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The theory of the coherent pairing of Frenkel excitons in the presence of a resonant electromagnetic field

is generalized to include the effect of the electron spin. It is shown that at high exciton densities and when

the electromagnetic field is at resonance or near resonance, the removal of the spin degeneracy of the

exciton pairs results in generating two fields, the singlet and the triplet biexciton fields, respectively. The

gap functions b, + and 5 due to the singlet and triplet biexciton fields, respectively, are calculated and they

are found to be independent of one another only in the limit when the exchange interactions between the

charges disappear. In this limit, the energy modes for singlet and triplet biexciton fields have well-defined

meaning and propagate through the crystal independently. A dielectric gap is induced by the electromagnetic

field, which produces the energy splitting in the singlet biexciton spectrum, and it must be less than that of

6+ for the singlet biexciton state. For finite values of the exchange interaction, the gap functions 6+ and

depend strongly on each other and consequently the singlet and triplet biexciton fields are strongly mixed

together. Optical transitions to the singlet and triplet biexciton states are considered and the corresponding

expressions for the absorption coeAicient are derived. The ground-state energy describing the binding energy

arising from the singlet and triplet biexciton fields is calculated and discussed. Numerical estimates indicate

that at high exciton densities, namely, for exciton concentrations 10"-10"cm ' and when the ratio of the

average exciton-exciton interaction over the average kinetic energy is between 0.7 and 2 (strong-coupling

limit), the energy gap due to the singlet biexciton state is in the range 40—650 cm ', the corresponding

transition temperature is 33-534'K, while the binding energy is 22—684 cm

I. INTRODUCTION

The ability to produce high exciton densities has
led to intensive studies of the collective properties
of excitons in insulators and semiconductors.
The collective phenomena that have been presently
discussed and observed in systems of excitons
at high concentrations are: biexcitons, the Bose
condensation of excitons or biexcitons, and the el-
ectron-hole liquids. ' The existence of one of these
collective states depends on the exciton concentra-
tion, the character of the exciton-exciton interac-
tion, the band structure, and other factors.

The elementary collective electronic excitations
in molecular crystals are the well-known Frenkel
(small radius or molecular) excitons. ' These con-
sist of tightly bound electron hole pairs that pro-
pagate through the crystal with definite energy and
wave vector. ' It has been recently suggested (Ref.
4, referred to as I) that in molecular solids two
excitons with opposite wave vectors may interact
to form a bound state. The theory of the biexciton
spectra arising from the coherent pairing of exci-
tons in the presence of a resonant electromagnetic
field for molecular crystals consisting of aroma-
tic organic molecules has been developed in I. It
has been shown that the formation of the biexciton
state at high exciton densities is possible provided
that there exists an attractive interaction between
the excitons, that the electromagnetic field is at
resonance or near resonance, and that the dielec-

tric gap induced by the electromagnetic field is
less than that for the biexciton state. The theory
has been generalized to be appropriate to organic
crystals which have several molecules in the unit
cell', the reader is referred to I and Ref. 5 for
further details.

The valence bands for most molecular crystals
are filled with electrons having opposite spin align-
ments. Light absorption by a crystal of organic
molecules generates excitons, which may have
their spin components either up or down. When the
spin degeneracy is removed in the Hartree-Fock
approximation, the excitation spectrum consists
of two frequency modes, the singlet and triplet
exciton modes, which propagate through the crys-
tal independently. ' At high exciton concentrations,
two excitons with parallel or antiparallel spin com-
ponents may interact to form the corresponding
biexciton state. Hence, there is a spin degeneracy
in the dense exciton system, the removal of which
may lead into the formation of singlet and triplet
biexciton states. The purpose of the present study
is to generalize the theory of the resonant coherent
pairing of excitons to include the effect of the elec-
tron spin.

The problem is formulated in Sec. II where use
has been made of the same model for a molecular
crystal as that considered in I but including the
effects of the electron spin. Usia g the spin-depen-
dent Hamiltonian and that describing the coupling
with the transverse resonant electromagnetic
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field, the equations of motion for the exciton
Green's functions are derived. After applying the

decoupling approximation defined in I, we get a
set of coupled equations for the exciton Green's
functions.

The excitation spectrum is discussed in Sec. III.
It is shown that the removal of the spin degeneracy
results in creating two fields, the singlet and the
triplet biexciton fields, respectively. There is an
energy splitting in the singlet biexciton spectrum
which is caused by the electromagnetic field.
%hen the electromagnetic field is at resonance or
near resonance, the gap functions s, and 6 des-
cribing the singlet and triplet exciton pairing,
respectively, have been calculated at zero tem-
perature and they are shown to be independent of
each other only in the limit when the exchange in-
teraction goes to zero. Only in this limit, the
energy modes for the singlet and triplet biexciton
fields are well defined and propagate through the
crystal independently. The gap function 6, for the
singlet-biexciton field must be greater than that

induced by the electromagnetic field; there is no
such restriction for b, . For finite values of the
exchange interaction, the gap functions 6, and 6
depend on each other and result in the mixing of
the singlet and triplet biexciton fields, whose
energy modes are no longer well defined.

Expressions for the absorption coefficients des-
cribing optical transitions to singlet and triplet
biexciton bands are derived in Sec. IV. The bind-
ing energies arising from the singlet and triplet
biexciton modes are calculated in Sec. V; the
results of the numerical computation are listed
in Table I and discussed in Sec. VI.

II. FORMULATION OF THE PROBLEM

The Hamiltonian for a two-level system of a
molecular crystal describing the coherent exciton-
exciton interaction in the presence of a resonant
electromagnetic field has been derived in I and is
given by Eq. (26} of I. This expression can be
easily generalized to include the spin of the elec-
trons and then it takes the form

3C = const+ g Dk„,bk-„, bk-„, + J„.(%)(bk„,bk„,, + b-„„,, b-„„,)
I

kk vko k, Vgaea
(a &a')
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where the indices 0 and ~' indicate the spin com-
ponents and take the value of spin up (() or spin
down (4). b-„„, and b-„„, are the Frenkel exciton
creation and annihilation operators with wave vec-
tor k, band index v, and spin 0. The effective
energy of excitation Qk„, is defined as, Eq. (27) of

~kva +kv k (2)
aa

where E-k, is the energy of the free-exciton field
given by Eq. (14a) of I and ~k- is the energy of the
free transverse photon field. P» and P» are pho-
ton creation and annihilation operators with wave
vector k and transverse polarization & (= 1, 2).
The band index v designates also the kind of the
exciton mode, transverse v =- v~ = ~ = j. , 2 or longi-
tudinal v= v(~ =3.

The coupling function Z„$) is defined as"
l

$)=g Z(nOo, mvo'~nvo, mOo')e'k' m~, (3a)
R m II

J(nOo, mvo')nvo, m0o')

= ( nOo, m vo'
)
V-„-

~
nvo, rnOo')

—(n0o, mvo'( V-„-f mOo', nvo), (3b)

I

while that of U„(k-q) is given by Eq. (14c}of I,

U, (k-q)= g U„(n, m)e'" "' ' ~ ~ —2J,„(q),
4n

(4a)

where U„(n, m) is determined by"
U„(n, m) = U, „.(n, m)+ U„„(n,m),

U, „(n,m) =J(nOo, mvo'
) n0o, mvo')

-Z(nOo, m0o'~ nOo, mOo'),

U„„(n,m) =4( mvo, nOa'
~
mva, n0o')

—J(nvo, mvo'( nvo, mva'),

(4c)

(4d)

0 and v designating the ground and excited electron-
ic states, respectively. The photon-exciton cou-
pling is given by the function p. k~„

&kk =~&[f0 ("~)Eke l ~k1 (5)

where f;„'$&) is the oscillator strength for the
spin-allowed electronic transition 0- v defined by
Eq. (17) of I; there are N molecules (atoms) in the
crystal volume V. Apart from the spin degeneracy,
the expression for the Hamiltonian (1) as well as
the notation coincide with that of Eq. (26) of I
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where the reader is referred to for further de-
tails.

To remove the spin degeneracy in the excitation
spectrum, we need to calculate the exciton Green's
functions ((bk t+bp tv bkvt)) and ((bk„t —bkvt bkvt)),
respectively, by means of the Hamiltonian (1).
We shall make use of the retarded double-time
Green's functions of the Zubarev type" defined

by Eq. (19) of I. The exciton Green's functions
«b„„tab-„„t,b„„t)), which consist of linear combina-
tions of exciton operators having a spin up and a.

spin down, are the appropriate ones for the re-
moval of the spin degeneracy. ' Using the Hamil-
tonian (1) and the equation of motion for the
Green's function defined by Eq. (20) of I, we de-
rive the following expression

td-Qk„, — " (I+I) «bk, t+bk„t, b-„„t))=———Q Utt(k —q)((b k t(b tb -q„t)+b k„t(b-, tb -„„t);bk„t))
q

1
2N Q Utt(k —q)(((b k„tab k„t)(bq„tb -„„t+bq,tb q, t);bk„t)),

Q

where 0}v E},v (tL) (13a.)

Q k„-—Q k, +J t t (k),

u =td'P f.".(k~)(Ek. /~-k),
u, g

and f,"„(k&)= f,„{k&) In d. eriving Eq. (6) we have
taken

(7b)

Ut t(k —q) = U»(k -q),

Jtt$)=Jtt(k), Jtt(k)=Jtt(k),

(8a)

(8b)

where

a,(k) = n t t(k) ~ st t{k), (12a)

4tt(k) = htt(k) = —P Utt(k -q)(b-,„tb -„t),

6tt(k) = 6tt(k) =—Q Utt(k —q)(bq„tb -„„t).
q

(12b)

(12c)

The expression for the effective energies of
excitation of the exciton field given by Eq. (7a) may
be rewritten as

which are valid from symmetry considerations.
Then, we make use of the decoupling approxima-
tion

(&b-k.t(b .tb- .»+b-k t{b tb- t) bk t))

= «bq. tb-;t))&(b-k t bk t))

s &b q„ t b -„„t)((b k„ t, bk„t)), (9)

(((b kvt + b kvt)(b qv t b qvt+ b qvtb qv t)t bkvt))

= ((bq„tb q„t)+(bq, tb q, t))((b k„t sb k„t, bk„t)) )

(10)

as has been done in Eqs. (32) and (33) of I. Sub-
stituting Eqs. (9) and (10) into Eq. (6), we get

2

[m —Qk„- (tt k/4(d)(I S 1)]((b-„„tSb-„„t, b „vt))-
= I/2tt —a*(k)«b-ivt a b kvt ' bkvt)) -(11)

where

b kv
= E k~v *J t t{k) = E ov+ J t t(k) XJt t(k) I (13b)

2
Qk„+ (P, k/4~)(1+1)](&b k,t+b k, t, bk„t))

= &,*(k)(&bk.t+ bk. t, bk.t)) (14)

Equations(13) and (14) form a set of coupled equa-
tions, ihe solution of which will determine the
energies of excitation for the system under con-
sideration. If the coupling functions b,,(k) and
A $) do not depend on each other then the solu-

E„being the ener gy diff erence between the ground
state and the excited state v and is given by Eq.
(10) of I. The energies of excitation E-„„ofthe
free exciton field arise from Coulomb and exchange
interactions while that of E~, involves only ex-
change interactions. Thus, in Eq. (11) the plus
(+) and the minus (-) energy modes describe
physical processes where the optical transitions
involved are spin allowed and spin forbidden, re-
spectively. The expressions for E-„, and E-„„given
by Eq. {13b) a.re identical with those describing
the singlet and triplet exciton energies of molecu-
lar crystals" and they are correct in the Hartree-
Fock approximation. In this approximation, the
singlet and triplet exciton modes propagate in the
crystal independently. '

Equations (12a)-(12c) indicate that the gap func-
tions b.,(k) and ~ (k) for the (+) and (-) energy
modes consist of linear combinations of coherent
exciton-exciton pairing with parallel and antiparal-
lel spins; they may be interpreted as the energy
gaps corresponding to the biexciton states with
positive and negative spin projections on the z axis,
respectively.

Similarly, the expression for the Green's func-
tion ((b kvt ab k», bkvt)), -that appears on the right-
hand side of Eq. (11) turns out to be
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tions of the coupled equations (13) and (14) for the

(+) and (-) energy modes will be completely sepa-
rated; as we will see later this is not always pos-
sible. The coupling functions 6 (k) and 4 (k),
which are still unknown parameters, will be calcu-
lated self-consistently in connection with the ex-
citation spectrum of the system under considera-
tion.

III. EXCITATION SPECTRUM

To discuss the excitation spectrum we solve the
coupled equations (13) and (14) with the result

((bi.i+ br. ~; bi.i))
+ l 2

1 (d ((d + Qiq) —pcUp, i
( )2v [(u' —Q'„(kv)j[(u' —Q', (kv)j

'

((b i„) + b ~„),bi„)))

(bi&,)(be„(+ b-ky t)) = ~[1 —Qku u/(ck, + 2)i&) J

(bk„&(b &„& + b &, t ))= A,*(k)8&/2(ek„+ 2p&)'~',

(bi7ut(beaut b7ivt )) 2[1 (Qku/~ku) tanh2t ~kuj

(b„-,((b k„( —b „,t))-(A=*(k)/2ck, ) tanh-,'Pck, ,

where 6}~ is given by

6k =-, [tanh —,'jsQ (kv)+ tanh —,'PQ, (kv) j
+ (I/2e„-„)(e„-,+ 2p, -„)"'

x [tanhzPQ„$v) —tanhzPQ, (kv) J.

(21a)

(21b)

(22a)

(22b)

(23)

Substituting Eqs. (21) and (22) into Eq. (12a} we
get

triplet biexciton states, respectively. Using Eq.
(42) of I and Eqs. (15)-(18) we derive in the usual
way" the following expressions for the distribu-
tion functions at finite temperature:

1
2'

z(1+ Qk„/ei, ) ~(l -Qk„/ei„)
(d —CkU (d+ Ej p

; bi, )))
1 a*(k) 1 1
2& 2E. j,v (d —Cj v + ~J v

1 &u'a,*$)
2~ [&u'-Q' (kv)j[(o' —Q'; (kv)j '

((be~ —bx„t, b7iut))

(-) 1 ~ U,(k-q)a, (q)b-,
+ N ~ 2(&t~ + 2~&)»~

q

1 ~ U (k —q)A (q) tanh-,'}ic-„
2E Qv

Q

1 ~ U+(k-q)a (q) tanh-,'Pe-„,

1 ~ U (k —q)b., (q) &;
N ~ 2(e-"„+2p&)"'

q

(24)

(25)

where the energies of excitation Q„(%v) and s-„„
=—Q, (kv) a,re

Q„(kv) =-;[(e-„„+2v, -„)"'~e-„,j,
e-„', =+ [QP + [~,(k) i']"-' .

(19)

(2o)

The poles of the Green's functions (15}and (16)
are determined by the expressions for Q„(kv) and

Q, (kv) defined by Eq. (19), which indicates that
there is an energy splitting that is equal to r-„,
and is caused by the electromagnetic field. On
the other hand, the poles of the Green's functions
(17) and (18) are determined by Q, (kv) = e-„, defined
by Eq. (20) and there is no energy splitting. There-
fore, the excitation spectrum described by the
Green's functions (15) and (16) with energies
Q„(kv) and that of the Green's functions (17) and
(18) with energies Q, (kv) =—~k„may be interpreted
as corresponding to the singlet and triplet biexciton
states, respectively. The singlet biexciton spec-
trum is split by the electromagnetic field while
that of the triplet biexciton is not.

As has been shown in I, the Green's functions
(16) and (18) are used to calculate the gap functions
h, $) and b, (k) while the imaginary parts of the
Green's functions (15) and (17}determine the ex-
pression for the absorption coefficient which de-
scribes the optical transitions to the singlet and

where

U, (k —q) = —,'[U()(k —q) a Ut )(k —q) J . (26)

a, = U,N, (0)

+Um (0)

= U,N (0)

d(q'/2 m', „,)a,
[(E,+ q'/2 m+„, )'+ a', + 2p, ']"'

d(q'/2 rn, „,)h
[(E,+q'/2m, „,)'+a':j"' '.

(27}
d(q'/2m, „,)a

[(E,+ q'/2 m, „,)'+ a' J"'

U N (0)
" d(q'/2m:-)~.

[(E,+ /q2' m)'+ n,'+ 2p, ']"' '

(28)

where, N, (0) designate the density of states de-
fined as

N+(0) = (V(m,'„,/2v'N) = 3/2m „m,= ]'/2 rn,'„, ,

(29)

The solutions of the coupled integral equations
(24) and (25) will determine the expressions for
D, (k) and A (k). In the limit of zero temperature
(P -~), tanhr pe-„„=1, & ~

= I, then following I and
in the effective mass approximation Eqs. (24) and

(25) become
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g = (62/'N/V)"' = (62/'n)"',

22=N/V being the exciton concentration. In Eqs.
(27) and (28), E, is the effective energy gap given
by

E =$„0—0, (31)

where, as in I, the dispersion of the electromag-
netic field is neglected, namely, co-„ is taken as

2 2~-„=0 and p, -„=p. . The effective masses m,'„, and
m, „, for the singlet and triplet excitons are de-
fined by Eq. (30) respectively, and depend on the
directions of the excitons as well. ' In Eqs. (27)
and (28) use has been made of the notation, U,
= U, (k) and a, -=a,(k).

After performing the integrations in Eqs. (27)
and (28) we obtain

+ (g +[(E ~ 0/ )2+ n2 2p2]1/2

E +(E2+ g2 + 2+2)1/2 r

E, + 0/ +[(E,+ 0/ )2+ n, ' J'/2 1
E ~(E2 + ~2)1/2 p

(32)

(33)

p, =U, N, /s, ,

p =U, N /s

(34a)

(34b)

where the coupling functions p, are determined by

p,'= U, N, (0),
p' = U, N (0) .

(42a)

(42b)

Considering that the effective mass of the triplet
exciton is much larger than that of the singlet,
m, „,. &m,'„,, we have N (0) &N, (0) and hence, p" & p', .
Then substituting p, by p', in Eqs. (37) and (38),
respectively, and takir. g the ratio 6',/n', we get

corresponding scattering amplitudes for the elec-
tron-singlet and electron-triplet exciton bound
states given by Eqs. (39) and (40) of Ref. 7, re-
spectively.

Equations (34a)-(34d) for p, and p imply that
the gap functions 6, and 6 depend on each other
through the function U /U+, which is the ratio of
the exchange interaction over the total Coulomb
plus exchange interaction. Whenever the ratio
U /U, has an appreciable value then a, and a
depend on each other and consequently the singlet
and triplet biexciton modes are coupIed together.
Therefore, the admixture of the singlet and triplet
biexciton modes depends on the strength of the ex-
change interaction and in particular on the value of
the ratio U /U, .

In the limiting case when

U /U, -o,
then s, -1 and p, and p become

s, =[1—(U /U, )(~ /L, )]/[I —(U /U, )'], (34c)

s =[1 —(U /U, )(h, /n, }]/[1—(U /U, )']. (34d}

A favorable condition for the existence of the
scattering amplitudes b, , is when the electromag-
netic field is at resonance,

n0 (~ F0~2 2p2)1/

4)

sinh(l/p', )
' sinh(1/p') '

stnh(l/p' } m, „, sinh
sinh(1/p', ) m,'„. sinh(l/p'„)

(43a)

(43b)

E =E, -Q=O, (35)

or near resonance when E,«0/„ then Eqs. (32)
and (33) become

n, = [(g ~2 2p']'/'

(d+

sinh(1/p, )
'

(36)

(37)

sinh(1/p )
' (38)

Equation (36) implies that a, must also satisfy
the inequality

(39)

k, T,' = 0.57', , (40)

where k~ is Boltzmann's constant. The expres-
sions for 6, and b, are formally analogous to the

so that 6, & 0. In the limit when p. -0, the transi-
tion temperature may be obtained from the expres-
sion

We emphasize that the main drawback for the ex-
istence of 6+ is the fulfillment of the inequality
(39), i.e. , a'„& 2'/'

p, . Considering that at reso-
nance )22= 0/2f„, the satisfaction of the inequality
(39) becomes difficult especially for optical transi-
tions carrying large oscillator strengths. On the
other hand, there is no such restriction for the
existence of the scattering amplitude 6'. In this
case, the only unfavorable condition is the large
value of the effective mass of the triplet exciton
~n,„, which brings about lower values of (d in
comparison with thos of 0/, given by Eq. (29).
However, this disadvantage may be compensated
by the fact that p' & p', , and thus, sinh(1/p')
& sinh(1/p', ). Thus under conditions of high exci-
ton density, the formation of triplet biexcitons has
more or less equal probability with that of the
singlet while in the case of optical transitions
having large oscillator strengths, the production
of triplet biexciton dominates.

In concluding this section, we point out that
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when the exchange interaction is strong or the

ratio U /U+ is large then the singlet and triplet
biexciton modes are coupled together. On the
other hand, when the exchange interactions are
weak and U /U, -0, the singlet and triplet biexci-
ton modes propagate in the crystal independently.
Only in this case the singlet and triplet biexciton
states have well-defined energies. In general,
exchange interactions are known to be extremely
weak in molecular organic solids, and hence,
Eqs. (42) and (43) are expected to be applicable.
In this case and in the presence of high concentra-
tions of excitons, the formation of triplet biexciton
modes may dominate those of the singlet ones,
especially when the optical transition in question
carries a large oscillator strength.

region of frequencies, q(k, ur) varies slowly with

~ and may be taken as a constant q(k, ~) = qk.
Taking the spin components in Eq. (44), we get

a(k, (u) = —(m/4c(uq-„) p-„~,

xim(((b»( + b »i, b»)»+ ((b-„„) —bk„), bq„(»),

(45)
From Eqs. (15)-(18), we derive the following ex-
pressions for the Green's functions:

((bu. i+be. ~ b~.i&&

~ [uP -Q' (kv)][~' —Q', (kv}J
'

((b k„) —b q„), b q„l&)

IV. ABSORPTION COEFFICIENT

The expression for the absorption coefficient
u$, &u) is given by'

o. (k, cu) = -[v(v~2/4c&uq(k, (u) J

1 I 1 Q-„„+a*

n;„+~*
+ 1—

~]v
(u+ c»} . (47)

Q f;, (k&)Ej„Im((b-„„;b„-„,)), (44)
V, X~0

where c is velocity of light in vacuum, q$, &u) is
the real part of the index of refraction of light
waves with wave vector k and frequency (u, 5»„,
= b-„„,—b -„„,and Im refers to the imaginary part
of the Green's function in question. In the optical

Substituting the imaginary parts of Eqs. (46} and

(47) into (45) we obtain

up, (u} = a, (fc, ~) + a, (k, (u), (48)

with n, (k, +) and a, (k, cu) being the absorption co-
efficients describing the singlet and triplet biexci-
ton bands, respectively, and determined by

o,(k, &u) = (yam&/4c(ug&}[u~(kv}5(&u —Q„@v))+v~(kv)b(&u+Q„(kv))

+u', (kv)b((u —Q, (kv)) + v', (kv)5((o+ Q, (kv))J, (49)

u, (k, ur) = (p „&u, /4c~q -„)[-u',(kv)5(-ru —ek„)

+ v', (kv)6((u+ e-„„)], (50)

Q„(kv)[Q„(kv)+ Q-„„+b,,] (51a}

Q „(kv) [Q„(kv) —Q» —6+]
2[Q'„(kv) -Q', (kv)]

(51b)

u', (kv) = —,'[1+(Q-„„+g )/e-„„),

v', (kv)=-,'[I+(Qu, +n, )/ei, „l,

u'„(kv)+ v2, (kv)+u2 (kv)+ v,'(kv) = 1,

u', (kv)+ v', (Rv) =1.

(52a)

(52b)

The probability amplitudes u'„(kv) and u', (kv)
give a measure of the intensities of the singlet-
biexciton absorption peaks with energies Q„$v)
and Q, (kv), respectively; v'„(kv) and v', (kv) are

the corresponding ones for the emission bands.
The probability amplitudes u', (kv) and v', (kv) de-
scribe the intensities for the absorption and emis-
sion bands of the triplet biexciton mode with energy
e-„„respectively. As mentioned in the previous
section, the singlet and triplet biexciton modes
have well-defined meaning only in the limit when
U /U, -0, therefore the expressions (48)-(50)
are applicable when this limit is satisfied (U /U,
-0), where the singlet and triplet biexciton modes
are independent of one another.

In the limit when n, -0 then Eqs. (49) and (50)
for u, (k, &u) and o. ,(k, u) with A, = A = 0, describe
optical transitions to the singlet and triplet exciton
bands, respectively, in the presence of a resonant
electromagnetic field.

V. GROUND-STATE ENERGY

To calculate the ground-state energy of the sys-
tem we average the Hamiltonian (1) as
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(36)=const+ p Q„„,(b~„bk„,+b k„b ~,„)+ J,„(k)(b»„b„,„.+b» b»~)
k, v. o k, VqG ~G

+ Q
k, u, X k, Q, V

/
OyO

U„(k -q)(b -„,b-„„„)(bk„b q„) . (54)

Then, taking in Eq. (54) the spin components ex-
plicitly and using Eqs. (21a)-(22b) for the distri-
bution functions in the limit of zero temperature,
we derive the expression for the ground-state
energy,

(X),=const+ ~ 0-„, 1 —...

(u, /y, = (-'/2m 1

n', /4/, = (j'/2/n)/sinh(1/p', ),
T,+//1/, = (0.57('/2rnKe)/sinh(1/p ),
—Wo /4/, = (3 $-'/2//&)/e"'+ —1,

where

(59)

(60)

(6S)

(62)

I &,(k) I' ~ uk
2(e+2 + 2p2 )1/2 ~ (e+2 ~ 2p2 )1/2

ku k k kv k

I& ( )I (55)
&kv - 2&kv

k k

(3C), = const+ W', + W, —— (56)

The last two terms in Eq. (55) arise from the
triplet biexciton field. To proceed further, we
consider the case of resonance, namely, when Eq.
(35) is satisfied (E, =O) then we make use of the
same approximations as those deriving Eqs. (36)-
(38) with the result

(It), = m/)n, '„, , (63)

&n being the free electron mass. Excitons pro-
duced by light have positive effective masses

n

(cm ) p+ U+/cu+ (cm ) (cm ) ( K) (cm )

lxlP'" 1 P P 7
1.5 1.0
2.0 1,3
2 ' 5 1.7
3.0 2.0

47
47
47
47
47

40
65
90

114
136

33
53
74
94

ill

22
50
82

115
149

TABLE I. Computed values for ~,/ft), , the gap function
&+/Q+, transition temperature 7",/Q+, and binding energy
~~/P„, given by Eqs. (59)—(62), respectively.

where

1 2X,(0)&u',

The expressions for W,' and 8', describe the
binding energies for the singlet and triplet biexci-
tons, respectively. The expression for W', —p, '/U,
is similar to the corresponding one for the co-
herent pairing of the Wannier-Mott type excitons
in insulators and semiconductors. " Using Eq.
(29) for X,(0), we may rewrite Eq. (57) as

W,' = —3 &u, /(e" P~ —1) . (58)

Whenever the limit U /U, -0 is applicable then p,
in Eqs. (56) -(58) should be replaced by p,

' given by
Eq. (42). The expression for W,' given by Eq. (57)
is formally analogous to that occurring in super-
conductors. "" Equation (56) indicates that there
are singlet and triplet biexciton states which have
lower binding energies than that of the correspond-
ing normal exciton states provided that there is a
net attractive interaction between the excitons.

To obtain an estimate for the quantities co„A', ,
T,', and W,

' for the singlet biexciton mode, we re-
write Eqs. (29), (43), (40), and (57) as

2xlp 10 0 7
1.5 1.0
2 ~ 0 1.3
2.5 1.7
3 ~ 0 2.0

4 x 10 1.0 0.7
1.5 1.0
2.0 1.3
2.5 1.7
3.0 2 ~ 0

6 x 10'~ 1.0 0.7
1.5 1.0
2.0 1.3
2.5 1.7
3.0 2.0

8 x 10 10 07
1.5 1.0
2.0 1.3
2 ~ 5 1.7
3.0 2.0

lxlp 10 0 7
1.5 1.0
2.0 1.3
2.5 1.7
3.0 2.0

74
74
74
74
74

118
118
118
118
118

154
154
154
154
154

186
186
186
186
186

216
216
216
216
216

63
104
148
186
222

100
186
234
292
334

131
218
308
386
462

158
264
374
468
562

184
306
434
542
652

52
86

122
152
182

82
136
192
240
274

107
178
252
236
378

130
216
306
384
460

151
250
376
444
534

35
80

129
181
234

55
127
206
289
374

72
165
269
377
487

87
200
325
455
589

101
232
377
529
684
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which may be determined by the width of the cor-
responding bands. ' For light excitons, rn„, ~ ~n

while for the heavy ones m, „„.»n. In general,

P, = rn/&n'„, , -1 and in the absence of experimental
data, we shall keep P, as a free parameter. In

Table I, numerical values for &u,/Q, , rV, /Q, ,

T,"/Q, , and -W', /P, are listed, which have been
determined from Eqs. (59)-(62), respectively,
under conditions of high exciton densities n = 10"-
10" cm ' and in the strong coupling limit where
p', = 1-3. The exciton concentration of 2x10"
cm ' has been recently achieved through optical
pumping in anthracence crystals. "

VI. DISCUSSION

We have studied the physical process where two
excitons with opposite wave vectors interact to
form a bound state in the presence of a resonant
electromagnetic field. It is found that when the
spin degeneracy of the exciton pairs is removed,
it results in creating two fields, the singlet and

triplet exciton fields, respectively. When the ex-
change interaction between the charges is weak or
in the limit U /U, -0, the singlet and triplet bi-
exciton modes (quasiparticles) have well-defined
energies and migrate through the crystal indepen-
dently. In this case, the gap functions b, ', and a'
are given by Eq. (43) and may be of comparable
magnitude. In view of the inequality (39}, the
formation of triplet biexcitons may be more pre-
ferable than that of the singlet whenever the opti-
cal transition under consideration carries a large
oscillator strength.

As the strength of the exchange interaction in-
creases or at finite values of the ratio U /U, , the
two fields are coupled together. In this case, it
is difficult to distinguish between the two fields
because of their strong mixing. However, for
most organic molecular crystals, exchange inter-

actions are manifested to be extremely weak and

therefore, the strong mixing between the two bi-
exciton fields is not expected to occur.

Equations (49) and (50) describe optical transi-
tions to be singlet and triplet biexciton states,
respectively. The scattering amplitudes u~(kv)
and u', (kv) given by Eq. (51) describe the relative
intensities of the two singlet biexciton absorption
bands with energies Q„(kv) and Ir, , (kv), while
v2, (kv) and v', (kv) are the corresponding ones
describing the emission processes, respectively.
Equations (52a) and (52b) for u', (kv) and v', (kv) rep-
resent the relative intensities of the triplet biexci-
ton bands corresponding to the physical process
of absorption and emission, respectively. Equa-
tion (57) for W,

' and W, describesthebindingener-
gies of the singlet and triplet biexciton modes,
respectively.

The numerical results in Table I imply that for
exciton densities in the range of 10"-10"cm ',
the gap function a', /P, as well as the corresponding
binding energy -W,'/P, are measurable quantities
provided that the strong coupling limit is appli-
cable, i.e. , U, /cu, & 1. The values for u, /@+ and

U, /&u, in Table I indicate that in this limit the
required strength of the average interaction energy
is rather a reasonable one.

At the concentrations considered here, n = 10"-
10" cm ', the average distance between the exci-
tons is of the order of 6&&10 '-2~10 ' cm. Thus
at these concentrations, the excitons are at a
distance 60-20 A apart and at such distances the
attractive interaction between them may be ap-
preciable. The present experimental situation
has been summarized in Ref. 5, to our knowledge,
biexcitons have not yet been observed in molecular
crystals. We hope that the recent developments
in the exciton spectroscopy''" will make possible
in the near future the observation of biexciton
states in molecular organic crystals.
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