
with “stretching” oxygen motion, showing tendency of
atoms to move together in the acoustic-like bands.

S(d, w) at high-momentum transfers @, in the so-
called “incoherent limit,” where configurational
fluctuations in nearest-neighbor distance cause the
off-diagonal correlations to contribute nothing to
the scattering cross section. Since the local den-
sities of states derive from the reduced Green’s
function, they are converted to mean-square dis-
placements by dividing by the mass of the atom.
This implies that the oxygen local densities of
states are weighted more in the neutron spectrum
than they are in the total density of states. The
difference in the neutron cross sections for the
different nuclei enters in as well, the net re-
sult being to overemphasize the oxygen local den-
sity of states by about a factor of 2. The dotted
curve in Fig. 3 is a theoretical neutron spectrum.
While the off-diagonal correlations do not con-
tribute to the neutron spectrum, they are extreme-
ly important in the other two experiments. For
example, in Fig. 9(a) the trace of the nearest-
neighbor correlation matrix reveals strong nega-
tive correlations between silicon and oxygen dis-
placements at 450, 800, and 1080 cm™, which
causes the infrared activity of these bands. Modes
of heteropolar solids are infrared active when
dissimilar atoms vibrate out of phase. The strong
positive correlation at 200 cm™ is associated with

the acoustic-like bands of the Bethe lattice and
suppresses their infrared activity. In Fig. 10(c)
we see very strong “bending-bending” correla-
tion at 500 cm™ associated with a very intense
Raman band. The proposed mechanism for Raman
scattering'® in quartz is the dilation of the elec-
tronic polarizability by the oxygen atoms when
they move in the “bending” direction.

The infrared experiment measures the phonon
contribution to the dielectric function in a solid.
We evaluate this theoretically by means of the
formula

4m
€e=1+ 7;Q¢G¢1Q1+4”Xonctrou’ (25)

where v is the volume of the solid and @, is the
charge on the ith atom. Rather than viewing G as
a correlation function in this expression, it is con-
venient to think of it as describing the dipole mo-
ment induced on atom ¢ resulting from applying a
force Q,E to atom j.

In Fig. 11 we compare with experiment the ima-
ginary part of the phonon contribution in (25)
summednot over the entire solid, but over a 33-atom
nucleus in the Bethe lattice. The Bethe lattice is

1
il e
v,
N
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FIG. 10. Second-nearest neighbor correlation functions
in the Bethe lattice. (a) Silicon-silicon correlation show-
ing squeezing effect at 800 cm~!. (b) Stretching-stretch-
ing correlation. (c) Bending-bending correlation showing
strong positive value at 550 cm~! associated with Raman
activity. (d) Rocking-rocking correlation. All oxygen-
oxygen correlations are between “1” and “2” atoms as
defined in the text.
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topologically identical to quartz up to fifth-nearest
neighbors, due to the absence of small rings of
bonds in quartz. If we assume that the same holds
true for the amorphous solid, we can approximate
the actual Green’s function with the Bethe-lattice
Green’s function for fifth-nearest neighbors and
closer. The 33-atom cluster just includes fifth-
nearest neighbors of the central atom. Restricting
the sum (25) to such a cluster in the actual solid
would lead to large errors; however, the trends
would be right. If the cluster were diminished
to one atom, the sum would produce a local density
of states. If it were extended to the whole solid,
the sum would produce the correct spectrum. If
we discover how the density of states is weighted
when the sum is taken over an intermediate sys-
tem, we can infer how it will be weighted when the
sum is done correctly. In the calculation we use
the effective charge tensors @; found by Klein-
man and Spitzer to be appropriate for quartz.'®
The theory has been artificially broadened by
75 cm™. The experimental spectrum is that of
Galeener and Lucovsky.®? The agreement between
theory and experiment is excellent, except for the
excessive width of the peak at 450 cm™, which
we believe to be due to the small size of the clus-
ter over which the sum was taken. We conclude
that the Bethe lattice is consistent with the infra-
red data.

Agreement of the Bethe lattice with existing Ra-
man data is less good. The mechanism used with
moderate success by Kleinman and Spitzer!? to

Theory A‘

Experiment

62(“‘)

0 1400
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FIG. 11. Theoretical vs experimental values for the
phonon contribution to €,(w) in silica.
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FIG, 12. Theoretical vs experimental values for the
reduced Raman spectrum of silica. The dotted curve is
the H-V spectrum, which is identically zero in the
theory. The solid curve is the V-V spectrum.

account for the intensities of the four A, Raman
lines in quartz involves an isotropic dialation of
a scalar polarizability by the atoms when they
move SO as to compress bonds. Kleinman and
Spitzer observed that the Raman intensities were
harder to fit than the infrared intensities. They
did not address the eight E lines in the Raman
spectrum.

The Raman cross section is given by'*

d_O' iwt ) i3 (R; R ;)
ae " e (j (6a;(0)5a,(t)ei“tat) ! Rk (26)

where 6, is the change in the electronic polari-
zability at atom i. If we let 'V’a,. denote the gra-
dient of @; with respect to X;, we obtain for the
small-momentum transfers § of light scattering

Fds% = Z; Fa,) (f <)‘<i(0)>’<,(t)>e‘“‘dt) (Va,)

- - 2D S o) etmlG, ()] Ty (27)
1%}

We approximate this expression as before by
summing over a 33-atom cluster in the Bethe lat-
tice.

In Fig. 12 we compare our results with the ex-
perimental spectrum of Galeener and Lucovsky.®
The theory has again been artificially broadened
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by 75 cm™. The intense peak at 550 cm™ in the
theory is probably the feature at 500 cm™ in the
experiment. It is too strong and in the wrong
place in the theory. The band between 100 and
400 cm™ is shifted upward and is too weak in the
theory. We can rectify this problem by adopting
the more sophisticated Keating!® Hamiltonian—
however, the 500-cm™ peak seems to be a prop-
erty of bond-oriented Hamiltonians. The rest of
the features in the experimental spectrum, except
for the one at 600 cm™, may be reproduced by
adopting an additional small depolarizing mecha-
nism for the Raman effect. It has been suggested®
that this feature at 600 cm™ is a defect state. We
have not yet been able to identify it as such. We con-
clude from the Raman calculation that the Bethe
lattice is somewhat inaccurate in the region of
200 cm™ and very inaccurate at 550 cm™ because
it is constructed using nearest-neighbor interac-
tions only.

VI. SUMMARY AND CONCLUSIONS

The Bethe lattice provides a simple means of
investigating explicitly the effects of local geo-
metry, topology, and disorder on the vibrational
spectrum of an amorphous solid. Using Born-
model interactions and the configurations of near-
est neighbors found in quartz, we have constructed
a Bethe lattice for silicon dioxide and have used it
both to analyze neutron, infrared, and Raman ex-
periments, and to investigate the effects of dis-
order. Several new facts about amorphous silica
have emerged from this study: (i) The vibrational
properties of amorphous silica are completely
dominated by local effects, particularly the values
of the bond angles in the immediate vicinity of an
atom. (ii) Bond-angle fluctuations are important
only in that they broaden features in the spectra
that would otherwise be sharp. (iii) The topology
of amorphous silica is not manifested in any
available data. (iv) Phonons in amorphous silica
are not characteristically SiO,-like. (v) Matrix-
element effects in neutron, infrared, and Raman
experiments are local phenomena.
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APPENDIX: THE SILICON DIOXIDE BETHE LATTICE

We first set up local coordinates on each sili-
con atom and make them identical by requiring
that the coordinates of the nearest-neighbor oXy -
gen atoms always be the same. The oxygen neigh-
bors are positioned at the vertices of a perfect

FIG. 13. Bond-matching rules for silicon dioxide
Bethe lattice.

tetrahedron and numbered 1 through 4. For con-
venience, we introduce a 3 X 3 matrix S which re-
arranges the bonds according to a cyclic permu-
tation 0. Letting D, denote the dynamical matrix
connecting the central silicon atom and the vth
oxygen atom, we have

SD,S™=D_,. (A1)

We alsc introduce four orthogonal matrices M,
which transform vectors from the four neighbor
silicon coordinate systems into the central silicon
coordinate system, and which contain the bond-
angle information. These are taken to be sym-
metries of crystalline silicon dioxide, and have
the following properties:

(a') Mv'_'sz[‘l;tu)’ (AZ)
(b) Mi=1, (A3)
(c) M,=M,S2, (A4)

There are two symmetries of the crystal which
transform a silicon atom to its neighbor. The
first rule expresses the arbitrary selection of the
one of these which attaches a v bond and a 7(v) bond

to the same oxygen atom. There is no symmetry
which attaches the same bond to both sides. The
bond matching convention is illustrated in Fig. 13.
The second rule expresses the threefold rotational
symmetry of the crystal. The third expresses the
translational symmetry connecting atoms 1 and 2.
These axioms are sufficient to generate the four
transformations, and lead to a Si-O-Si angle
given by

cosf= —3V5 (A5)
and a dihedral angle given by
cosd=(3+V5)/4V2, (A6)

The dynamical matrix connecting the silicon atom
with itself is constrained by translational invari-
ance of the total Hamiltonian to be

A=-3"D,, (AT)
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and the matrix B, connecting the vth oxygen atom
with itself is similarly given by

B,= —(D,+M,Dy,,M}). (A8)

Using these dynamical matrices appropriately re-
duced by the silicon and oxygen masses we gen-
erate a repeating sequence of equations describing
the vibrational Green’s function in the frequency
domain. If we let G, denote the 3 X 3 submatrix of
the Green’s function connecting a silicon atom
with itself, F';‘ the submatrix connecting the sili-
con atom with the v,th oxygen neighbor, G;* the
submatrix connecting to the v th silicon neigh-
bor, and so on, then we have

(WP =A)G, =1+ D, F, (A9)
Vi
(wz'Bvl)Fl;l=DVIGO+Mu1Da(v1)G:17 (AlO)
(wz - A)G:I = Da(V], )A/I‘-‘iFll’l * Z D"ZF;F & ’ (A 1 1)
vytolvy)
(W= B, )F," =D, G+ M, D,,,G,*"*?, (A12)

(w? = A)G ™" ¥n= Doy, ML
+ Z D

Vw120V )

F::i...,v,,.l. (A13)

Vne1

(wZ_BV")F:l'....V"=D G"l"""’n-l

Vp o n=1

+M, Dy, (Gu'rt*ma, (A14)
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To solve this system we first eliminate every
other equation to obtain

Acvl,....v"=[’)’t le.---,l‘"-l
n

vnT nel
" b’ G“'l"""’ml
v,,.;(u,,) Ve M1 ’ (AIS)
where
A=w?-A-) D,(w*-B,)'D, (A16)
v
and
D,=D,(w? - B,)*M,D,,. (A17)

A solution of the form

Gl::.l....u"n:d)vMIG:l....,v,, (A18)
is then substituted, which leads to recursion rela-
tions for the transfer matrices &, of the form

-1

<1>,=<A -y 1')“@“) Dt. (A19)
u#a(v)

These equations are solved numerically by iterat-

ing the continued fraction starting from &,=0.

Once the transfer matrices are found, G, may be

calculated using the relation

G,= (A - D“<I>u>-l (A20)

and the remainder of the Green’s function con-
structed from G,.
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